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A B S T R A C T   

Unlike the cohesive interface element model, the phase field model (PFM) is a newly developed 
computational model which provides a unified approach to predicting crack nucleation, propa
gation, coalescence and branching without any ad-hoc criterion. Over the years, several variants 
of the phase field model are presented. This paper aims to investigate the suitability of different 
phase field models and determine the optimal characteristic functions/model parameters for low- 
temperature fracture in asphalt mixtures. The analysis results of the phase field method (which 
belongs to a class of diffuse damage models) are also compared with the interface element model 
(which belongs to a class of discrete damage models). The models are compared by examining the 
governing equations and performing numerical simulations on single-edge notch specimens. 
Furthermore, various aspects of cohesive zone model (CZM) based PFM are discussed including 
the type of softening laws and damage growth under uniform/non-uniform stress states. It is 
concluded that brittle phase field models are not fully capable to predict fracture in asphalt 
mixtures even at low temperatures.   

1. Introduction 

Cohesive zone model (CZM) with interface elements is often used to simulate damage in asphalt mixtures. Over the years several 
researchers successfully simulated damage in asphalt mixtures under mechanical and/or thermal loads at the meso/micro-structural 
level using cohesive interface elements. In the interface element model, the interface elements are inserted along the finite element 
boundaries to simulate cracking. A nonlinear cohesive constitutive law, in addition to the bulk constitutive law, is used to simulate 
material nonlinear behavior ahead of crack tip. One of the pioneering works in damage modelling of asphalt mixtures using interface 
elements is by [1]. [1] used cohesive elements on a predefined crack path to simulate mode-I fracture in an indirect tension test (IDT) 
specimen. A cubic decaying function proposed by [2] was used to simulate nonlinear material behavior around crack tip. [3] used 
cohesive interface elements to simulate mode-I and mixed-mode fracture in asphalt concrete. A potential based cohesive constitutive 
law with an exponentially decaying function [4] was used to simulate nonlinear material behavior ahead of crack tip. [5] and [6] used 
a micro-mechanical approach to study the effect of material heterogeneity on fracture mechanisms of asphalt concrete. Mode-I and 
mixed-mode fracture tests were numerically simulated using discrete element method. A bi-linear cohesive constitutive law was used 
to simulate crack initiation and propagation. Numerical results of mode-I fracture showed good agreement with the experimental 
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results, both qualitatively and quantitatively, whereas good qualitative results were obtained for mixed-mode fracture. [7] used a 
cohesive zone model to simulate rate dependent fracture in an asphalt mixture. A detailed finite element model, considering the 
microstructural details, was developed to study rate dependent fracture. 

Several researchers have successfully used cohesive zone model with interface elements to simulate moisture induced damage in 
asphalt mixtures, see for example [8,9]. [8] proposed a micro-mechanical model for the simulation of moisture induced damage in 
asphalt mixtures. Cohesive zone elements were embedded in the finite element mesh to model effect of moisture on damage evolution. 
However, the direction of crack propagation was predefined in their simulations. Cohesive zone model was also used to simulate 
thermally induced reflective cracking in asphalt pavements [10,11]. [12] proposed a multiscale approach for the analysis of asphalt 
pavements. A multiscale thermo-mechanical finite element model was used to connect the heterogeneous local scale with the ho
mogeneous global scale of asphalt pavements. Cohesive zone model was used to simulate damage evolution at the local scale. 

A discrete damage model like the cohesive interface element model is a good choice to simulate fracture in solids, however, the 
cracks are only allowed to grow along finite element boundaries. Moreover, generation of a finite element mesh with interface ele
ments sometimes becomes cumbersome. Therefore, diffuse damage models are often preferred, see for example [13–16]. Diffuse 
damage models simulates a sharp crack as a damage smeared over a finite volume. The resulting formulation does not require a special 
finite element mesh and the model can be easily implemented in a computer program. Moreover, diffuse damage models does not 
require an algorithm to explicitly track a crack path and is able to model multiple cracks and complex crack typologies. 

Phase field method is a newly developed diffuse damage model which is based on the variational approach to brittle fracture. The 
damage is a natural outcome of an analysis obtained by the minimization of the total potential. Phase field model (PFM) simulates 
damage like diffuse damage models and therefore easy to implement but at the same time can simulate sharp cracks like interface 
element model and therefore does not suffer from mesh dependency problem. One of the advantages of phase field method is its 
generality. Owing to the variational structure, the phase field method is able to simulate complex cracking patterns and multi-physics 
problems [17–19] in a consistent manner with a relatively simple computer implementation. Moreover, extension to 3D problems is 
straightforward. Phase field method emerged from the pioneering work of [20]. They presented a variational formulation for brittle 
fracture where the total energy is minimized with respect to both displacement field and crack geometry. As a result, crack initiation, 
propagation and branching is taken into account in a single framework. Thereby, removing the limitation of Griffith’s theory. 
However, this model suffers from the localization problem as the displacement field is discontinuous in the presence of cracks. [21] 
presented a regularized version of the phase field model by introducing a length scaling factor. As a result, the cracks are modelled as 
diffuse damage instead of sharp cracks. Moreover, a Dirichlet-type condition was applied to the damage phase field to ensure irre
versibility of the cracking process during unloading. [22] and [23] presented a regularized phase field model for brittle fracture based 
on thermodynamic framework. The irreversibility of the damage phase field was ensured by satisfying the second law of thermody
namics (i.e. damage phase field is always positive and monotonically increasing). However, these models are limited to simulate brittle 
fracture. In order to simulate fracture in quasi-brittle materials [24] presented a phase field model employing the cohesive zone model. 
However, the method requires a crack path to be known a priori which undermines the good features of diffuse damage models. [25] 
presented a thermodynamically-consistent phase field model for modelling damage in quasi-brittle materials based on the concept of 
cohesive zone model. One of the key ingredients of phase models is the degradation function. The degradation function determines 
how the stored bulk energy evolves with changes in damage phase field. The degradation function used in most of the phase field 
models for brittle fracture, e.g [21,22,26,27] is not able to simulate quasi-brittle failure of material. Therefore, [25] presented a 
rational based degradation function whose parameters can be adjusted to reproduce the given softening behavior, e.g. linear softening, 
exponential softening etc., similar to the cohesive constitutive laws. The model is able to simulate complex crack typologies without 
any ad-hoc criterion. Noteworthy is the work of [28] and [29] who used a phase field model to simulate fracture in asphalt mixtures. 
Numerically obtained peak loads and qualitative comparison of crack paths showed good agreement with the experimental results. 
However, the authors [28,29] used a cubic degradation function which is more suitable to simulate brittle fracture [27]. Moreover, a 
double-well potential function was used to model the local fracture energy. The use of double-well potential function is not well suited 
for simulating fracture in solids and may give unrealistic damage patterns [27]. Therefore, monotonic crack geometric functions are 
often used in phase field models. [30] presented a phase field model for simulating quasi-brittle failure of asphalt mixtures. A 
monotonic crack geometric function with a rational based degradation function of [25] was used. The model successfully simulated 
mode-I and mixed mode fracture in asphalt mixtures. 

