
Atmospheric Pollution Research 15 (2024) 101955

Available online 8 October 2023
1309-1042/© 2023 Turkish National Committee for Air Pollution Research and Control. Production and hosting by Elsevier B.V. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Investigating the reliability of estimating real-time air exchange rates in a 
building by using airborne particles, including PM1.0, PM2.5, and PM10: A 
case study in Suzhou, China 

Nuodi Fu a,f, Moon Keun Kim b,*, Long Huang c, Jiying Liu d, Bing Chen e, Stephen Sharples f 

a School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China 
b Department of Built Environment, Oslo Metropolitan University, Oslo, 0130, Norway 
c School of Intelligent Manufacturing Ecosystem, Xi’an Jiaotong – Liverpool University, Suzhou, 215123 China 
d School of Thermal Engineering, Shandong Jianzhu University, Jinan, 250101, China 
e Department of Urban Planning and Design, Xi’an Jiaotong – Liverpool University, Suzhou, 215123, China 
f School of Architecture, University of Liverpool, Liverpool, L69 7ZX, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Air exchange rate 
Particulate matter 
Real-time 
Indoor air quality 
Outdoor air pollution 
Infiltration 

A B S T R A C T   

This study aimed to evaluate the reliability of using airborne particles to estimate the real-time Air Exchange 
Rate (AER) of buildings, considering particle size and outdoor conditions’ impact on the AER estimation accu
racy. The study utilized on-site data collection and numerical simulations to analyze the factors affecting the AER 
prediction accuracy. Results showed that the PM1.0- and PM2.5-based empirical correlation could predict the AER 
of buildings with a Normalized Mean Error (NME) of less than 10% and a correlation coefficient (r) of over 0.97, 
outperforming the pressurization method. Fine particles with a diameter under 2.5 μm were found to be a 
reliable tracer for AER prediction, with a negative correlation between particle size and AER prediction accuracy 
due to their higher penetration rate. The study also found that outdoor particle levels and pressure differentials 
positively impacted the accuracy of PM-based AER estimation. These findings have practical applications for 
maintaining Indoor Air Quality (IAQ) and accurately predicting a building’s heat losses.   

1. Introduction and background 

Infiltration is the uncontrolled passage of outdoor air through 
building cracks and ventilation system leakage to enter indoor envi
ronments. Under such circumstances, infiltrating air directly brings 
outdoor air pollutants indoors and significantly degrades Indoor Air 
Quality (IAQ) (Amphalop et al., 2023; Fattah et al., 2023; Hu et al., 
2020; Kim et al., 2022; Li et al., 2019, 2022; Liang et al., 2021; Nazaroff, 
2021). Moreover, infiltration can also affect indoor thermal comfort 
(Goubran et al., 2017; Happle et al., 2017; Mathur and Damle, 2021), 
ventilation system efficiency (Fu et al., 2021a; Ren et al., 2023a; Ren 
et al., 2023b; Shi and Li, 2018b), and acoustic insulation performance. 
Previous studies have reported that a building’s heating and cooling 
loads increase rapidly due to air infiltration (Goubran et al., 2017; Han 
et al., 2015; Mathur and Damle, 2021). Thus, infiltrating air is unde
sirable in the case of polluted outdoor air and is also unwanted for 

low-carbon buildings. Accurately predicting the building’s Air Exchange 
Rate (AER) under natural conditions could help control IAQ and esti
mate the building’s heat loss. 

Tracer Gas Methods (TGM) and fan pressurization tests are two 
widely used techniques for measuring AER. The fan pressurization test 
involves using fans in doors (blower doors) to pressurize a building to a 
reference pressure to test its airtightness (CIBSE, 2016). However, the 
measured AER is idealized under test conditions and ignores the impact 
of climate variation. Also, a blower door test can only measure the 
airtightness of a simple building and is limited when applied to 
large-scale complex buildings, such as high-rise buildings. In reality, the 
AER varies with actual in-service conditions due to wind pressures and 
stack effects (Fu et al., 2021a; Nazaroff, 2021; Park et al., 2021; Shi and 
Li, 2018b, Fu et al., 2022). To obtain a more realistic and dynamic 
analysis of AER, the variation of AER with climatic conditions is inves
tigated using TGM since it is conducted under actual environmental 
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conditions. This method estimates the AER through the building open
ings based on the decay of a tracer gas’s concentration indoors within a 
selected time period. For precision concerns, the tracer gas should be of 
outdoor origins or without ambient sources, such as CO, O3, NO, NO2, 
SO2, and SF6 (ASTM, 2000; ISO, 2012). Recently, the 
occupant-generated CO2 TGM has also been commonly used to assess 
the room’s AER due to its simplicity and not requiring the injection of a 
tracking gas (Kabirikopaei and Lau, 2020; Park et al., 2021; L. C. Ren 
et al., 2022; Xiong et al., 2021; Zong et al., 2022). 

