
Finite Extension of Accreting Nonlinear

Elastic Solid Circular Cylinders

Arash Yavari∗1,2, Yasser Safa3, and Arash Soleiman Fallah4

1School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,

USA
3Institute for Computational Physics, School of Engineering, ZHAW - Zurich University of Applied Sciences, 8400

Winterthur, Switzerland
4Department of Mechanical, Electrical and Chemical Engineering, Oslo Metropolitan University, 0166 Oslo, Norway

May 26, 2022

Abstract

In this paper we formulate and solve the initial-boundary value problem of accreting circular cylindri-
cal bars under finite extension. We assume that the bar is grown by printing stress-free cylindrical layers
on its boundary while it is undergoing a time-dependent finite extension. Accretion induces eigenstrains,
and consequently residual stresses. We formulate the anelasticity problem by first constructing the natu-
ral Riemannian metric of the growing bar. This metric explicitly depends on the history of deformation
during the accretion process. For a displacement-control loading during the accretion process we find
the exact distribution of stresses. For a force-control loading, a nonlinear integral equation governs the
kinematics. After unloading there are, in general, a residual stretch and residual stresses. For different
examples of loadings we numerically find the axial stretch during loading, the residual stretch, and the
residual stresses. We also calculate the stress distribution, residual stretch, and residual stresses in the
setting of linear accretion mechanics. We numerically compare the linear and nonlinear solutions in a
few accretion examples.

Keywords: Accretion mechanics, surface growth, nonlinear elasticity, residual stress, universal deforma-
tions, geometric mechanics.

1 Introduction

There are many examples of accretion (surface or boundary growth) in nature, e.g., the growth of biological
tissues and crystals, the build-up of volcanic and sedimentary rocks, of ice structures, the formation of
planets, etc., and in engineering applications, e.g., additive manufacturing (3D printing), metal solidification,
the build-up of concrete structures in successive layers, the deposition of thin films, and ice accretion on
an aircraft wing that leads to degradation of aerodynamic performance, etc. Accretion can be visualized
in terms of the formation of non-Euclidean solids—a term that was coined by Poincaré [1905]—through
a continuous joining of infinitely many two-dimensional layers [Zurlo and Truskinovsky, 2017, 2018]. This
is mathematically described by a foliation of the material manifold [Sozio and Yavari, 2019]. The first
theoretical study of accretion mechanics is due to Southwell [1941]. One of the first problems that was
solved in the setting of linear accretion mechanics is the problem of a growing planet subject to self-gravity
[Brown and Goodman, 1963]. Metlov [1985] proposed the first finite deformation theory of accretion and
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introduced a time of attachment map. There are many more works in the literature of mechanics of accretion
[Drozdov, 1998a,b, Arutyunyan et al., 1990, Manzhirov, 1995, Ong and O’Reilly, 2004, Kadish et al., 2005,
Epstein, 2010, Lychev and Manzhirov, 2013, Manzhirov, 2014, Lychev, 2017, Lychev et al., 2021, Tomassetti
et al., 2016, Sozio and Yavari, 2017, 2019, Sozio et al., 2020, Abi-Akl et al., 2019, Abi-Akl and Cohen,
2020, Truskinovsky and Zurlo, 2019, Bergel and Papadopoulos, 2021]. For a detailed literature review of the
mechanics of accretion see [Naumov, 1994, Sozio and Yavari, 2017].

In nonlinear accretion mechanics one is interested in the state of deformation and stress of a body
undergoing large deformations while new material is being added on part of its boundary. Accretion is a
source of anelasticity (in the sense of Eckart [1948]), and hence, residual stresses. There are recent geometric
formulations that model the accretion-induced anelasticity by a Riemannian material manifold whose metric
explicitly depends on the history of deformation during accretion [Sozio and Yavari, 2017, 2019, Sozio et al.,
2020]. In this paper we consider symmetric accretion of a finite solid circular cylinder made of an arbitrary
incompressible isotropic solid. We construct the material manifold of an accreting bar that is under a time-
dependent finite extension and calculate its stresses and deformation during accretion. We consider both
displacement and force-control loadings during accretion. Next, the residual stretch and residual stresses are
calculated. Finally, the same analysis is repeated in the setting of linearized accretion mechanics.

This paper is organized as follows. In §2, we formulate and solve the initial-boundary-value problem of
accretion of a circular cylindrical bar under a time-dependent finite extension. We show that kinematics
is fully determined by the axial stretch function. We consider both displacement-control and force-control
loadings. Calculation of residual stresses is discussed in §2.1. The accretion analysis in the setting of
linearized accretion mechanics is presented in §2.2. For a few examples of force-control loadings during
accretion we compare the axial stretch calculated using the linear and nonlinear theories. Conclusions are
given in §3.