Over the years several variants of phase field models are presented which raises questions like (i) which phase field model is more 
appropriate for damage modeling in asphalt mixtures? (ii) which phase field model functions are suitable for numerical simulation of 
asphalt mixtures (iii) what is the effect of different softening laws on structural response, damage profile and model performance when 
used in conjunction with phase field models? and (iv) what are differences and similarities between interface element and phase field 
model. Among variously available phase field models, i.e. brittle and quasi-brittle phase field fracture models, this paper aims to 
investigate the suitability and potential of these models for accurately simulating damage in asphalt mixtures. The literature is also 
devoid of comprehensive study on the effects of cohesive constitutive laws on damage growth using phase field model. Additionally, a 
comparative study of the cohesive zone model with interface elements and the cohesive zone model with phase field method is lacking 
in the literature. Therefore, it is the aim of the paper.  

• to compare different phase field models for damage predictions in asphalt mixtures. Especially, the suitability of phase field models 
presented by [22] (brittle fracture PFM) and [25] (brittle/quasi-brittle PFM) is assessed for the simulation of damage in asphalt 
mixtures at low temperatures.  

• to investigate the effect of type of softening laws on the performance of the phase field model and on structural response. 
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• to investigate the effect of phase field model parameters on the response.  
• to compare the interface element and phase field models in terms of damage prediction and model parameters. 

It is further highlighted in the manuscript that only qualitative damage profiles and peak load calculations are not enough to correctly 
validate a numerical model, instead the post peak response is also necessary for model verification. The present contribution will be 
helpful in the selection of appropriate PFM characteristic functions and parameters for damage modeling in asphalt mixtures at low 
temperatures in future studies. 

Remaining of the manuscript is organized as follows. Section 2 and 3 briefly describe the governing equations of phase field model 
and interface element model. The performance of different damage models is discussed using a numerical test on single edge notch 
beam specimen in section 4 followed by a parametric study to highlight the effects of phase field model parameters like the softening 
behavior, mesh size and length scaling factor. Concluding remarks are summarized in section 5. 

Remark 1. The degradation function used in some of the phase field models [22,27,28] is closely related to the brittle fracture. These 
models mimic an elastic behavior of the material until peak load and quick loss of strength after the peak load. Moreover, the phase 
field model proposed by [22] is more commonly used phase field model. Therefore, it is selected as a representative phase field model 
to simulate brittle fracture. Note, that the phase field model proposed by [28] is not used due to the above mentioned drawbacks. 
Moreover, the degradation function used in [28] is closely connected to the brittle fracture models of [22,27], so one can expect that 
the similarities/differences related to brittle/quasi-brittle fracture pointed out in this paper also hold for the model in [28]. 

2. Phase field model 

Consider a solid body with a domain Ω, Fig. 1. The body is subjected to prescribed displacements u on the surface ∂Ωu and pre
scribed tractions t on the surface ∂Ωt. The body is also subjected to body forces b and contains an internal surface/crack, S represented 
as a diffuse damage over the domain B. In addition to the displacement field u, a damage phase field, d is defined in the domain Ω. The 
damage phase field d varies between 0 and 1 in the regularization band B such that d = 0 represents the intact solid and d = 1 rep
resents fully damaged material. The spaces of displacement field (U u), damage phase field (U d) and their variations (V u,V d) are 
given as 

u(x) ∈ U u := {u|u(x) = u ∀x ∈ ∂Ωu} (1a)  

δu(x) ∈ V u := {δu|δu(x) = 0 ∀x ∈ ∂Ωu} (1b)  

d(x) ∈ U d := {d|d(x) ∈ [0, 1], ḋ ≥ 0 ∀x ∈ B; d(x) = 1 ∀x ∈ S} (1c)  

δd(x) ∈ V d := {δd|δd(x) ≥ 0 ∀x ∈ B; δd(x) = 0 ∀x ∈ S} (1d) 

The key concept of the phase field method is to regularize a sharp crack surface As over a localization band B using the diffused 
functional Ad, such that 

Ad =

∫

B
γ(d,∇d) dV ≈ As =

∫

B
δs dV (2)  

in which γ is the crack density function which is approximating the Dirac delta function along a sharp crack. Following [25], the crack 
density function is defined as 

Fig. 1. A solid body with a diffuse crack.  
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γ(d,∇d) =
1
co

(
1
b

α(d) + b
⃒
⃒
⃒
⃒∇d|2

)

with co = 4
∫ 1

0

̅̅̅̅̅̅̅̅̅
α(β)

√
dβ (3)  

in which b is the length scaling factor describing the width of the regularization band, co is a regularization functional such that the 
diffused area Ad represents the crack surface As and α(d) is the crack geometric function characterizing the distribution of the crack 
phase field. The crack geometric function α(d) is assumed to satisfy the following conditions: α(0) = 0, α(1) = 1. 

2.1. Crack geometric function 

Various forms of crack geometric functions are used in literature. They can be divided into two main categories (i) Double-well 
function and (ii) monotonic functions. [28] and [31] used a double-well crack geometric function (α = (1 +ϕ)2(1 − ϕ)2 with ϕ 
= 1 − 2d) for the simulation of damage in asphalt mixtures, Fig. 2a. Such a function was developed in the physics community to model 
phase transformation problems, see for example [32]. The phase field model employing a double-well function for fracturing solids 
inherently assumes that there exist an energetic equivalence between the damaged (d = 1) and undamaged (d = 0) states. Conse
quently, there is an equal tendency of a crack to grow perpendicular to the actual crack path. This results in unrealistic crack widening 
and lateral crack growth [27,33–35]. Therefore, the double-well function is not well suited to model crack propagation problems. For 
this reason, monotonic crack geometric functions are more preferred for simulating fracture in solids, see for example [23,26,27,33]. 