In recent years, more attention has been paid to assessing AER using 
indoor and Outdoor Particle Levels (OPL). This method follows the 
principle that a building is in a steady state, and the amount of air 
flowing in and out is balanced. Thus, the known inlet and outlet airflow 
rates can be applied to determine the AER. Serfozo et al. (2014) 
compared the AER estimation results based on the PM10-based method, 
which is based on measured PM10 mass concentration to predict the air 
exchange rate, with the CO2-based method, and they found that the two 
results showed high agreement with each other. Ni et al. (2017) also 
successfully predicted the average AER of a test room based on a 
steady-state indoor PM2.5 level, with AER results determined by the CO2 
decay method also being used as the baseline. 

Moreover, two new methods have been developed to measure the air 
exchange rate of a room using particulate matter (PM) as a proxy. These 
are the PM2.5-based Clean Air Delivery Rate (CADR) method and the 
PM2.5-based PM-up method. Liu et al. (2021) justified that the developed 
CADR method is feasible to replace the CO2 decay method to measure 
the building’s AER. The method involves using a portable air purifier to 
analyze the dynamic process of indoor particle levels and fitting the data 
to a numerical model to predict the average AER. Further, the PM-up 
method has been developed by Hu et al. (2022) to overcome the 
disturbance created by normal human indoor activities to ensure the 
AER could be measured accurately. The central highlighted point in this 
study was that they created a bounce-up process of indoor fine particles 
level by turning on the air cleaner at the beginning and then turning it 
off, which makes the IPL increased rapidly in a short period. During the 
bounce-up process, the source of indoor fine particles level is only out
door particles because of air change with the outdoor air. Thus, the 
average AER of the tested room can be determined by fitting the 
measured Indoor Particle Level (IPL) in that period with the numerical 
model, and the estimated results’ accuracy has been analyzed by 
comparing it with CO2 decay methods (Hu et al., 2022). 

Previous research has focused on predicting the average AER of a 
room, but this may not accurately reflect the indoor air quality (IAQ) 
and heating loss of a building. Real-time AER measurements are 
required to better control IAQ and predict actual heat loss. However, 
there is limited research on using airborne particles to estimate real-time 
AER, and particle size has been found to significantly impact the accu
racy of the estimation. (Shi et al., 2017). This is because the larger 
particles are easier to lose due to the deposition and resuspended 
mechanism and more difficult to penetrate through building cracks (Lai 
and Nazaroff, 2000; Qian and Ferro, 2008; Serfozo et al., 2014; Zhao and 
Wu, 2007). Hence, it is expected that the accuracy of the PM-based AER 
estimation method is highly correlated to particle size. However, most 
previous research only explored the possibility of predicting the AER of a 
room based on one size of particles. Therefore, new research is required 
to compare the accuracy of estimating AER based on different particle 
sizes, including PM1.0, PM2.5 and PM10, under various outdoor condi
tions. Existing literature (Gomes et al., 2007; Isiugo et al., 2019; Martins 
& Carrilho da Graça, 2018; Stamp et al., 2022; Yang et al., 2015) sug
gests that indoor particles can be influenced by various factors, 
including occupant activities, dust type, dust load, indoor floor type, and 
humidity. However, this study specifically concentrates on determining 
the accuracy of real-time air exchange rate estimation using airborne 
particles in unoccupied rooms. Assessing how outdoor air pollution 
levels can impact indoor air pollution levels in occupied rooms is limited 
due to the significant influence of dynamic behaviors, occupant 

activities, and floor material types on indoor airborne particle levels. 
This study aimed to explore the impact of particle size on real-time 

AER assessment using the particles’ mass balance method, while ac
counting for different outdoor conditions. The study demonstrates the 
potential of using airborne particles mass concentration differences 
between indoor and outdoor conditions to estimate AER, particularly in 
a building where traditional methods may be challenging to apply. The 
results can inform the reliability of airborne particles in predicting real- 
time AER and help accurately estimate indoor pollution rates and 
building heat loss. Literature has described estimating indoor particle 
concentrations of outdoor air pollution origin (Diapouli et al., 2013; 
Diapouli et al., 2007; Meng et al., 2005; C. L. Ren et al., 2022; Rojas-
Bracho et al., 2004; Wang et al., 2023; Wichmann et al., 2010). The 
research specifically investigated the influence of particle size and out
door conditions on the accuracy of AER real-time estimation. The study 
incorporated PM1.0, PM 2.5 and PM 10 and considered various 
boundary conditions, such as the summer season, stack effect, temper
ature and humidity differences using real time data to determine the 
pressure drop in relatively low air pollution season. While the penetra
tion factors align with the reference values which the ranges are quite 
broad and not reflected by real time scenario, it’s important to note that 
the actual infiltration rate of particles (PM1.0, PM2.5, and PM10.0) can 
be influenced by real time factors. 