2 Finite extension of an accreting circular cylindrical bar

In this section we formulate and solve the initial-boundary value problem of symmetric accretion of a circular
cylindrical bar made of an incompressible1 isotropic hyperelastic solid that is undergoing a time-dependent
finite extension while stress-free cylindrical layers are added to its boundary (see Fig.1).

Kinematics and the material metric. Let us consider a circular cylindrical bar with initial length L
and radius R0 that is made of a homogeneous isotropic and incompressible material (I3 = 1) with energy
function W = W (I1, I2), where I1, I2, I3 are the principal invariants of the right (or left) Cauchy-Green
tensors [Ogden, 1997]. We use the cylindrical coordinates (R,Θ, Z) and (r, θ, z) in the reference and current
configurations, respectively. The metrics of the reference and current configurations of the initial body
(0 ≤ R ≤ R0) have the following representations

G =




1 0 0
0 R2 0
0 0 1


 , g =




1 0 0
0 r2 0
0 0 1


 . (2.1)

Let us consider a time-dependent extension of the circular cylindrical bar such that it is slow enough for the
inertial effects to be negligible. Finite extensions of a circular cylindrical bar are represented by the following
family of maps:2

r = r(R, t) , θ = Θ , z = λ2(t)Z , (2.2)

where λ2(t) is the axial stretch. We can assume that this is a displacement-control loading for which λ(t) is
given. Alternatively, one can assume that the applied axial force is given and in that case λ(t) is an unknown

1The accretion formulation presented in this paper is not restricted to incompressible solids. However, incompressibility
simplifies the kinematics.

2The set of finite extensions of circular cylindrical bars is a subset of Family 3 deformations that are universal for incom-
pressible isotropic solids [Ericksen, 1954]. They are universal for certain inhomogeneous and anisotropic bars as well [Yavari,
2021, Yavari and Goriely, 2021, 2022]. In this paper, we restrict our calculations to isotropic and homogeneous bars.
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Figure 1: (a) An accreting circular cylindrical bar undergoing finite extensions. (b) The initial bar, the accreting bar at time
t, and the residually-stressed accreted bar after the completion of accretion and removal of the external forces.

function to be determined. The deformation gradient reads

F = F(R, t) =



r′(R, t) 0 0

0 1 0
0 0 λ2(t)


 , (2.3)

where r′(R, t) = ∂r(R,t)
∂R . The incompressibility condition is written as

J =

√
detg

detG
detF =

r(R, t)

R
r′(R, t)λ2(t) = 1 . (2.4)

This condition, together with r(0, t) = 0, gives us

r(R, t) =
R

λ(t)
, 0 ≤ R ≤ R0 . (2.5)

We assume that while the cylindrical bar is under the time-dependent deformation (2.2) cylindrical layers
of stress-free material are printed continuously on its boundary (see Fig.1). The growth velocity is assumed
to be normal to the boundary in the current configuration and has magnitude ug(t). This means that in the
time interval [t, t+ dt] a stress-free circular cylindrical shell of thickness ug(t)dt is attached to the deformed
body (see Fig.2). We also assume that this accretion process is continuous in the time interval t ∈ [0, ta]. Let
us assign a time of attachment τ(R) to each layer with the radial coordinate R in the reference configuration.
For 0 ≤ R ≤ R0, τ(R) = 0. We assume that there is no ablation during the accretion process, and hence τ(R)
is invertible for R > R0. Its inverse is denoted by s = τ−1 and assigns to the time t the radial coordinate of
the accreted cylinder in the reference configurations. The growth surfaces in the reference and the current
configuration are defined as

Ωt = {(s(t),Θ, Z) : 0 ≤ Θ < 2π , 0 ≤ Z ≤ L} ,
ωt =

{
(r(s(t), t),Θ + τ(t)Z, λ2(t)Z) : 0 ≤ Θ < 2π , 0 ≤ Z ≤ L

}
.

(2.6)

Note that
d

dt
r(s(t), t) =

∂r

∂R
(s(t), t)ṡ(t) +

∂r

∂t
(s(t), t) = r′(s(t), t) Ug(t) + V r(s(t), t), (2.7)
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Figure 2: Cross section of a circular cylindrical bar undergoing symmetric accretion and finite extension simultaneously. (a)
The material manifold (B,G). The radial coordinate of the accreting bar at time t is s(t). At a later time t + dt the radius
changes to s(t) +Ug(t)dt. (b) The deformed bar under finite extension with a layer of stress-feee material of thickness ug(t)dt
joining its boundary during the time interval [t, t + dt]. (c) The residually-stressed accreted bar after the removal of external
forces.

where Ug(t) = ṡ(t), and V r = ∂r
∂t is the radial component of the material velocity on the growth surface. In

the absence of accretion, the spatial velocity of the material points lying on the boundary is V r(s(t), t), and
this implies that

ug(t) = r′(s(t), t)Ug(t) . (2.8)