[21] and [22] used a single-well crack geometric function defined as α = d2 in their phase field model for brittle fracture. The 
function is a natural choice because it automatically gives the minimizer of the total potential at d = 0 in the absence of mechanical 
strains. Fig. 2b shows the distribution of damage phase field in a 1-D bar of length ± L for a crack centered at x = 0. It is evident from 
the figure that the function α = d2 gives an infinite width of the localization band. [36] proposed a linear crack geometric function 
defined as α = d. However, the boundedness of the damage phase field, i.e. d ∈ [0,1], cannot be intrinsically guaranteed and special 
strategies have to be used to ensure phase field boundedness [37–39]. [25] proposed the following generic form of the crack geometric 
function 

α = ξd + (1 − ξ)d2 (4)  

It is interesting to note that the crack geometric functions proposed by [21] and [36] can be recovered from equation (4) using 
ξ = 0 and ξ = 1, respectively, Fig. 2a. [25] advocated the use of a monotonic crack geometric function defined as α = 2d − d2 with 
ξ = 2. The value ξ = 2 is the optimal value which also ensures damage irreversibility, i.e ḋ ≥ 0 [25]. The function α = 2d − d2 gives a 
finite localization bandwidth, Fig. 2b. The property of finiteness of the localization bandwidth is also important from the numerical 
modelling point of view. By virtue of finiteness of localization band, the phase field model can be applied to a small portion of a body, 
thereby reducing the computational cost. Note, that the localization band for the double-well function is also infinite, Fig. 2b. 
Moreover, for the functions α = d and α = 2d − d2 boundedness condition (0 ≤d≤1) has to be dealt carefully and special strategies 
have to be used to ensure boundedness of the phase field [37–39]. In this paper, the crack geometric function α = 2d − d2 is used. 

2.2. Governing equations 

The total potential energy Π of a solid body comprises of the internal strain energy Πint, fracture energy Πf and external potential 
energy Πext given as [25,30]. 

Fig. 2. Crack geometric functions (left); spatial distribution of damage phase field for different crack geometric functions (right).  
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Π(u, d) =
∫

Ω
ω(d)Ψo dV

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
Πint

+

∫

Ω
Gf γ(d,∇d) dV

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Πf

−

∫

Ω
b · u dV −

∫

∂Ωt

t ·udA
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Πext

(5)  

in which Gf is the fracture energy, ω is the degradation function which takes into account the degradation of the elastic strain energy Ψo 
due to damage. The degradation function is defined as [25]. 

ω(d) = (1 − d)p

(1 − d)p
+ a1d ·P(d)

P(d) = 1 + a2d + a3d2 (6)  

The advantage of using the above form of degradation function compared to the models presented in [21,22,26,28] is, that any type of 
softening behavior can be modelled. This feature is important as it enables the phase field model to simulate a quasi-brittle behavior of 
fracturing solids. The parameters p, a1, a2 and a3 are determined to recover most commonly used cohesive constitutive laws. a1 is the 
only parameter which is dependent on length scale factor b and material properties. It is defined as 

a1 =
2ξlcz

cob
for Irwin’s characteristic length lcz =

EoGf

f 2
t

(7)  

2.3. Weak and discretized form of equilibrium 

Weak form of the governing equations are obtained by the minimization of the total potential, equation (5). The following coupled 
system of equations are obtained 

−

∫

Ω

(
∂Ψ
∂ϵ

: ∇symδu
)

dV +

∫

Ω
b · δu dV +

∫

Ωt

t · δu dA = 0 (8)  

∫

B
(ω′Yδd)dV +

∫

B

Gf

co

(
1
b

α′δd + 2b ∇d · ∇δd
)

dV ≤ 0 (9)  

It is assumed that the bulk material response of asphalt mixtures can be modelled using elastic constitutive law at low temperatures. 
Therefore, temperature and rate effects are not included in this paper. All numerical tests are performed at a single low temperature. In 
this work, a linear relationship between a Cauchy stress (σ) and small strain tensor (ϵ) is used 

σ =
∂Ψ
∂ϵ

= ω ∂Ψo

∂ϵ
= ω(D : ϵ) = ω(D : ∇symδu) = ω σo (10)  

in which σo is the effective stress tensor, D is the material elastic stiffness tensor and ∇symu denotes the symmetric part of displacement 
gradient. Y denotes the effective damage driving force. It is considered in this work that damage initiates when the local tensile 
principle stress reaches the tensile strength of a material. A history variable H is introduced to ensure damage irreversibility [22]. 

H = max
t≤T

(
f 2

t

2Eo
,Yt

)

, Yt =

(
1

2Eo
(σ1)

2
)

(11)  

Accordingly, the effective damage driving force Y is replaced with H in equation (9). This sufficiently guarantees the irreversibility 
condition ḋ(x) ≥ 0 and a non-negative damage phase field d(x) < 0. 

Remark 2. In the author’s experience, the boundedness of the phase field is seldom violated using the history variable. Therefore, no 
other special strategies have been used in the numerical implementation for damage boundedness. 

Within the framework of finite elements, the domain Ω is discretized into ne number of finite elements. The approximated 
displacement and damage phase field are given as 

u(x) = Nu
i (x) au

i , δu(x) = Nu
i (x) δau

i (12)  

d(x) = Nd
i (x) ad

i , δd(x) = Nd
i (x) δad

i , (13)  

with 

Nu
i = NiI, Nd

i = Ni (14)  

in which au
i and ad

i are the unknown nodal displacement and damage phase field degrees of freedom (dofs) for node i, respectively. I is 
the identity tensor and Ni is the standard finite element shape function for node i. Accordingly, the strain field and the gradient of 
damage phase field are given as 

ϵ(x) = ∇symu(x) = Bu
i (x)a

u
i , δϵ(x) = ∇symδu(x) = Bu

i (x)δau
i (15) 
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∇d(x) = Bd
i ad

i , ∇ δd(x) = Bd
i δad

i (16)  

in which the matrices Bu
i and Bd

i for a 2D finite element analysis are given as 

Bu
i =

⎡

⎣
∂xNi 0

0 ∂yNi
∂yNi ∂xNi

⎤

⎦, Bd
i =

[
∂xNi
∂yNi

]

(17)  

Incorporating the approximations, i.e. equations (12), (13), (15) and (16) into the weak form, i.e. equations (8) and (9), the following 
two discretized equations are obtained 

Ru =

∫

Ω
(Nu)

T b dV +

∫

∂Ωt

(Nu)
T t dA −

∫

Ω
(Bu)

T σ dV = 0 (18)  

Rd = −

∫

Ω
(Nd)

T
(

ω′H +
Gf

cob
α′

)

dV −

∫

Ω
(Bd)

T
(

2b
co

Gf∇d
)

dV ≤ 0 (19)  

More details of the model can be found in [30]. 

3. Interface element formulation 

This section briefly discusses the governing equations of the interface element for the sake of completeness. Consider a solid body 
with domain Ω subjected to external tractions t and body forces b. The body also contains an internal crack surface ∂Ωc, Fig. 3. 