2. Methodology 

The methodologies used to analyze the accuracy of estimating AER 
based on the airborne particles’ mass balance method can be divided 
into five steps: 1) Collecting on-site data of both indoor and outdoor 
particle levels; 2) A numerical model is established to fit the measured 
IPL based on the mass balance equation; 3) Analyzing the collected data 
using the established model; 4) Develop empirical correlation based on 
the collected data to determine the real-time AER; 5) The empirical 
correlation is validated using the K-fold cross-validation method. 

2.1. The tested building 

The study was conducted in a naturally ventilated 12-floor building 
located in Suzhou, Jiangsu Province, China. The building is around 63 m 
high and faces north-south. The experiment was conducted in a room on 
the building’s 3rd floor, which is 10.4 m above the ground floor, and it is 
situated north of the building. The reason for choosing 3rd floor as the 
experiment site was that the ground floor sometimes will be the tem
porary parking area, which may short-term affect the monitoring data 
and further impact the accuracy of the results. Fig. 1 provides detailed 
information on the tested building and room. Additionally, the building 
is surrounded by pedestrian and vehicle roads on a relatively open site. 

2.2. Blower door test 

According to the standard EN 13829 (CEN, 2001), the pressurization 
method is suggested to assess a room’s airtightness and this method has 
also been successfully applied in previous research (Ji and Duanmu, 
2017a, 2017b; Ji et al., 2017, 2020). Hence, the pressurization method 
was used to determine the tested room’s airtightness, and experiments 
were performed strictly with the standard. The Retrotec 5000 system, as 
shown in Fig. 2, which consists of a Model 5000 fan, a cloth panel, and a 
control panel. The cloth panel is used to seal the opening and set the rest 
part of the system, the fan is used to pressurize and depressurize the test 
room at the required airflow rates, and the 32-DM digital manometer 
control device is applied to control the whole system. 

Ten tests were done to assess the selected room’s AER to minimize 
the measurement error, and test results varied within a range of ±5%. 
Then the average of the results was utilized in this study and is displayed 
in Table 1. ASHRAE Handbook (ASHRAE, 2017) reported that a room’s 
AER is a function of the pressure differential, which is shown below: 
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AER=
3600

V
× c × (Δp)n (1)  

where AER is the air exchange rate due to the infiltrated air in h− 1, and V 
is the room’s volume in m3. According to Table 1, the mean value of the 
exponent n and the airflow coefficient, c, in m3/(s⋅Pan) was calculated 
and applied. Thus, based on the results of blower door tests, Equation (1) 
can be rewritten as: 

AER= 0.146 × (Δp)0.597 (2) 

Equation (2) shows the correlation between the AER of the selected 
room and the pressure differential. Moreover, a manometer was used to 
assess the pressure differential during experiments, and results were 
applied to Equation (2) to determine the real-time AER of the room. 

2.3. Design of experiments 

The on-site measurements were conducted from June 1st to June 
11th, 2022 in a trapezoidal-shaped room that was naturally ventilated 
without mechanical ventilation system. The doors, windows, and any 
obvious leaks were sealed during the experiment to ensure that particles 
could only enter through infiltrated air through building cracks. Each 
experiment lasted for 245 min to reach a steady state of IPL. Based on the 
results of the pilot study before the official experiment, the first 5 min of 
measured data were excluded from the data analysis to avoid any in
fluence from people’s movements on the final results. 

During the experiments, indoor and outdoor particle levels were 
simultaneously collected, with all instruments calibrated before each 
experiment according to the manufacturer’s handbook. Tables A and B 
(shown in right part of Fig. 1) were used to place the calibrated in
struments to collect data. Table A was situated in the middle of the room, 
while table B was on the room’s balcony, 1.5 m away from the room, and 
both tables were 0.9 m above the floor. The monitors collected one piece 
of data every 10 s and recorded the average value of the collected data 
every minute. 