Following [Sozio and Yavari, 2017], we choose Ug(t) = ug(t). Sozio and Yavari [2017] showed that other
choices for Ug(t) result in isometric material metrics. In other words, this choice will not affect the calculation
of deformation and stresses. From (2.8), the choice Ug(t) = ug(t) imposes the following constraint on r(R, t):

r′(s(t), t) = 1 , or r′(R, τ(R)) = 1 . (2.9)

We also have s(t) = R0 +
∫ t

0
ug(ξ)dξ. In order to simplify the calculations, let us assume that the spatial

growth velocity is constant, i.e., ug(t) = u0 > 0. However, our formulation is not restricted to this choice.
Thus

s(t) = R0 + u0t , or τ(R) =
R−R0

u0
. (2.10)

The constraint (2.9) is simplified to read

r′(R0 + u0t, t) = 1 , or r′
(
R,

R−R0

u0

)
= 1 . (2.11)

For the initial body (0 ≤ R ≤ R0), the material metric has the representation (2.1)1. For the secondary
body (R0 ≤ R ≤ s(t)), we assume that the accreted cylindrical layer at any instant of time t is stress-free.
This implies that the material metric at R = s(t) is the pull-back of the metric of the (Euclidean) ambient
space, i.e.,

G(s(t)) = ϕ∗tg(r(s(t), t)) , or G(R) = ϕ∗τ(R) g(r(R, τ(R))). (2.12)

In components, one has GAB(s(t)) = GAB(R) = F aA(R, τ(R))F bB(R, τ(R)) gab(r(R, τ(R))). Therefore

G(R) =



r′2(R, τ(R)) 0 0

0 r2(R, τ(R)) 0
0 0 λ4(τ(R))


 =




1 0 0
0 r2(R, τ(R)) 0
0 0 λ4(τ(R))


 , (2.13)
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where use was made of (2.9), and τ(R) is given in (2.10)2.
For this accretion problem, the material manifold is an evolving Riemannian manifold (Bt,G), where

Bt = {(R,Θ, Z) : 0 ≤ Θ < 2π , R0 ≤ R ≤ s(t) = R0 + u0t , 0 ≤ Z ≤ L} , (2.14)

and

0 ≤ R ≤ R0 : G =




1 0 0
0 R2 0
0 0 1


 ,

R0 ≤ R ≤ R0 + u0t : G =




1 0 0
0 r̄2(R) 0
0 0 λ4(τ(R))


 .

(2.15)

Remark 2.1. The Riemman curvature tensor in a local coordinate chart {XA} for the material manifold

(B,G) has the components RABCD = ∂ΓABD
∂XC

− ∂ΓABC
∂XD

+ ΓACEΓEBD − ΓADEΓEBC , where the Christoffel
symbols are defined as ΓABC = 1

2G
AK (GKB,C +GKC,B −GBC,K). The Ricci curvature R is a symmetric

second-order tensor that is defined as RCD = RAACD. In dimension three, the Ricci curvature completely
determines the Riemann curvature of the metric. For 0 ≤ R ≤ R0, R = 0, while for R0 ≤ R ≤ R0 + u0t it
is diagonal with the following components:3

RRR(R, t) = − r̄
′′(R)

r̄(R)
− 2

λ(τ(R))λ′′(τ(R)) + λ′2(τ(R))

u2
0 λ

2(τ(R))
,

RΘΘ(R, t) = r̄(R)

[
−r̄′′(R)− 2

r̄′(R)λ′(τ(R))

u0 λ(τ(R))

]
,

RZZ(R, t) = −2λ2(τ(R))
λ(τ(R)) [u0 r̄

′(R)λ′(τ(R)) + r̄(R)λ′′(τ(R))] + r̄(R)λ′2(τ(R))

u2
0 r̄(R)

.

(2.16)

It is seen that the material metric is, in general, non-flat. In other words we expect the accreted bar to be
residually stressed after the completion of the accretion process and removal of the applied forces.

The incompressibility constraint for R ≥ R0 is written as

J =

√
detg

detG
detF =

r(R, t)

r(R, τ(R))λ2(τ(R))
r′(R, t)λ2(t) = 1 . (2.17)

Thus

r(R, t) r′(R, t) = r̄(R)
λ2(τ(R))

λ2(t)
, (2.18)

where r̄(R) := r(R, τ(R)) = r
(
R, R−R0

u0

)
. Hence

r2(R, t) =
R2

0

λ2(t)
+

2

λ2(t)

∫ R

R0

r̄(ξ)λ2(τ(ξ)) dξ, R0 ≤ R ≤ R0 + u0t , (2.19)

where use was made of (2.5). Thus

λ2(t) r2(R, t) = R2
0 + 2

∫ R

R0

r̄(ξ)λ2(τ(ξ)) dξ . (2.20)

The right-hand side is time independent, and hence, λ2(t) r2(R, t) is independent of time. In particular,
λ2(t) r2(R, t) = λ2(τ(R)) r2(R, τ(R)), and therefore

r(R, t) =
λ(τ(R))

λ(t)
r̄(R) . (2.21)

3All the symbolic computations in this paper were performed using Mathematica Version 12.3.0.0, Wolfram Research,
Champaign, IL.
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Figure 3: Radial deformation distribution during the accretion process at four different instances of time for the displacement-
control loading λ(t) = 1 + sin

(
2π t
ta

)
.