Within the framework of finite element method, the body is discretized with nE number of finite elements. Interface elements are 
inserted along finite element boundaries to simulate a crack. The displacement vector (au

c ) is arranged as 

au
c =

[
au

c,top au
c,bottom

]T
(20) 

au
c is the displacement degrees of freedom of set of nodes along the crack. The relative displacement/displacement jump at the crack 

interface is defined as 

[[u]] = N ∗

[
au

c,top

au
c,bottom

]

with N∗ = [N − N] (21) 

For a four-noded cohesive element N = [N1I N2I]. The discretized equilibrium equation is given as 

Ru =

∫

Ω
(Nu)

T b dV +

∫

∂Ωt

(Nu)
T t dA −

∫

Ω
(Bu)

T σo dV

+

∫

∂Ωc

(N∗)
T tc dA = 0

(22)  

in which Nu is the matrix of shape functions as defined in equation (14) and N * is the matrix of shape function to approximate the 
relative displacement at the interface. Note that there is no effect of interface damage on the bulk material and therefore σo is used 
instead of σ in equation (22). The two sides of the cracked body are interacting through the tractions at the interface ∂Ωc. Whereas in 

Fig. 3. Solid body with a crack (left); 4-noded interface element (right) [[a]] shows the relative displacement for the pair of nodes 1 and 4.  
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case of phase field damage model an area around the crack experiences damage. Moreover, in the interface element formulation, 
separate constitutive laws are used for bulk material and cohesive interface. Whereas a unified constitutive law is used for the whole 
material in phase field models. 

Two types of cohesive constitutive laws, namely the bilinear and exponential cohesive laws, Fig. 4 are used in this work. A brief 
detail of each of the constitutive law is given below  

• Bi-linear cohesive constitutive law: The traction vector, tc in the local crack coordinate system is defined as 

tc = [I − d P]km[[u]] with d = max
τ≤t

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 [[u]] ≤ [[u]]o
[[u]]f ([[u]] − [[u]]o)
[[u]]([[u]]f − [[u]]o)

[[u]]o < [[u]] < [[u]]f

1 [[u]] ≥ [[u]]f

(23)  

in which I is a 2×2 identity matrix and P is defined as 

P =

⎡

⎢
⎣

〈[[u]]n〉
[[u]]n

0

0 1

⎤

⎥
⎦ with 〈[[u]]n〉 = ([[u]]n +

⃒
⃒[[u]]n

⃒
⃒)∕2 (24)  

[[u]] is the equivalent displacement jump, [[u]]o is equivalent displacement jump corresponding to peak failure strength fm and 
[[u]]f is the equivalent displacement jump at full decohesion. Details of the bi-linear cohesive model can be found in [40].  

• Exponentially decaying softening law: The traction vector in the local crack coordinate system is defined as 

tc = [I − d P]km[[u]] with d = max
τ≤t

⎧
⎪⎨

⎪⎩

0 [[u]] ≤ [[u]]o

1 − exp
(
− fm

Gf

( [
[u]] − [[u]]o

)
)(

[[u]]o
[[u]]

)

[[u]] > [[u]]o
(25)  

fm and Gf are the mixed mode material strength and fracture toughness, respectively. The quantities [[u]], [[u]]o, fm and Gf are 
defined similar to [40]. These laws are identical to the softening laws used in phase field model, PFM-model2, in section 4. 

4. Numerical results and discussions 

In this section several numerical examples are presented to compare the performance of different phase field models. The phase 
field and interface element models are implemented in an in-house finite element code written in a C+ + object oriented environment. 
The pseudo codes of the phase field and interface element models are given in the Appendix A, algorithmic boxes 1 and 2, respectively. 

Two variants of phase field model are used in the analyses, i.e phase field model of [23] later referred to as PFM-model1 and phase 
field model of [25] later referred to as PFM-model2. PFM-model2 is simulated with different softening laws. The PFM-model2 pa
rameters (co, p, a1, a2, a3) can be determined based on the given material properties and the desired softening law [25]. The phase field 
model parameters used in the analyses are given in Table 1. Note that the a1 is the only parameter which depends upon given material 
properties and is calculated using equation (7). 

All numerical analyses are performed using two dimensional four node quadrilateral elements. In case of phase field analysis, the 
phase field degree of freedom (ad

i = d) is also added at each node i in addition to the displacement degrees of freedom (au
i = [ux, uy]

T). 
In the subsequent sections, first an analysis of a single edge notch specimen is presented. The specimen is analyzed with the PFM- 

Fig. 4. Cohesive constitutive laws used in interface element analysis.  
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model1 and PFM-model2 to investigate the suitability and appropriateness of the phase field model for damage modeling in asphalt 
mixtures. Numerical results are also compared with the interface element analysis for completeness. Additionally, the effect of soft
ening laws on structural response and damage progression is investigated. The second example presents a parametric study to look into 
the influence of different phase field model parameters on the response. 

4.1. Single edge notch (SEN) specimen - three point bending test 

A single edge notch beam test is simulated to investigate the performance of three damage models, i.e PFM-model1, PFM-model2 
and cohesive zone model with interface elements. Geometry and boundary conditions of the single edge notch beam is shown in Fig. 5. 
A finite element mesh of quadrilateral elements is used for the three analyses. Analysis with PFM-model1 and PFM-model2 are per
formed with the same finite element mesh. A fine mesh with a maximum element size of 1 mm is used near the prospective crack 
growth region and a mesh size of 5 mm is used elsewhere. In order to perform finite element analysis with cohesive zone model, 
interface elements of size 1 mm are inserted along the full depth of the beam ahead of the notch tip. A bi-linear cohesive constitutive 
law is used to simulate the interfacial behavior. A dummy interface stiffness of km = 1e8 N/mm is used in the analyses, which is high 
enough to simulate an initially rigid interface yet low enough to avoid numerical instabilities. A displacement control analysis is 
performed with an increment of 0.001 mm. 

The material considered for the analyses is an asphalt mixture consisted of asphalt binder PG (Performance Grade) 64–22 and 
nominal maximum aggregate size of 9.5 mm [3]. The material has been experimentally investigated by [41] and [3]. The authors [3, 
41] used indirect tension test at − 10∘C to determine tensile strength of the mixture. Whereas, a single edge notch beam test at − 10∘C 
was performed to obtain mode-I fracture toughness (Gf) of the material. The Young’s modulus (Eo) was obtained from a complex 
modulus testing of the mixture at 10∘C and 1 Hz. Due to the low test temperature, it is assumed that the numerical analysis can be 
performed using elastic material properties. Several researchers have analyzed the same single edge notch beam using different nu
merical models. For example, [3] used interface elements, [6] used discrete element modelling approach whereas [30] used phase field 
model to simulate model-I fracture in the beam. The calibrated fracture parameters (ft and Gf) used in different models are given in 
Table 2. Material properties used for the numerical investigation in this paper are given in Table 3. Note, that in this paper the phase 
field analyses are conducted with the calibrated values of [30], whereas interface element analysis is performed with the calibrated 
values of [3]. Analysis is performed by considering homogenized material properties of asphalt mixtures. A more detailed analysis can 
be performed by considering the micro-structure details of asphalt mixtures, however, this is out of scope of this manuscript. Firstly, 
because the aim here is to discuss numerical aspects of the phase field model and secondly, it was shown in [30] that the phase field 

Table 1 
Phase field model parameters.  