2.4. Instrumentation 

This study utilized TSI DustTrak Aerosol monitors (Model 8534) to 
measure the concentrations of indoor and outdoor particles. These 
monitors are handheld instruments that use the 90◦ light scattering 
technique, which means that the volume concentration of aerosols is 
directly proportional to the amount of scattered light. This instrument 
has been used in several widely accepted papers to measure atmospheric 
particles (Fu et al., 2021a, 2021b; Liu et al., 2018; Wu et al., 2002). 
Additionally, the manufacturer calibrated the instruments using the 
Arizona Test Dust before conducting the experiments. Table 2 provides a 
summary of the testing instruments, including their 
manufacturer-reported accuracy, resolution, and detection range. 

2.5. Indoor particles’ mass balance model 

The indoor particle level is a function of source (Si) and loss terms 
(Li), which the equation could describe as (Ben-David and Waring, 2016; 
Fu et al., 2021a, 2021b; Kim and Choi, 2019; Liu et al., 2021; Serfozo 
et al., 2014): 

dPMin,t

dt
= Si − Li × PMin,t (3)  

where PMin,t is the indoor particle level at time t in μg/m3. Because 
experiments were conducted in an office room, and thus the emission 
sources of indoor PM were neglected (EPA, 2019), and the particles were 
uniformly distributed indoors (Huang et al., 2017). Therefore, the in
door particles are entirely from the outdoor particles that penetrate the 
building with the infiltration air. Moreover, the particle resuspension 
rate due to human activities can be ignored in a steady-state indoor 
condition compared with the deposition rate (Shi and Li, 2018a), and 
thus, Equation (3) can be described as: 

dPMin,t

dt
= p × Q × PMout,t − (Q+ β) × PMin,t (4)  

where p is the penetration factor of the particle (no units), Q is the AER 
of the building in h− 1, PMout,t is the outdoor particle level at time t in μg/ 
m3, and β is the deposition rate in h− 1. Equation (5) is the dynamic so
lution of Equation (4), which illustrates the indoor PM level (Diapouli 

Fig. 1. The target building and test room.  

Fig. 2. The Retrotec 5000 test system.  

Table 1 
The chosen room’s airtightness test results.  

Air flow 
coefficient (m3/ 
(h*Pa) 

Air exchange 
rate at 50 Pa 
(h− 1) 

ELA at 
50Pa 
(cm2) 

ELA per envelope 
area at 50Pa (cm2/ 
m2) 

Slope, 
n 

24.8 8.3 25.3 2.1 0.597  
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et al., 2013; Quang et al., 2013; Ruan and Rim, 2019; Yu et al., 2014). 

PMin,t =
p × Q
Q + β

×PMout,t +

(

PMin,0 −
p × Q
Q + β

×PMout,t

)

× e− (Q+β)×t (5) 

Then, the equation can be rewritten as: 

PMin,t = a + b × e− c×t (6)  

hence, the decay of the IPL should be shown as an exponential curve 
along with the time. According to previous studies, it is reasonable to 
assume that these coefficients, including p, Q, and β, are constant within 
a short time slot, such as 1 h (Sun et al., 2019; Xiang et al., 2021). Table 3 
presents the input values for each particle’s penetration and deposition 
rate. Further, by substituting the measured OPL and these factors into 
Equation (5), the IPL can be estimated. The comparison between 
measured and estimated IPL can illustrate the possibility of using 
airborne particles to predict the AER of a building. 

2.6. Method assessing index 

To assess the comparison of different sizes of the PM-based method 
with the pressurization method and the comparison of two different PM- 
based methods with the pressurization method, two statistical indices 
are introduced, the Normalized Mean Error (NME) and the correlation 
coefficient (r) (Liu et al., 2021). 

NME evaluates models by observation, ensuring the results in a 
relative sense. Moreover, NME is calculated by characterizing the 
average model error’s magnitude on a spatiotemporal scale. Accord
ingly, the small NME indicates the consistency of the two assessing 
methods, and 30% was chosen as the baseline for NME evaluation in this 
study (Liu et al., 2021). The NME can be defined as: 

NME =

∑
|Pi − Oi|
∑

Oi
(7)  

where Pi and Oi are the air exchange rate estimated by the PM-based and 
pressurization methods in h− 1. Further, the correlation coefficient is 
used to assess the variability of two compared methods in an entire 
range, and the closer that r is to unity, the better the agreement between 
the two methods (Liu et al., 2021). In this study, the baseline value of r is 
set to 0.4, and it can be defined as: 

r =
∑

[(Pi − P)(Oi − O)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Pi − P)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(Oi − O)

2
√ (8)  

where P and O are the mean values of the AER in h− 1 estimated by PM- 
based and pressurization methods, respectively. 