The constraint (2.9) gives the following ordinary differential equation (ODE) for the unknown function r̄(R):

r̄′(R) +
λ′(τ(R) τ ′(R))

λ(τ(R))
r̄(R) = 1 , (2.22)

which has the following solution:

r̄(R) =
1

λ(τ(R))

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
. (2.23)

Therefore

r(R, t) =
1

λ(t)

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
. (2.24)

It is observed that the function λ(t) completely determines the kinematics.

Example 2.2. Let us assume that Ra = 2R0, u0 = 1, and ta = 1, and consider a displacement-control
loading λ(t) = 1+sin

(
2π t
ta

)
. In Fig.3 the distributions of radial deformation r(R, t) for four instances of time

are shown.

Stresses and equilibrium equations. Next we calculate the stresses in the accreting bar. The principal
invariants are defined as I1 = trb = baa = bab gab, I2 = 1

2

(
I2
1 − trb2

)
1
2

(
I2
1 − bab bba

)
= 1

2

(
I2
1 − babbcd gac gbd

)
,

and I3 = detb [Ogden, 1997]. For 0 ≤ R ≤ R0:

b](R, t) =




1
λ2(t) 0 0

0 1
R2 0

0 0 λ4(t)


 , c−1(R, t) =



λ2(t) 0 0

0 λ4(t)
R2 0

0 0 1
λ4(t)


 . (2.25)
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The principal invariants of b are I1(R, t) = 2+λ6(t)
λ2(t) , and I2(R, t) = 1+2λ6(t)

λ4(t) . Recall that the Cauchy stress

for an incompressible isotropic solid has the following representation [Doyle and Ericksen, 1956, Simo and
Marsden, 1984]

σ = −pg] + 2W1 b
] − 2W2 c

−1 , σab = −p gab + 2W1 b
ab − 2W2 c

ab , (2.26)

where p is the Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1, and

Wi = ∂W
∂Ii

, i = 1, 2. The deformation tensors c[ and b] are defined as c[ = ϕ∗G, b] = ϕ∗G], and have

components cab =
(
F−1

)A
a

(
F−1

)B
b GAB , and bab = F aA F

b
B G

AB . Thus, the nonzero components of the
Cauchy stress are

σrr(R, t) = −p(R, t) +
α(R, t)

λ2(t)
− β(R, t)λ2(t) ,

σθθ(R, t) = −p(R, t)λ
2(t)

R2
+
α(R, t)

R2
− β(R, t)λ4(t)

R2
,

σzz(R, t) = −p(R, t) + α(R, t)λ4(t)− β(R, t)

λ4(t)
,

(2.27)

where α = 2W1 and β = 2W2. Using the circumferential and axial equilibrium equations one concludes that
p = p(R). The radial equilibrium equation reads ∂σrr

∂r + 1
rσ

rr − rσθθ = 0. This can be rewritten in terms of

the referential coordinates as ∂σrr

∂R = 0. Thus, σrr(R, t) = σ0(t). This implies that for the initial body one
has

− p(R, t) = σ0(t)− α(R, t)

λ4(t)
+ β(R, t)λ4(t) . (2.28)

For R0 ≤ R ≤ R0 + u0t:

b](R, t) =




λ2(τ)
λ2(t) 0 0

0 1
r̄2(R) 0

0 0 λ4(t)
λ4(τ)


 , c−1(R, t) =




λ2(t)
λ2(τ) 0 0

0 r2(R,τ)
r2(R,t) 0

0 0 λ4(τ)
λ4(t)


 . (2.29)

The principal invariants of b are I1(R, t) = 2λ
2(τ(R))
λ2(t) + λ4(t)

λ4(τ(R)) , and I2(R, t) = 2 λ2(t)
λ2(τ(R)) + λ4(τ(R))

λ4(t) . The

non-zero components of the Cauchy stress read

σrr(R, t) = −p(R, t) + α(R, t)
λ2(τ)

λ2(t)
− β(R, t)

λ2(t)

λ2(τ(R))
,

σθθ(R, t) = −p(R, t) λ2(t)

λ2(τ(R)) r̄2(R)
+ α(R, t)

1

r̄2(R)
− β(R, t)

λ4(t)

λ4(τ(R)) r̄2(R)
,

σzz(R, t) = −p(R, t) + α(R, t)
λ4(t)

λ4(τ(R))
− β(R, t)

λ4(τ(R))

λ4(t)
.