Model co ξ p a1 a2 a3 

PFM-model1 2  0  2  2 − 0.5  0 
PFM-model2 with linear softening behavior π  2  2  4lcz

πb 
− 0.5  0 

PFM-model2 with exponential softening behavior π  2  2.5  4lcz
πb 

0.1748  0 

PFM-model2 with softening curve of Cornellisson π  2  2  4lcz
πb  

1.3868  0.6567  

Fig. 5. Geometry and boundary conditions of single edge notch specimen.  

Table 2 
Calibrated material properties from different researchers.   

Experimental Calibrated Calibrated Calibrated  
[3] [30] [6] [3] 

Tensile strength ft(MPa)  3.56  3.40  3.21  3.92 
Fracture toughness Gf(N/mm)  0.344  0.344  0.241  0.241  
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model with cohesive zone model is sufficient to capture the global response and general damage pattern in asphalt mixtures. 

4.1.1. Analysis results of SEN with interface elements 
Figure 6 shows the load versus crack mouth opening displacement (CMOD) curve in comparison with the experimental result [3]. 

The result of the analysis is in good agreement with the experimental results. It is observed that the interface element analysis is able to 
capture the initial portion of the curve, the peak load and the post peak behavior of asphalt mixture. Fig. 6 also presents the numerical 
results of [3]. [3] used a potential based exponential cohesive constitutive law [4] to simulate model-I cracking in SEN beam.The 
numerical results of [3] does not correctly simulates the initial stiffness branch of the curve. This is due to the initial compliance of the 
adopted cohesive constitutive law. The problem can be solved using an interface law with an initial high stiffness as used in the present 
contribution. 

4.1.2. Analysis result of SEN with PFM-model1 
The analysis using PFM-model1 is performed for a range of model parameters b = 20, 50, 100 mm and Gf = 0.12, 0.241 N/mm. 

Table 3 
Material properties used in the analyses.   

PFM-model1 PFM-model2 interface elements 

Young’s modulus, Eo(GPa) 14.2  14.2  14.2 
Poisson ratio, ν 0.35  0.35  0.35 
tensile strength, ft(MPa) –  3.4  3.92 
fracture toughness, Gf(N/mm) variable  0.344  0.241  

Fig. 6. Load versus CMOD curve using interface element analysis.  

Fig. 7. Damage profiles using PFM-model1 with b= 20 mm at different prescribed displacements, left: Gf = 0.12 N/mm, right: Gf = 0.241 N/mm.  
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Fig. 7 shows damage profiles obtained with an analysis using b = 20 mm and Gf = 0.12, 0.241 N/mm at different displacement in
crements. It is observed that the damage profiles are qualitatively correctly simulated and represents mode-I fracture in the beam. 
Furthermore, the damage spreads over the whole beam even though it is negligibly small in regions far from the notch. This is due to 
the type of crack geometric function (α = d2) used in PFM-model1 which gives an infinite localization bandwidth. 

Figure 8a and b compares the PFM-model1 analysis results with the experimental load versus CMOD curve for different values of 
length scaling factor b and fracture toughness Gf. It can be observed from the figures that the initial branch of the curve (before the peak 
load) and the peak load for typical values of b matches the experimental result, but the post peak branch (softening branch) does not 
match the experimental result. Moreover, peak load increases with the decreasing value of length scaling factor b. Furthermore, 
changing the model parameters b and Gf do not help to calibrate the PFM-model1 with the experimental result. Therefore, it is 
concluded that only predicting the qualitative damage profiles and peak loads (for some values of b) are not enough to correctly 
represents the material response. Moreover, increasing the values of parameter b for a particular fracture toughness Gf, not only in
creases the peak load but also increases the width of the curve. However, slope of the softening branch almost remains unchanged. It is 
also evident from the figures that the softening branch drops quickly comparative to the experimental result for all values of b and Gf. It 
is observed from the figure that the parameters b and Gf are only scaling the load versus CMOD curves whereas shape of the curve does 
not change, Fig. 9. This indicates that PFM-model1 is essentially simulating brittle material behavior and therefore not suitable for 
simulating quasi-brittle behavior of asphalt concrete even at low temperatures where its response is nearly brittle. Moreover, the 
length scaling factor b appears to be a material parameter which is a function of the peak load. 

4.1.3. Analysis result of SEN with PFM-model2 
Figure 10 presents the PFM-model2 analysis results for different values of ft and Gf. The analysis is performed with b = 5 mm. It has 

Fig. 8. Load Vs CMOD curves of SEN beam with PFM-model1 (a) Effect of length scaling factor, b with Gf = 0.12 N/mm; (b) Effect of length scaling 
factor, b with Gf = 0.241 N/mm. 

Fig. 9. Effect of length scaling factor and fracture toughness on response of SEN using PFM-model1.  
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been shown in [30] that PFM-model2 results are not sensitive to b unless it is chosen as small as to resolve the damage phase field. This 
is further demonstrated in subsequent sections. Fig. 10a presents the effect of tensile strength on the response. It can be observed that 
increase in ft affects the peak load whereas remaining part of the curve remains unaffected as opposed to PFM-model1. Fig. 10 shows 
the effect of fracture toughness Gf on the response. It is observed that increasing the value of Gf increases the width of the curve, 
thereby increasing the area under the curve with a slight increase in peak load. Therefore, two parameters (ft and Gf) can be easily 
adjusted to calibrate the model with experimental data compared to PFM-model1. Fig. 11 shows the analysis results using the cali
brated values of ft and Gf. The result is in good agreement with the experimental data. The PFM-model2 is able to capture the pre-peak 
response, peak load and post-peak response of the single edge notch beam test. Thus, it can be concluded that PFM-model2 is more 
suitable to simulate the behavior of asphalt concrete compared to PFM-model1. It is interesting to note here that the calibrated ma
terial properties (ft = 3.4 MPa, Gf = 0.344 N/mm) are close to the experimentally determined values (ft = 3.56 MPa, Gf =

0.344 N/mm) in [3]. 

4.1.4. Comparison between PFM-model2 and interface element analysis 
For comparison, the PFM-model2 analysis is performed with the fracture properties similar to the interface element analysis, i.e. ft 

= 3.92 MPa and Gf = 0.241 N/mm and using a linear softening behavior. The material properties used for the analysis of interface 
element analysis are given in Table 3. Fig. 12a compares the load versus CMOD curves for the two analyses and Fig. 12b compares the 
dissipated energy. It is evident from the figures that PFM-model2 analysis gives smaller peak load, smaller area under the curve 
compared to the interface element analysis for the same values of tensile strength ft and fracture toughness Gf. Additionally, more 
energy is dissipated in case of phase field analysis compared to the interface element analysis. This is because that in case of interface 

Fig. 10. Load versus CMOD curves of SEN using PFM-model2 (a) Effect of tensile strength, ft with Gf = 0.337N∕mm; (b) Effect of fracture toughness, 
Gf with ft = 3.92MPa. 