3. Results and discussion 

3.1. Measured indoor particle level 

The analysis conducted in this study revealed that the IPL would 
undergo exponential decay in the absence of indoor emission sources. To 
model the measured IPL, Equation (6) was used, and Figs. 4-6 depict the 
measured IPL along with the fitted curve for each particle type, using 
data collected on June 1st as an example. In addition, Fig. 3 presents the 
outdoor conditions recorded during the data collection period, which 
lasted from 8 a.m. to 12 a.m (see Fig. 4). 

From Fig. 3, it is evident that outdoor particle concentrations fol
lowed a consistent trend throughout the day, with higher levels 
observed in the morning and lower levels in the afternoon. This trend 
indicates a negative correlation between the OPL and outdoor air tem
perature on a daily basis, a pattern that is also observed during seasonal 
changes. For instance, OPL was higher in winter and lower in summer 
(Fu et al., 2021a, 2021b). The measured data indicated that PM10 levels 
outdoors in Suzhou were generally the highest, followed by fine and 
very fine particles. Additionally, the temperature differential initially 
decreased and then increased during the experiments. This occurred 
because the experiments commenced at 8:00 in the morning, resulting in 
lower indoor air temperature due to night cooling, which led to a higher 
temperature differential initially. 

Upon analysing Figs. 4-6, a strong correlation between the measured 
and fitted indoor particle levels was observed, with the coefficient of 
determination (R2) consistently exceeding 0.99. In other experiments, 
R2 ranged from 0.992 to 0.999. As mentioned earlier, PM10 levels were 
typically the highest among the three selected particle sizes, both in
doors and outdoors under steady-state conditions. This indicates a 
strong correlation between indoor and outdoor particle levels. More
over, the graphs demonstrated that even in the absence of indoor 
emission sources, the Indoor-to-Outdoor (I/O) ratio of particles could 
reach 3–5. This is because indoor air can become contaminated if the 
room has not been used for a while (EPA, 2019). 

3.2. The impact of particle size on the accuracy of estimating real-time 
AER 

A study was conducted to compare the measured and estimated IPL 
to investigate the reliability of using airborne particles to predict the 
AER of a building, and the results are shown in Figs. 7-9. According to 
the graphs, predicting the AER based on the smaller particles is generally 
more accurate than for the larger ones. This is because PM1.0 and PM2.5 
have a smaller size and higher penetration rate, making it easier for 
them to enter the room with the infiltrated air. Thus, the result of the 
estimated AER based on the small particle is closer to the real AER. Then, 
the estimated indoor PM10 concentration is always lower than the 
measured one. Hence, the PM10-based predicted AER is easily under
estimated, and the results are highly agreed with previous studies (Sun 
et al., 2019; Xiang et al., 2021), i.e. that the larger particle has a higher 
deposition rate and lower penetration rate, which highly impacts on its 
ability to get in or out of the room. 

The lower bound of the estimated IPL is lower than the measured 
ones when the IPL reaches a steady state, as shown in Fig. 10. This in
dicates that the actual IPL is higher than expected, and using a steady- 

Table 2 
Detailed information regarding the utilized instruments.  

Parameter Instrument Range Accuracy Resolution 

Pressure differential Vadias QDF70A-VD-S ±100 Pa 0.5% FS 0.1 Pa 
PM1.0 TSI Model 8534 DustTrak 0.001–150 mg/m3 1 μg/m3 or ±0.1% of the reading 0.1–15 μm 
PM2.5 

PM10 

Air temperature Testo 635-2 − 60 – 400 ◦C 0.1 ◦C or ±0.3 ◦C of reading 0.1 ◦C  

Table 3 
The input value for each particle’s penetration and deposition rate (He et al., 
2005).  

Factors PM1.0 PM2.5 PM10 

Penetration rate (− ) 0.9 0.8 0.63 
Deposition rate (h− 1) 0.14 0.31 0.7  
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state IPL to predict AER can lead to an increased error and underesti
mation of results. This phenomenon is more notable as the particle size 
increases. Table 4 presents the results using two selected statistical 
indices to evaluate the comparison of estimated and measured IPL. The 
results show that estimating AER based on smaller particles, such as 
PM1.0 and PM2.5, is more accurate than using larger particles such as 
PM10. The error between estimated and measured indoor PM1.0 levels 
varied from 9.41% to 18.32%, which is below the criterion value of 30%. 
The NME value for PM2.5 sometimes did not meet the criteria but was 
generally acceptable, while for PM10, the NME value was significantly 
over the standard value. 

The correlation coefficient (r) value was at least over 0.87, indicating 

that the estimated IPL had a better agreement in variability over the 
entire range of the measured one. Based on the data analysis, using 
PM1.0 and PM2.5 as tracers is suggested to predict the real-time AER of a 
building. 