(2.30)

The equilibrium equation reads ∂σrr(R,t)
∂R = 0. Thus, σrr(R, t) = σ0(t). This implies that

−p(R, t) = σ0(t)− α(R, t)
λ2(τ(R))

λ2(t)
+ β(R, t)

λ2(t)

λ2(τ(R))
. (2.31)

Thus, on the growth surface, one has −p(s(t), t) = σ0(t)− α(s(t), t) + β(s(t), t). Hence

σ(s(t), t) = [−p(s(t), t) + α(s(t), t)− β(s(t), t)]




1 0 0
0 1

r̄2(R) 0

0 0 1


 . (2.32)
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We know that σ(s(t), t) = 0,4 and hence −p(s(t), t) +α(s(t), t)−β(s(t), t) = 0. This implies that, σ0(t) = 0,
and thus

−p(R, t) = −α(R, t)
λ2(τ(R))

λ2(t)
+ β(R, t)

λ2(t)

λ2(τ(R))
. (2.33)

Using (2.28) (with σ0(t) = 0) and (2.33) one observes that the radial and circumferential (hoop) stresses
identically vanish and the only non-zero component of the Cauchy stress has the following distribution

σzz(R, t) =





λ6(t)−1
λ4(t)

[
α(R, t)λ2(t) + β(R, t)

]
, 0 ≤ R ≤ R0 ,

λ6(t)−λ6(τ(R))
λ4(τ(R))λ4(t)

[
α(R, t)λ2(t) + β(R, t)λ2(τ(R))

]
, R0 ≤ R ≤ s(t) .

(2.34)

Remark 2.3. In anelasticity finite eigenstrains are modeled by the Riemannian metric of the material
manifold [Yavari and Goriely, 2013]. Universal eigenstrains for elastically incompressible isotropic solids
were studied by Goodbrake et al. [2020]. They first observed that the known universal deformations of
incompressible isotropic solids are invariant under certain Lie subgroups of the special Euclidean group. For
each known family of universal deformations, they assumed that the universal eigenstrain distributions, and
consequently the corresponding material metrics, are invariant under the same Lie groups. For accreting
circular cylindrical bars we assumed the deformation (2.2). Within the initial body (0 ≤ R ≤ R0) this is a
subset of Family 3 deformations. For the secondary body (R0 ≤ R ≤ s(t)), the radial deformation has the
form (2.24). We have shown that the following pair of deformations and eigenstrains are universal.

G =








1 0 0
0 R2 0
0 0 1


 , 0 ≤ R ≤ R0 ,




1 0 0
0 r̄2(R) 0
0 0 λ4(τ(R))


 , R0 ≤ R ≤ s(t) ,

r =





R

λ(t)
, 0 ≤ R ≤ R0 ,

1

λ(t)

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
, R0 ≤ R ≤ s(t)

, θ = Θ , z = λ2(t)Z .

(2.35)

At the two ends of the bar (Z = 0, L), the axial force required to maintain the deformation is calculated
as

F (t) = 2π

∫ s(t)

0

P zZ(R, t)RdR , (2.36)

where P zZ is the zZ-component of the first Piola-Kirchhoff stress, which has the following distribution

P zZ(R, t) =





λ6(t)−1
λ6(t)

[
α(R, t)λ2(t) + β(R, t)

]
, 0 ≤ R ≤ R0 ,

λ6(t)−λ6(τ(R))
λ4(τ(R))λ6(t)

[
α(R, t)λ2(t) + β(R, t)λ2(τ(R))

]
, R0 ≤ R ≤ s(t) .

(2.37)

Example 2.4. For neo-Hookean solids α(R) = µ(R) > 0 and β(R) = 0. Let us also assume a uniform shear
modulus µ(R) = µ0. Thus

σzz(R, t) =





µ0
λ6(t)−1
λ2(t) , 0 ≤ R ≤ R0 ,

µ0
λ6(t)−λ6(τ(R))
λ4(τ(R))λ2(t) , R0 ≤ R ≤ s(t) ,

(2.38)

4Note that on the growth surface the entire Cauchy stress is known as the new material added to the boundary in the current
configuration is stress-free.
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Figure 4: Axial stress distribution during the accretion process at four different instances of time for the displacement-control

loading λ(t) = 1 +
(
t
ta

)3
.

and

P zZ(R, t) =





µ0
λ6(t)−1
λ4(t) , 0 ≤ R ≤ R0 ,

µ0
λ6(t)−λ6(τ(R))
λ4(τ(R))λ4(t) , R0 ≤ R ≤ s(t) .

(2.39)

We assume that Ra = 2R0, u0 = 1, and ta = 1. In Fig.4, for the displacement-control loading λ(t) = 1+
(
t
ta

)3
,

we show the distribution of the axial stress for four instances of time during the accretion process.

