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A B S T R A C T   

Replacing Ordinary Portland Cement (OPC) with industrial waste like Ground Granulated Blast Furnace Slag 
(GGBFS) has been proven to have remarkable benefits regarding the mechanical properties of concrete and the 
environment. The main objectives of this research, as a result, are to (a) develop a generalized, accurate, and 
optimized Machine Learning (ML)-based model for predicting the compressive strength of concrete incorporating 
GGBFS and (b) propose equations for easier calculation of the compressive strength of concrete containing 
GGBFS. To this aim, various ML-based methods, namely Decision Tree (DT), Random Forest (RF), Support Vector 
Machine (SVM), K-nearest Neighbors (KNN), and Artificial Neural Network (ANN) were considered for predicting 
the compressive strength of concrete containing GGBFS. An extensive dataset including 625 results of experi-
mental studies was collected from international peer-reviewed publications. The dataset was divided into two 
sub-datasets: the training dataset (85%), used to train the models on the relationship between input and output 
parameters, and the testing dataset (15%), used to evaluate the accuracy of the models. The most influential 
parameters, including ordinary Portland cement, GGBFS grade, GGBFS to cement ratio, water, coarse aggregate, 
fine aggregate, and testing age, were considered as the input variables for proposing prediction models. The 
predicted and actual values were compared in each model. The accuracy of the models was also compared using 
common performance metrics (RMSE, MSE, MAE, MAPE, R, and R2-score) and Taylor diagram. Eventually, a 
sensitivity analysis was conducted at the end of the study to explore the influence of GGBFS on cement ratio and 
GGBFS grade on concrete compressive strength, and consequently, equations were suggested based on the 
results.   

1. Introduction 

Concrete is one of the most commonly used construction materials 
used in different types of structures because of its undeniable advantages 
(Boğa et al., 2013; Kioumarsi et al., 2020). In recent decades, several 
studies have been conducted to develop sustainable concrete by 
partially replacing Ordinary Portland Cement (OPC) with alternative 
materials (Dabiri et al., 2018; Kandiri et al., 2021). One of the driving 
motivations for reducing OPC usage in the construction industry is 
reducing CO2 emissions associated with its manufacturing (Farahzadi 
et al., 2022a; Farahzadi et al., 2022b). According to (Benhelal et al., 
2013), the manufacturing of OPC accounts for around 7% of worldwide 

CO2 emissions. Supplementary Cementitious Materials (SCMs) such as 
ground granulated blast-furnace slag (GGBS), fly ash (FA) (Chand, 2021; 
Chand et al., 2021), silica fumes (SF), and rice husk ash (RHA) (Amin 
et al., 2021) are frequently utilized as partial substitutes for cement in 
concrete because of their capacity to improve the mechanical and 
rheological properties of concrete, reduce CO2 emission, and mitigate 
adverse environmental consequences. Among various SCMs, Ground 
Granulated Blast Furnace Slag (GGBFS) is claimed to be an appropriate 
replacement for cement in terms of ecological, environmental, and 
mechanical properties of concrete (Bilim et al., 2009; Chidiac and 
Panesar, 2008). Blast Furnace Slag (BFS) could be defined as a mixture 
of poorly crystalline phases with composites similar to gehlenite (2CaO. 
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Al2O3.SiO2) and akermanite (2Cao.MgO.2SiO2), as well as depoly-
merized calcium silicate glasses (Duxson, 2009). BFS is a by-product of 
blast furnaces’ iron production, which is a mixture of iron-ore, coke, and 
limestone (Cwirzen, 2020; Amin et al., 2017). BFS is rapidly cooled by 
powerful water jets or in a water pound to be formed into a fine, gran-
ular, almost entirely non-crystalline, glassy form known as granulated 
slag, which exhibits appropriate cementitious properties when finely 
ground and combined with Portland cement (Oner and Akyuz, 2007; 
Wang et al., 2020). 

1.1. Brief literature review on the application of GGBFS in concrete 

Several studies proved that the application of GGFBS as a supple-
mentary cementitious material in concrete has many advantages: (1) 
improving the long-term strength of concrete, (2) improving durability, 
(3) reducing porosity, (4) improving the interface with aggregate, (4) 
energy and environmental benefits due to reduction in cement supplying 
and therefore, decreasing CO2 emission, (5) better engineering and 
performance properties of concrete because of using mineral admixtures 
with appropriate size distribution characteristics and pozzolanic and 
cementitious reactivity (Chidiac and Panesar, 2008; Lee et al., 2006), (6) 
reducing concrete permeability and preventing reinforcement corrosion 
(Boğa et al., 2013), and eventually (7) being more economical in terms 
of construction cost since cement is replaced by GGBFS (Wang et al., 
2020). The only shortcoming of using GGBFS is lower resistance to de-
icer salt scaling when tested at 25 days. This might be because of slow 
hydration and insufficient curing regime for concrete containing GGBFS 
(Chidiac and Panesar, 2008). Since this study aims to compare different 
machine learning-based methods for predicting the compressive 
strength of concrete with GGBFS, the deeper details of the effect of 
utilizing GGBFS on concrete performance are not discussed for the sake 
of shortness, and the interested readers are referred to the 
above-mentioned references and similar studies (Cheng et al., 2005; 
Bhojaraju et al., 2021). 