3.3. The impact of outdoor conditions on the accuracy of estimating real- 
time AER 

The IPL of a building depends on the OPL and AER, which is influ
enced by the pressure differential. It’s reasonable to assume that the 
accuracy of estimating IPL is affected by these two factors. Therefore, 
this study used Spearman’s rank correlation coefficient ρ to evaluate the 

Fig. 3. The outdoor particle level on the selected day (01/06/2022) and the temperature differential in the selected room (the experiment duration is from 8:00 a.m. 
to 12:00am). 

Fig. 4. The measured and fitted curve of indoor PM1.0 on the 1st of June (the experiment duration is from 8:00 a.m. to 12:00am).  
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correlation between the Normalized Mean Error (NME), representing 
the error between measured and estimated IPL, and the OPL and pres
sure differential. The instantaneous NME was compared with the 
measured OPL and pressure differential, and the results are presented in 
Table 5. The analysis showed that the OPL and pressure differential 
significantly influence the predicting accuracy of the IPL and also affect 
the accuracy of predicting AER. 

From Tables 4 and 5, the results suggest that the accuracy of esti
mating AER will increase when the I/O ratio of particles increases, 
particularly for larger particles, as the ρ value for Day 1 to Day 6 is closer 
to unity, and p value is kept smaller than 0.001. However, this trend was 
not observed when the OPL was extremely low, as on Day 7, and the 

impact was more significant on larger particles than smaller ones. From 
Table 4, the findings on Day 7 indicate that the estimated indoor PM2.5 
and PM10 levels were discrepant from the actual values, with an NME 
value exceeding the baseline value of 30%, while the NME value for 
PM1.0 was only around 10%. The results suggest that the PM1.0-based 
method can still provide acceptable performance in predicting AER 
when the OPL is extremely low. One possible reason is that outdoor 
PM1.0 is the dominant source of indoor PM1.0 particles in a building with 
no cooking allowed (Lee et al., 2006). For indoor PM2.5 and PM10, the 
low outdoor level may reduce their impact, resulting in the IPL being 
affected by other factors such as resuspension and deposition mecha
nisms (Stratigou et al., 2020). 

Fig. 5. The measured and fitted curve of indoor PM2.5 on the 1st of June (the experiment duration is from 8:00 a.m. to 12:00am).  

Fig. 6. The measured and fitted curve of indoor PM10 on the 1st of June (the experiment duration is from 8:00 a.m. to 12:00am).  
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Additionally, the pressure differential has a positive impact on the 
accuracy of estimating IPL and predicting AER based on airborne par
ticles. The significance of the pressure differential’s negative impact is 
lower than that of the I/O ratio’s impact, as the ρ value is small. Based on 
the results, the impact of pressure differential is more substantial on the 
accuracy of estimating smaller particles’ IPL since the ρ value decreases 
when particle size increases. The pressure differential consists mainly of 
stack-effect and wind-effect. However, the measured IPL has not fol
lowed the variation of the measured pressure differential, and its fluc
tuation is better fitted with the temperature differential (as shown in 
Fig. 10). The results suggest that the wind effect’s impact on the IPL can 

be neglected, which is in agreement with the previous finding that the 
stack effect is the dominant force driving the high-rise building’s AER 
(Fu et al., 2021b). 

Overall, both factors, I/O ratio and pressure differential, negatively 
impact the NME between measured and estimated IPL, indicating that 
both factors positively impact estimating IPL and predicting AER based 
on airborne particles. Furthermore, the I/O ratio has a more significant 
impact on larger particles, while the pressure differential has a more 
notable impact on smaller particles. However, considering all factors, 
particles with sizes smaller than 2.5 μm are suggested as a tracer to 
predict the AER of a building. 

Fig. 7. The measured and predicted indoor PM1.0 concentration (For each box, the five values are the minimum value, first quartile, Median value, third quartile, and 
maximum value). 

Fig. 8. The measured and predicted indoor PM2.5 concentration (For each box, the five values are the minimum value, first quartile, Median value, third quartile, and 
maximum value). 
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3.4. The empirical correlation for predicting the air exchange rate 

As discussed, particle size, I/O ratio, and pressure differential have a 
significant impact on estimating the IPL and predicting the AER based on 
airborne particles. The pressure difference is the main driving force 
behind AER and also affects the IPL. A function was developed that in
corporates the pressure differential and particles’ I/O ratio to describe 
the AER of the building. It is important to note that the data collected on 
Day 7 was excluded from establishing the numerical model due to its 
inaccuracy, as determined by the analysis. Furthermore, the I/O ratios of 
PM1.0 and PM2.5 were used to establish the numerical model because the 
method of estimating AER based on PM10 has been found to be less 

accurate. The numerical model was constructed based on the AER 
determined by the measured I/O ratios of PM1.0 and PM2.5, as well as the 
measured pressure differential. Detailed information regarding this can 
be found in Figs. 12 and 13. Additionally, empirical correlations based 
on the experimental data are presented in Equations (9) and (10). 