From (2.36), the axial force is calculated as

F (t) = πµ0R
2
0

λ6(t)− 1

λ4(t)
+ 2πµ0

∫ R0+u0t

R0

R

[
λ2(t)

λ4(τ(R))
− λ2(τ(R))

λ4(t)

]
dR . (2.40)

If F (t) is given, the nonlinear integral equation (2.40) needs to be numerically solved to find λ(t). In order
to numerically solve this integral equation using Mathematica we first transform it to a system of first-order
ODEs. Let us define

h1(t) =

∫ s(t)

R0

Rλ−4(τ(R)) dR , h2(t) =

∫ s(t)

R0

Rλ2(τ(R)) dR . (2.41)
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Figure 5: λ2(t) distribution for eight different loadings during accretion.

Note that h1(0) = h2(0) = 0. Now the nonlinear integral equation (2.40) can be rewritten as





h′1(t) = u0 s(t)λ
−4(t) ,

h′2(t) = u0 s(t)λ
2(t) ,

λ2(t)− λ−4(t) +
2

R2
0

[
h1(t)λ2(t)− h2(t)λ−4(t)

]
= f(t) ,

h1(0) = h2(0) = 0 , λ(0) = 1 .

(2.42)

Example 2.5. We consider the following applied forces:

F±1 (t) = ±µ0 πR
2
0 sin

(2πt

ta

)
,

F±2 (t) = ±µ0 πR
2
0 sin

(4πt

ta

)
,

F±3 (t) = ±µ0 πR
2
0 sin2

(2πt

ta

)
,

F±4 (t) = ±µ0 πR
2
0 sin2

(4πt

ta

)
.

(2.43)

We assume that Ra = 2R0, u0 = 1, and ta = 1. The corresponding λ2(t) are shown in Fig.5.
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2.1 Residual stresses

We assume that the accretion process starts at time t = 0 and ends at time t = ta. For any t > ta, if the
body is unloaded, i.e., λ(t) = 1 (or equivalently F (t) = 0), the accreted bar may be residually stressed.
Residual stresses depend on the growth velocity and the history of deformation in the interval [0, ta]. The
material metric of the accreted bar has the following representation

0 ≤ R ≤ R0 : G =




1 0 0
0 R2 0
0 0 1


 ,

R0 ≤ R ≤ Ra : G =




1 0 0
0 r̄2(R) 0
0 0 λ4(τ(R))


 ,

(2.44)

where Ra = s(ta). Let us denote the mapping from the material manifold to the residually-stressed config-
uration by ϕ̃ : B → S, where in cylindrical coordinates: ϕ̃(R,Θ, Z) = (r̃, θ̃, z̃) = (r̃(R),Θ, λ̃2Z), where λ̃2 is
the residual stretch (see Figs. 1 and 2). Incompressibility implies that

r̃(R) =
R

λ̃
, 0 ≤ R ≤ R0 ,

r̃2(R) =
R2

0

λ̃2
+

2

λ̃2

∫ R

R0

r̄(ξ)λ2(τ(ξ)) dξ , R0 ≤ R ≤ Ra .
(2.45)

For the deformation mapping ϕ̃ the principal invariants read

I1(R) =
2 + λ̃6

λ̃2
, I2(R) =

1 + 2λ̃6

λ̃4
, R1 ≤ R ≤ R0,

I1(R) = 2
λ2(τ)

λ2(t)
+
λ4(t)

λ4(τ)
, I2(R) = 2

λ̃2

λ2(τ(R))
+
λ4(τ(R))

λ̃4
, R0 ≤ R ≤ Ra.

(2.46)

The radial and circumferential stress components are identically zero everywhere and hence the boundary
condition σ̃rr(Ra) = 0 is trivially satisfied. The axial stress component has the following distribution

σ̃zz(R, t) =





λ̃6−1
λ̃4

[
α(R) λ̃2 + β(R)

]
, 0 ≤ R ≤ R0 ,

λ̃6−λ6(τ(R))

λ4(τ(R)) λ̃4

[
α(R) λ̃2 + β(R)λ2(τ(R))

]
, R0 ≤ R ≤ Ra .

(2.47)

Similarly, the axial component of the first Piola-Kirchhoff stress has the distribution

P̃ zZ(R, t) =





λ̃6−1
λ̃6

[
α(R) λ̃2 + β(R)

]
, 0 ≤ R ≤ R0 ,

λ̃6−λ6(τ(R))

λ4(τ(R)) λ̃6

[
α(R) λ̃2 + β(R)λ2(τ(R))

]
, R0 ≤ R ≤ s(t) .

(2.48)

The unknown residual stretch is calculated using the condition F = 0.