Fig. 11. Load versus CMOD curve of SEN using PFM-model2.  
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element analysis all material non-linearities are concentrated over an interface of zero-thickness therefore the energy is only dissipated 
along the main crack. Whereas, in phase field analysis the damage is smeared over a volume therefore the energy is dissipated not only 
along the main crack but also in regions around the main crack. Hence, the model parameters ft and Gf, even though they have similar 
meaning in the two analyses models, they are required to be calibrated separately for the two damage models. Furthermore, the 
calibrated material properties for the case of phase field model are more closely related to the experimentally determined values. 
Moreover, the interface element analysis uses different constitutive laws for the interface and bulk material, therefore the model is 
anisotropic. On the other hand, phase field model uses the same constitutive law for the whole bulk material. Therefore, it can be 
concluded that there is no one to one relationship between the fracture material properties of phase field and interface element models. 

4.1.5. Effect of softening behavior 
To investigate the effect of softening law on the material response the PFM-model2 analysis using three softening laws namely 

linear, exponential and Cornelissen softening law [42] is performed. The model parameters to simulate a particular softening behavior 
are given in Table 1. 

Figure 13a compares the response with three different softening laws in terms of load versus CMOD curves. It is observed that the 
linear softening model gives a large peak load compared to the other two models, however, the post peak response is almost similar. 
Similar observations were also made by [43]. The load drop in case of exponential and Cornelissen softening models is due to rapid 
softening of the material after the peak stress. Fig. 13b compares the dissipated energy for the three softening models. It is observed 
that more energy is dissipated in case of linear softening model. Moreover, in case of linear softening law the rate of energy dissipation 

Fig. 12. Comparison of PFM-model2 and interface element results (a) Load versus CMOD; (b) Dissipated energy versus CMOD.  

Fig. 13. Comparison of SEN response with different softening laws (a) Load versus CMOD; (b) Dissipated energy versus CMOD.  
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is slow at the beginning but later the rate of energy dissipation increases compared to the exponential and Cornelissen softening model. 
Thereby, resulting in more energy dissipation. After CMOD = 0.3 mm there is no relative increase in dissipated energy among different 
models. 

The effect of load reduction is also noticeable from Fig. 14. Fig. 14 shows a zoomed-in view of the damage profiles at various levels 
of prescribed displacements: u = 0.14 mm, 0.21 mm, 0.28 mm and 0.49 mm (left to right) for the softening models linear, exponential 
and Cornelissen (top to bottom), respectively. It is observed that at u = 0.14 mm, the damaged zone for the case exponential and 
concrete softening law is more elongated and shows more damage in the center region compared to linear softening. This early 
increased damage results in a lower peak load and more dissipated energy at the beginning in the case of exponential softening 
compared to the analysis with linear softening law for the same material parameters. This is not surprising because in the case of 
exponential softening the stress degrades exponentially and quickly after the initiation of damage whereas later on the stress decays 
slowly causing slow dissipation of energy. This causes reduced peak load and more elongated damaged zone for the case of exponential 
and Cornelissen softening models at the beginning and more damage for the case of linear softening model later on. 

Fig. 15 compares the fully damaged region (d > 0.95) at u = 0.49 mm for the three softening models. It is evident that the length 
and width of fully damaged zone is more for the case of analysis with linear softening. This behavior is also due to the intrinsic nature of 
the softening curves. Exponential softening results in fast material degradation and therefore material does not have sufficient time for 
stress redistribution. On the contrary, linear softening results in relatively slow material degradation. Consequently, stress redistri
bution occurs and more area surrounding the crack is stressed. This increases the width of damage zone. Moreover, stress decays slowly 

Fig. 14. Comparison of SEN response with different softening behaviors. Damage profiles for linear, exponential and Cornelissen softening law (top 
to bottom) at prescribed displacement u = 0.14 mm, 0.21 mm, 0.28 mm, 0.49 mm (left to right). 
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Fig. 15. Comparison of SEN response with different softening behaviors. Fully damaged zones for linear, exponential and Cornelissen softening law 
(left to right) at prescribed displacement u = 0.49 mm. 

Fig. 16. Geometry and boundary conditions for the uniaxial test.  

Fig. 17. Mesh size effect in a uniaxial tension test (a) b = 0.08 mm and b/h = 4, 8, 16, 20 (b) b = 0.1 mm and b/h = 5, 10, 20, 25.  
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later on in the exponential softening model causing a slow crack growth and less elongated fully damaged zone. 

4.2. Uniaxially loaded square plate 

To get a deep understanding of the effect of phase field model (PFM-model2) parameters, a simple geometry, i.e. a uniformly loaded 
plate in tension is analyzed. The geometry of the specimen is shown in Fig. 16. Since the aim here is to investigate effect of phase field 
model parameters irrespective of the type of material therefore a different set of material properties is used. The material properties 
used for the analysis are [44]: modulus of elasticity E = 210 GPa, ft = 1025 MPa and Gf = 5 N/mm. The Poisson’s ratio is taken as zero 
to simulate uniaxial stress state with no lateral strains. To prevent damage initiating near the point of application of load and near the 
supports, the material model is assumed to be elastic in these regions. For comparison, the analysis is also performed with the interface 
elements, in which case interface elements are inserted along the full width of the specimen at its mid height. Interface element 
analysis is performed with a dummy stiffness km = 1e7 N/mm. 

4.2.1. Effect of mesh size 
To investigate the effect of mesh size on the solution, the analysis is performed with different mesh sizes, h = 0.02, 0.01, 0.005 and 

0.004 (h represents minimum element size in mm). Fig. 17 shows the analysis results for length scaling parameters, b = 0.1 and 0.08. It 
is evident from the figure that phase field model gives more stiff behavior until peak load whereas interface element analysis show 
some reduction in initial stiffness before attainment of peak load. Secondly, the post peak response for all meshes is similar to one 
another until full decohesion takes place. Near the point of full decohesion the phase field analysis result approaches the reference/ 
interface element solution with mesh refinement. On the other hand, for the case of coarse mesh, the analysis result gradually ap
proaches to a zero load and does not show a sharp change in load from loaded to unloaded state at the time of full decohesion. This is 

Fig. 18. Effect of length scaling factor in a uniaxial tension test (a) h = 0.02 mm and b/h = 5, 4.5, 4; (b) h = 0.004 mm and b/h = 20, 15, 10, 5.  