For PM1.0 : AER= 0.112+ 0.05305× |ΔP| − 0.002567× I
O

+0.000918× |ΔP| ×
I
O
+ 5.635× 10− 5 ×

I
O

2

− 1.713× 10− 5 × |ΔP| ×
I
O

2

− 2.108× 10− 7 ×
I
O

3 (
R2 = 0.9891

)

(9) 

Fig. 9. The measured and predicted indoor PM10 concentration (For each box, the five values are the minimum value, first quartile, Median value, third quartile, and 
maximum value). 

Fig. 10. Time-varied estimated and measured IPL, selected the 1st of June as an example.  
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For PM2.5 : AER= 0.1101+ 0.05332× |ΔP| − 0.001842×
I
O

+0.0007822× |ΔP| ×
I
O
+ 2.419× 10− 5 ×

I
O

2

− 1.206× 10− 5 × |ΔP| ×
I
O

2

+4.524× 10− 8 ×
I
O

3 (
R2 = 0.9891

)

(10)  

where AER is the air exchange rate in h− 1, ΔP is the pressure differential 
in Pa, and I

O is the indoor/outdoor particles level’s ratio, no units. 
Upon examining Figs. 11 and 12, it becomes apparent that the fitted 

model experienced errors at certain discrete points. Upon analysing the 
input data, it was observed that these discrete data points were primarily 
collected during a period when the IPL had not yet reached a steady 
state. This occurrence could be attributed to the initial variation in the 
pressure differential between the indoor and outdoor environments, 
which led to rapid fluctuations in the IPL. Furthermore, in order to 
validate the developed numerical model, a 5-fold Cross-Validation 
approach was employed. the prediction accuracy exhibits a slight 
decrease over time. As depicted in Fig. 12, the difference between the 
measured and estimated values gradually increases with time. Notably, 
this phenomenon becomes more pronounced as the particle size 
increases. 

Table 4 
The accuracy analysis of using airborne particles to estimate the real-time AER.    

Outdoor level (μg/m3) ΔT (K) NME (%) r 

Day 1 PM1.0 52.8 (42–68)1 3.7 (2.9–5.2)2 11.4 0.9542 
PM2.5 55.2 (44–72) 28.61 0.9842 
PM10 55.6 (45–72) 77.91 0.9803 

Day 2 PM1.0 50.6 (41–65) 6.1 (5.6–8.5) 9.41 0.9564 
PM2.5 53.6 (42–70) 19.88 0.9824 
PM10 53.9 (43–71) 68 0.9834 

Day 3 PM1.0 29.6 (22–34) 2.7 (1.8–3.2) 14.98 0.9223 
PM2.5 32.5 (24–39) 38.17 0.9611 
PM10 32.8 (24–39) 96.62 0.9502 

Day 4 PM1.0 5.75 (2–10) 2.4 (1.5–4.7) 11.4 0.9392 
PM2.5 6.4 (3–11) 26.28 0.9717 
PM10 6.5 (3–11) 81.26 0.9585 

Day 5 PM1.0 22.8 (16–39) 4.3 (3–8.6) 18.32 0.9013 
PM2.5 24.2 (17–42) 15.28 0.9637 
PM10 24.3 (17–42) 35.05 0.9815 

Day 6 PM1.0 5.1 (3–7) 4.5 (3.5–6.6) 13.99 0.8716 
PM2.5 5.9 (4–9) 25.23 0.9459 
PM10 6.1 (4–9) 64.93 0.9782 

Day 7 PM1.0 1.2 (1–4) − 1.3 (− 2.5 – 0.2) 9.82 0.9082 
PM2.5 1.3 (1–4) 35.42 0.9756 
PM10 1.4 (1–5) 89.3 0.9563 

Hint: 1. The value in the parentheses represents the minimum and maximum OPL during the experiments. 
2. The value in the parentheses represents the minimum and maximum pressured differential during the experiments. 

Table 5 
The results of the correlation analysis based on Spearman’s rank correlation 
coefficient for ranked data.  

NME value Date I/O ratio Delta P 

PM1.0 Day 7 ρ = − 0.2917; p < 0.001 ρ = − 0.2743; p < 0.001 
PM2.5 Day 7 ρ = − 0.0305; p < 0.05 ρ = − 0.3247; p < 0.001 
PM10 Day 7 ρ = 0.2025; p < 0.05 ρ = − 0.1707; p < 0.001  

Fig. 11. The fitted model of AER based on PM1.0’s I/O ratio and pressure differential.  