Example 2.6. For a homogeneous neo-Hookean bar α(R) = µ0 > 0 and β(R) = 0. Thus

σ̃zz(R, t) =





µ0
λ̃6−1
λ̃2

, 0 ≤ R ≤ R0 ,

µ0

[
λ̃4

λ4(τ(R)) −
λ2(τ(R))

λ̃2

]
, R0 ≤ R ≤ Ra ,

(2.49)
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m = 1
3 m = 1

2 m = 1 m = 2 m = 3

λ(t) = 1 +
(
t
ta

)m
1.20089 1.19249 1.17085 1.13907 1.11709

λ(t) = 1− 1
2

(
t
ta

)m
0.593063 0.623043 0.686102 0.758822 0.802297

Table 1: Residual stretch for different displacement-control loadings. In the first row stretch varies from 1.0 to 2.0 in the time
interval [0, ta]. In the second row it varies from 1.0 to 0.5 in the time interval [0, ta].
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Figure 6: Axial residual stress distribution for different displacement-control loadings during the accretion process.

and P̃ zZ(R, t) = σ̃zz(R,t)

λ̃2
. The condition F = 0 is simplified to read

λ̃6 +
2

R2
0 λ̃

4

∫ Ra

R0

R

[
λ̃2

λ4(τ(R))
− λ2(τ(R))

λ̃4

]
dR = 1 . (2.50)

Let us assume that Ra = 2R0. Thus tau0 = R0. We also assume that u0 = 1.0, and consider two
displacement-control loadings during the accretion process: i) λ(t) = 1 +

(
t
ta

)m
, m > 0. In this loading

the stretch monotonically increases from 1.0 to 2.0 in the interval [0, ta]. ii) λ(t) = 1 − 1
2

(
t
ta

)m
, m > 0. In

this loading the stretch monotonically decreases from 1.0 to 0.5 in the interval [0, ta]. In Table 1 we show
the residual stretches for five different values of m for the two loadings. In Fig.6, the residual axial stress
distribution for four different displacement-control loadings during the accretion process are shown.
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2.2 Linearized accretion mechanics

Linearized kinematics. Next we linearize the governing equations of the nonlinear accretion theory
and find those of the linearized accretion mechanics. We assume that linearization is with respect to an
undeformed stress-free configuration of the bar. More precisely, let us consider a reference motion ϕ̊t, and a
one-parameter family of motions ϕt,ε such that ϕt,0 = ϕ̊t [Marsden and Hughes, 1983, Yavari and Ozakin,
2008, Sozio and Yavari, 2017]. For the finite extension of a bar we consider the one-parameter family of
motions ϕε(R,Θ, Z, t) = (rε(R, t),Θ, λ

2
ε(t)Z). We will linearize the governing equations with respect to the

reference motion ϕ̊t(R,Θ, Z, t) = (R,Θ, Z), which corresponds to the motion of a cylindrical bar that is
under no external forces while stress-free cylindrical layers are added to its boundary in the time interval
[0, ta]. The variation field is defined as

δϕt(R,Θ, Z) =
d

dε

∣∣∣
ε=0

ϕε(R,Θ, Z, t) = (δr(R, t), 0, 2δλ(t)Z) . (2.51)

From, δr(R, t) = d
dε

∣∣∣
ε=0

rε(R, t), one concludes that δr̄(R) = δr
(
R, R−R0

u0

)
. The displacement field is defined

as
U(R,Θ, Z, t) = δϕt(R,Θ, Z)− δϕτ(R)(R,Θ, Z) . (2.52)

Assuming that ψ(0) = 0 and λ(0) = 1, for the initial body (0 ≤ R ≤ R0), ϕε(R,Θ, Z, 0) = (rε(R, 0),Θ, Z) =
(R,Θ, Z), and hence δϕ0(R,Θ, Z) = (0, 0, 0). Thus, for 0 ≤ R ≤ R0, U(R,Θ, Z, t) = δϕt(R,Θ, Z). However,
for the new material points (R0 ≤ R ≤ s(t) = R0 + u0t) the displacement field is defined with respect to
their positions at the time of attachment.

For 0 ≤ R ≤ R0, the incompressibility condition for the perturbed motions along with rε(0, t) = 0,
implies that

rε(R, t) =
R

λε(t)
, 0 ≤ R ≤ R0 . (2.53)

Taking derivative with respect to ε on both sides, evaluating at ε = 0, and noting that λε=0(t) = 1, one
obtains

δr(R, t) = −Rδλ(t) . (2.54)

Knowing that λε(0) = 1, δλ(0) = 0, and hence δr(R, 0) = 0.
For R0 ≤ R ≤ s(t):

rε(R, t) =
1

λε(t)

[
R0 +

∫ R

R0

λε(τ(ξ)) dξ

]
. (2.55)

Thus

δr(R, t) = −Rδλ(t) +

∫ R

R0

δλ(τ(ξ)) dξ . (2.56)

Linearized stresses. The only non-zero component of the Cauchy stress for the perturbed motion of a
homogeneous bar made of a neo-Hookean solid is

σzzε (R, t) =





µ0
λ6
ε(t)−1
λ2
ε(t)

, 0 ≤ R ≤ R0 ,

µ0

[
λ4
ε(t)

λ4
ε(τ(R)) −

λ2
ε(τ(R))
λ2
ε(t)

]
, R0 ≤ R ≤ s(t) .