Fig. 19. Damage profiles for mesh mesh size h = 0.004 mm and b = 0.08 mm(left), b = 0.02 mm(right) (a) Damage profile for b = 0.08 mm; (b) 
Damage profile for b = 0.02 mm. 
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due to large damage gradient at the time of decohesion or in other words the slope of the softening curve suddenly changes at the 
instant of full decohesion. Therefore a fine mesh is required to fully resolve these regions of full decohesion to capture a sudden 
transition from unbroken to a fully broken state. A similar mesh size effect is also observed for length scaling parameter b = 0.08mm. 

It is to note here, that due to uniform stress distribution all points within a specimen has equal chances of damage initiation after the 
stresses reaches the tensile strength. However, the crack initiated near the mid-height of the specimen in all the numerical tests 
performed above. The non-uniqueness of crack location due to uniform stress distribution is somehow removed due to numerical errors 
or non-uniform mesh discretization. Consequently, the crack predicted by the phase field model is slightly inclined for some cases 
which justifies slight variation of phase field results compared to interface element results. In case of interface element analysis, the 
crack path is defined a priori and is straight. 

4.2.2. Effect of length scaling factor b 
Figure 18 shows the results of analysis for two mesh sizes, i.e. h = 0.02 mm and h = 0.004 mm. It is clear from the Fig. 18 that for 

larger values of b which gives higher b∕h ratio, the results are insensitive to the parameter b. For smaller b∕h ratios the numerical 
results deviate from the reference solution. A very large deviation of the numerical result with b = 0.02 mm is due to the fact that an 
inclined crack is predicted instead of a straight horizontal crack as shown in Fig. 19. It is therefore concluded that a larger value of b∕h 
with a finer mesh gives good results. Table 4 compares the peak load predicted by the phase field method with interface element 
analysis. The difference in peak load with respect to the interface element analysis is around 1%. Moreover, the results are insensitive 
to mesh size. 

4.2.3. Effect of type of softening curve 
To study the effect of type of softening law on length scaling factor b, the analysis is performed considering an exponential softening 

law. For comparison, interface element analysis is also performed using exponential softening law. Interface element analysis is 
performed with a dummy stiffness km = 1e6 N/mm. Fig. 20 shows the analysis results. It is evident from the figure that the analysis 
results are insensitive to the parameter b. The different analysis results are also in good agreement with each other near the point of full 
decohesion in contrast to the analysis with linear softening behavior, Fig. 18. This is due to the gradually degrading nature of 
exponential softening law compared to the linear softening. In case of linear softening the slope of the degrading curve suddenly 
changes to zero near point of full decohesion. 

Figure 20 also compares the analysis results with the interface element model. It is observed that a lower initial stiffness is predicted 

Table 4 
Comparison of peak load and percentage difference w.r.t interface element results.    

h = 0.02 h = 0.004  

b∕h (mm) Peak load (N) % difference Peak load (N) % difference 

Interface element – 1018.9 – 1018.9 – 
PFM-model2 4 1029 0.99 – – 
PFM-model2 4.5 1030 1.09 – – 
PFM-model2 5 1030 1.09 1029 0.99 
PFM-model2 10 – – 1029 0.99 
PFM-model2 15 – – 1029 0.99 
PFM-model2 20 – – 1029 0.99  

Fig. 20. Effect of length scaling factor with PFM-model2 using exponential softening law (h = 0.02 mm).  
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by the interface model. To remedy this problem interface element analysis is then performed with a higher value of dummy stiffness km 
but the analysis results did not converge for values of km larger than 1e6N/mm. 

4.3. Uniaxial loaded square plate with an edge crack 

In this section performance of the phase filed model (PFM-model2) under non-uniform stress distribution will be studied. In order 
to incorporate a non-uniform stress distribution a notch is inserted in the middle of the specimen as shown in Fig. 21. Presence of a 
notch also enforces the crack to initiate at the notch tip and therefore removes the non-uniqueness of crack initiation point as observed 
in the previous example. The analysis is performed with modulus of elasticity E = 210 GPa, Poisson’s ratio ν = 0, tensile strength ft 
= 820 MPa and fracture toughness Gf = 6 N/mm. Note that, the fracture material properties are taken different from previous section 
in order to avoid issues related to dummy stiffness (km) in interface element model. To select a value of dummy stiffness, a sensitivity 
analysis is first performed and it was found that km = 1e8 N/mm and km = 1e10 N/mm give similar results. Therefore, interface 
element analysis is performed with dummy stiffness km = 1e8 N/mm. 

To investigate the effect of length scaling factor b, the analysis is performed with b = 0.04, 0.06, 0.08 mm and to investigate the 
effect of type of softening law on the response, linear and exponential softening laws are used. The analysis is performed with a mesh 
consisting of minimum element size h = 0.004 mm. Fig. 22 shows analysis results for linear and exponential softening behaviors. 
Firstly, comparing the peak loads (Figs. 22a and b), it is observed that under non-uniform stress distribution the phase field, as well as 
the interface element model gives smaller peak loads when exponential softening law is used. Note, that for the case of uniform stress 
distribution both softening laws gave similar peak loads, Figs. 18 and 20. 

Secondly, the load-displacement curves do not match very well with the interface element results compared to the case of a plate 

Fig. 21. Geometry and boundary conditions for the uniaxial loaded notched plate.  

Fig. 22. Load-Displacement curves for the square plate with an edge crack, left: analysis results with linear softening, right: analysis results with 
exponential softening (a) h = 0.004 mm, b/h = 20,15 and 10; (b) h = 0.004 mm, b/h = 20, 15 and 10. 

A. Ahmed et al.                                                                                                                                                                                                        



Case Studies in Construction Materials 18 (2023) e02077

18

subjected to a uniform stress state, Fig. 18. Table 5 compares the peak load predicted by the phase field analysis and interface element 
analysis. The difference in all cases is less than 10%. It can be concluded, that the phase field model may reproduce interface element 
results for bodies subjected to uni-axial stress states but under generic multi-axial stress field the results of the phase field and interface 
element models are different. This is due to inherent differences in defining a material behavior in the two models. Phase field model 
uses a single constitutive law to define the material behavior over the whole body whereas interface element model uses different 
constitutive laws for the sharp interface and the bulk material. 

Thirdly, the results for different length scaling factors show slight variations in the predicted peak load which necessitate a need for 
a finer mesh to capture a damage gradient at the time of damage initiation. Moreover, near the point of full decohesion the analysis 
results with exponential softening are in good agreement with the interface element results due to the fact that damage is gradually 
decreasing. On the other hand, analysis result using linear softening does not show sharp change in slope near point of full decohesion 
which requires a finer mesh to resolve the sharp damage gradient. Note, that the same mesh size, h = 0.004 mm, was sufficient enough 
to capture the decohesion portion of the load-displacement curve in case of uni-axially loaded member, Fig. 18. This indicates that to 
capture sharp damage gradients for a generic multi-axial stress state a finer mesh is required. 