N. Fu et al.                                                                                                                                                                                                                                       



Atmospheric Pollution Research 15 (2024) 101955

10

3.4.1. Accuracy analysis 
The additional dataset collected in the previous study was used to 

verify the empirical correlation and evaluate the accuracy of the nu
merical model. Equations (9) and (10) were applied to estimate the real- 
time AER based on measured data obtained during different seasons. 
Fig. 13 provides a visual representation of the comparison results be
tween the estimated real-time AER and the measured values for a 
selected day. Table 6 presents a comprehensive comparison of all esti
mated AER values with the actual AER, using the NME and r as evalu
ation metrics. 

From examining Fig. 13, it is evident that the estimated AER ob
tained using the established numerical model aligns well with the 
measured real-time AER. The PM1.0-based method yielded an NME of 

2.3% and an r value of 0.9879, while the PM2.5-based method resulted in 
an NME of 2.4% and an r value of 0.9896 compared to the actual AER. 
Table 6 demonstrates that the accuracy of estimating the real-time AER 
is generally comparable between the PM1.0 and PM2.5-based methods. 
This similarity may be attributed to PM1.0 being the dominant compo
nent of PM2.5 in China (Chen et al., 2017; Yang et al., 2020). 

Furthermore, Table 6 indicates that the established equation per
forms well under various outdoor conditions and seasons, even when the 
outdoor particle level is relatively low, as demonstrated on Day 3 in the 
spring. Thus, the empirical correlation can be effectively employed to 
determine the real-time AER based on airborne particles, enabling de
signers to accurately predict the building’s heat loss. 

Fig. 12. The fitted model of AER based on PM2.5’s I/O ratio and pressure differential.  

Fig. 13. The comparison of the estimated real-time AER with the measured value.  
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3.5. Limitation 

In addition to the contributions of this study, some technical limi
tations are also present to be explored via further research investigation. 
Firstly, the IPL is also impacted by the deposition and resuspension rate, 
and these two mechanisms are correlated to human indoor activities. 
However, this study only concerned the scenario in which the selected 
room is unoccupied, and thus, further research is required to investigate 
how human activities disturb the accuracy of using particles as the tracer 
to measure the AER of a building. An office room was chosen for this 
analysis based on its air pollution level and the AER’s influence. How
ever, since the estimated air pollution levels and air infiltration levels 
may be different, depending on neighbouring rooms’ air pressures and 
pollution levels, the building’s façade opening ratio, ventilation system 
performance and occupants’ behaviour, a further study should carefully 
consider other elements, such as indoor air pollution sources, air puri
fier, construction material, wind velocity and direction, and other sys
tem facilities. These would be crucial, especially when indoor air quality 
and occupants’ health in buildings are significantly affected by sur
rounding environments. Also, another parameter may need to be 
considered for estimating AER during low levels of outdoor particle 
seasons. Moreover, other actual air contaminant types should be 
considered to indicate the sources of air contaminants. In a future study, 
AER could be estimated using other air contaminant sources such as 
Sulphur Oxides (SOx) and Nitrogen Oxides (NOx), which also come from 
the surrounding outdoor environment. 

4. Conclusion 

The study aimed to determine the feasibility of using airborne par
ticles to predict the AER of a building through experiments and nu
merical simulations. The airtightness of a selected room was determined 
using the pressurization method, and the measured value was used to 
assess the real-time AER. The study found that the accuracy of esti
mating the IPL and predicting the real-time AER was significantly 
affected by particle size and outdoor conditions. The accuracy of AER 
estimation based on particles had a negative correlation with particle 
size, and particles under 2.5 μm were suggested as a tracer to predict the 
AER since smaller particles have a higher penetration rate. The I/O ratio 
and pressure differential of particles positively impacted the accuracy of 
AER estimation, with the I/O ratio having a greater effect than the 
pressure differential. However, the accuracy of using particle-based 
methods to estimate AER decreased as the outdoor particle level 
decreased, though this influence was lessened when the particle size 
decreased. 

The study also established empirical correlations for PM1.0 and PM2.5 
based on experimental data, which were verified using the 5-fold cross- 
validation method. The correlations proved to be reliable for predicting 
the real-time AER under various outdoor conditions, and the equation 
could predict the building’s AER based on measured IPL, OPL, and 

pressure differential. The study suggested using small size particles as a 
tracer to measure the real-time AER of a high-rise building since the 
tracer gas method is limited, and the real-time AER could accurately 
predict the building’s heat loss. 
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