(2.57)

Therefore

δσzz(R, t) =





6µ0 δλ(t) , 0 ≤ R ≤ R0 ,

6µ0 [δλ(t)− δλ(τ(R))] , R0 ≤ R ≤ s(t) .
(2.58)
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Figure 7: Comparison of the nonlinear and linearized axial stretches for the applied load F (t) = kµ0πR2
0 sin2

(
2πt
ta

)
for three

different values of k. The solid and dashed curves are the nonlinear and linear solutions, respectively.

For the perturbed motion the axial force is calculated as

Fε(t) = πµ0R
2
0

λ6
ε(t)− 1

λ4
ε(t)

+ 2πµ0

∫ s(t)

R0

R

[
λ2
ε(t)

λ4
ε(τ(R))

− λ2
ε(τ(R))

λ4
ε(t)

]
dR . (2.59)

Thus

δF (t) = 6πµ0R
2
0 δλ(t) + 12πµ0

∫ s(t)

R0

R [δλ(t)− δλ(τ(R))] dR

= 6πµ0s
2(t) δλ(t)− 12πµ0

∫ s(t)

R0

Rδλ(τ(R)) dR .

(2.60)

Taking time derivative of both sides, one obtains

˙
δF (t)

6πµ0
= 2s(t)ṡ(t) δλ(t) + s2(t)

˙
δλ(t)− 2ṡ(t)s(t) δλ(τ(s(t))) = s2(t)

˙
δλ(t) . (2.61)

This implies that

˙
δλ(t) =

˙
δF (t)

6πµ0 s2(t)
. (2.62)

Therefore

δλ(t) =
1

6πµ0

∫ t

0

˙
δF (η)

s2(η)
dη . (2.63)

In particular, one obtains

δλ(τ(R)) =
1

6πµ0

∫ τ(R)

0

˙
δF (η)

s2(η)
dη . (2.64)

Example 2.7. Let us consider the applied force F (t) = kµ0πR
2
0 sin2

(
2πt
ta

)
in both the nonlinear and

linearized solutions. We assume that Ra = 2R0, u0 = 1, and ta = 1. In Fig.7 we compare the nonlinear
axial stretch λ2(t) and its linearization 1 + 2δλ(t) for three values of k = 0.25, 0.5, and 1.0. It is observed
that for small applied loads (here k = 0.25) the two solutions agree. However, for large loads the linearized
theory underestimates the axial stretch.
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Linearized residual stretch and residual stresses. The zero applied force for the perturbed motion
using (2.59) is written as

R2
0

λ̃6
ε − 1

λ̃4
ε

+ 2

∫ Ra

R0

R

[
λ̃2
ε

λ4
ε(τ(R))

− λ2
ε(τ(R))

λ̃4
ε

]
dR = 0 . (2.65)

Taking derivative with respect to ε and evaluating at ε = 0, one obtains

δλ̃ =
2

R2
a

∫ Ra

R0

Rδλ(τ(R)) dR =
1

3πµ0R2
a

∫ Ra

R0

R

∫ τ(R)

0

˙
δF (η)

s2(η)
dη dR . (2.66)

The linearized residual axial stress has the following distribution

δσ̃zz(R) =





6µ0 δλ̃ , 0 ≤ R ≤ R0 ,

6µ0

[
δλ̃− δλ(τ(R))

]
, R0 ≤ R ≤ Ra .

(2.67)

3 Conclusions

In this paper we formulated the initial-boundary-value problem of accretion of a solid circular cylinder under
finite time-dependent extensions. More specifically, while the bar is under a time-dependent axial stretch
stress-free cylindrical layers are continuously added to it. Starting from a stress-free initial bar, the accreted
bar after the removal of external forces is not stress-free, in general. The state of residual stresses depends
on the history of the deformation during the accretion process. We modeled the natural configuration of the
accreting cylinder by a Riemannian manifold whose metric explicitly depends on the deformation history
during the accretion process. Assuming that the bar is made of an arbitrary incompressible isotropic solid we
showed that the radial motion is completely determined by the axial stretch function. Consequently, residual
stresses are determined as soon as one computes the residual stretch. We considered both displacement-
control and force-control loadings during accretion. In the case of force-control loading the time-dependent
axial stretch was calculated numerically in a few examples. We also numerically showed that residual stretch
explicitly depends on the history of deformation during the accretion process. Finally, we derived analytic
expressions for stresses, residual stretch, and residual stresses in the accreting bar in the setting of linear
accretion mechanics. We compared the nonlinear and linear solutions for stretch during accretion under
a few force-control loading examples. As expected, for small applied forces the linearized solution is a
good approximation. For large applied forces, however, the linearized solution considerably underestimates
the axial stretch. Extension of this work to combined extension and finite torsion of an accreting circular
cylindrical bar will be the subject of a future communication. Other extensions of this work will be a
thermoelastic analysis of accretion under finite time-dependent extensions, and dynamic analysis of accreted
bars under pulse or impact loads.
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