5. Discussion and Conclusions 

This section initiates by first presenting a summary of the numerical results followed by general conclusions and key findings of the 
paper. The paper presented a comparative study among quasi-brittle PFM and brittle PFM, and the interface element model. It was the 
aim of the paper to determine suitable phase field model functions and model parameters for the simulation of damage in asphalt 
mixtures. Additionally, the paper also discussed effects of different types of softening laws used within the framework of phase field 
method. The conclusions drawn hereafter are helpful in appropriate selection of characteristics functions (crack geometric and 
degradation functions, softening laws) and model parameters for future studies using phase field method. 

5.1. Summary of the numerical results 

Summary of the important points from the numerical results are given below .  

• PFM-model1 and PFM-model2 both are able to simulate initial high stiffness (pre-peak) response of the asphalt mixture, whereas in 
the case of interface element model the initial pre-peak response depends upon initial stiffness of the chosen interface cohesive 
constitutive law.  

• PFM-model1 is not able to simulate the post-peak response of asphalt mixture. As observed, in PFM-model1 peak stress is dependent 
upon the length scale factor b and in the limit b ⟶ 0 peak stress goes to infinity. This is representative of the brittle fracture 
behavior according to Griffith’s theory. On the other hand, PFM-model2 considers the peak stress ft as an intrinsic material property 
and independent of the length scaling factor b. Furthermore, any type of softening behavior can be reproduced by calibrating the 
parameters a1, a2 and a3 for the given softening law. This feature allows the PFM-model2 to simulate quasi-brittle behavior of 
materials.  

• PFM-model1 predicted damage values over the complete domain of the beam even in regions far away from the notch. which is due 
to the infinite width of the localization band. Whereas, the damaged zone in PFM-model2 is of finite size. The finiteness of the 
localization band is a useful property and allows the model to be applied to a reduced area of the domain.Therefore, PFM-model2 is 
more suitable to simulate response of asphalt mixture compared to PFM-model1.  

• Both linear and exponential softening curves are suitable to simulate damage in asphalt mixtures. The model parameters ft and Gf 
can be calibrated with the experimental results to simulate material behavior. 

• Linear softening model gives a large peak load and a faster growth of damaged zone. This is due to the fact that in case of expo
nential softening model, initial rapid decrease in stiffness causes a reduction in the peak load.  

• The calibrated material parameters for the phase field model (PFM-model2) are different from the interface element model under 
multi-axial stress states. This is due to the inherent characteristics of the two models. Therefore, calibrated material properties 
using interface elements cannot be used in phase field model.  

• Mesh refinement plays a key role in obtaining accurate solution. A fine mesh with a larger b, generally gives good results.  
• A fine mesh is required to capture the sharp damage gradients specially in case of generic multi-axial stress states. Softening laws 

defined with smooth curve near point of damage initiation and full decohesion will give good results with a relatively coarse mesh.  
• Interface material properties does not seem to influence the selection of b parameter in this study. 

Table 5 
Comparison of peak load and percentage difference w.r.t interface element results.    

Linear softening Exponential softening  

b (mm) Peak load (N) % difference Peak load (N) % difference 

Interface element –  460.0 –  429.0 – 
PFM-model2 0.04  483.5 5.1  456.0 6.3 
PFM-model2 0.06  494.7 7.5  463.0 7.9 
PFM-model2 0.08  500.4 8.8  470.0 9.6  
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5.2. General conclusions and findings 

It is concluded from the study that .  

• the response of a material is greatly influenced by the choice of degradation function which relates the bulk material with the 
damage phase field. The rational based degradation function proposed by [25] is more suitable to simulate the response of asphalt 
concrete, which behaves in a quasi-brittle manner even at low temperatures. Therefore, phase field models similar to [22,27,28, 
45], are inadequate to simulate damage in asphalt mixtures.  

• both type of softening laws, i.e. linear and exponential, can be used to simulate damage in asphalt mixtures. It should be noted here, 
that as long as the material behavior is brittle or quasi-brittle, the shape of softening law does not have significant effect on the 
response [46,47]. The effect is more pronounced in case of ductile material behavior and in micro-scale analysis.  

• Phase field model is able to predict the material response but a sufficiently fine mesh (b/h = 5 ~ 10) is required to obtain good 
results. Mesh refinement demand increases if the curve defining the softening law has kinks.  

• material parameters ft and Gf should be calibrated separately for interface element and phase field models. 

This paper presented a comparative study based on quasi-static fracture behavior of asphalt mixtures at low temperatures. Time and 
temperature dependence is not considered in this contribution, which is a subject of future studies. 

Novelty Statement 

The manuscript discusses numerical and implementation aspects of phase field model (PFM) in the context of fracture in asphalt 
mixtures at low temperatures. Phase field model removes most of the constraints of the existing continuum damage and interface 
element models and provides a unified framework for crack nucleation, propagation and crack branching. 

Over the years several variants of phase field models are presented in the literature. This paper investigates the suitability of these 
models for fracture simulation in asphalt mixtures. A comparative study among quasi-brittle PFM and brittle PFM, and the interface 
element model is presented. It is the aim of the paper to determine suitable phase field model functions and model parameters for the 
simulation of damage in asphalt mixtures. 

In particular, the key contributions of the manuscript are as follows:  

• The paper critically investigates key ingredients of the phase field model and determines the optimal characteristic functions and 
model parameters for accurate numerical simulation of low temperature fracture in asphalt mixtures.  

• A comparative study between phase field method and interface element method is presented and differences in terms of model 
parameters and analysis results are discussed.  

• The effect of type softening laws used within the framework of phase field method combined with cohesive zone model is also 
investigated. 

The conclusions drawn in the paper are helpful in appropriate selection of characteristics functions (crack geometric and degra
dation functions, softening laws) and model parameters for future studies using phase field method. 

The current research work provides relevant and important information on the implementation/numerical aspects of phase field 
model for damage modeling in asphalt mixtures, therefore, the work will be of interest to many researchers and scientists who are 
involved in analyzing and studying damage mechanics of asphalt mixtures and failure of pavements. 
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Appendix A. Pseudo codes 

Pseudo codes of the implemented phase field and interface element models are given in the algorithmic boxes 1 and 2, respectively. 
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Algorithm 1. Algorithm of a finite element code with phase field model.   

A. Ahmed et al.                                                                                                                                                                                                        



CaseStudiesinConstructionMaterials18(2023)e02077

21

Algorithm 2. Algorithm of a finite element code with interface element model.     
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