1.2. ML-based methods proposed for GGBFS concrete 

Over the past decades, considerable studies have developed around 
the application of artificial intelligence (AI) and machine learning (ML) 
methods in different fields of science as well as civil engineering. Among 
various aspects of engineering which might be considered for the 
application of ML (e.g., structural health monitoring, failure modes, the 

behavior of elements, etc.), predicting mechanical properties of mate-
rials employing ML approaches is more popular than other issues 
(Moradi et al., 2020; Bypour et al., 2021). It could be due to its benefits, 
such as (i) high accuracy in predicting models and (ii) being quick, 
simple and inexpensive in comparison to complicated, time-consuming 
and costly experimental studies (Ahmadi et al., 2020; Dabiri et al., 
2022a). 

To the best of the authors’ knowledge, a limited number of studies 
have been conducted to develop an ML-based model for predicting the 
mechanical properties of concrete containing GGBFS. Table 1 provides a 
literature review on the application of ML-based methods for deter-
mining the properties of GGBFS concrete. The studies mentioned in 
Table 1 utilized different databases for developing ANN and ML-based 
models, and consequently, the characteristics of the models are not 
the same. 

2. Research significance and objective 

In this study, an attempt has been made to predict the compressive 
strength of concrete containing GGBFS using different ML-based ap-
proaches, namely Decision Tree (DT), Random Forest (RF), Support 
Vector Machine (SVM), K-nearest Neighbors (KNN), and Artificial 
Neural Network (ANN). The gap in the previous studies and the signif-
icance of the current study could be listed as below:  

(a) The most notable significance of the present research is the 
sensitivity analysis performed for better understanding the effect 
of GGBFS to cement ratio and GGBFS grade on concrete 
compressive strength. In addition, the results of the parametric 
study were implemented to obtain equations that could be used 
for calculating the compressive strength of concrete containing 
GGBFS with different grades at different testing ages.  

(b) As can also be figured out from Table 1, the previous studies have 
focused on the ANN technique. Other ML-based methods have 
been either less concerned (e.g., SVM) or not used so far (e.g., DT, 
KNN) for developing prediction models determining the 
compressive strength of GGBFS concrete. As a result, in addition 
to ANN and RF, other methods, including SVM, DT, and KNN, are 
considered for predicting the compressive strength of concrete 
incorporating GGBFS for the first time in this study.  

(c) Most of the previously proposed prediction models are based on 
databases with limited samples. This might affect the models’ 

Table 1 
A review on the application of ML-based methods for predicting properties of concrete incorporating GGBFS.  

Reference Aim of study Number of 
samples 

ML-based models Investigated parameters 

Boga et al. (Boğa et al., 
2013) 

Analyzing properties of concrete incorporating 
GGBFS and calcium nitrite-based corrosion 
inhibitor (CNI) 

162 ANN and ANFIS compressive strength, splitting tensile 
strength, chloride ion permeability, 
durability 

Shahmansouri et al. ( 
Shahmansouri et al., 
2020) 

Predicting the compressive strength of geopolymer 
concrete based on GGBS 

351 Gene Expression Programming 
(GEP) 

compressive strength 

Saridemir et al. (Sarıdemir 
et al., 2009) 

Predicting long-term effects of GGBFS on 
compressive strength of concrete under wet curing 
conditions 

284 ANN and Fuzzy Logic compressive strength 

Bilim et al. (Bilim et al., 
2009) 

Predicting the compressive strength of GGBFS 
concrete 

225 ANN compressive strength 

Kandiri et al. (Kandiri et al., 
2020) 

Estimating the compressive strength of concretes 
containing GGBFS 

624 ANN with Multi-Objective Slap 
Swarm Algorithm (MOSSA), M5P 

compressive strength 

Mohana (Mohana, 2020) Predicting compressive strength of GGBFS concrete 268 Random Forest and SVM compressive strength 
Mai et al. (Mai et al., 

2021a) 
Predict compressive strength of concrete 
containing BFS and fly ash (FA) 

1274 ANN compressive strength 

Mai et al. (Mai et al., 
2021b) 

Determining compressive strength of concrete 
containing GGBFS 

453 Random Forest compressive strength 

Ozcan et al. (Ozcan et al., 
2017) 

Assessing the effect of BFS and waste tire rubber 
powder (WTRP) on the compressive strength of 
cement mortars 

288 Random Forest, Ada Boost, SVM 
and Naïve Bayes Classifier 

compressive strength  
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accuracy and reliability when implemented for a new dataset 
(Boğa et al., 2013; Mai et al., 2021a). The present study uses an 
extensive database, including 625 samples, for training and 
testing the proposed models. Furthermore, the concrete 
compressive strength of the samples considered in the present 
study is in the range of 3.40–80.32 MPa. Therefore, the proposed 
models, which cover this broad range of compressive strength, 
could be ideally used for numerous concrete mixtures investi-
gated by researchers in future studies.  

(d) The accuracy of an ML-based prediction model undoubtedly has a 
pivotal role in its reliability. As a result, a comparative study on 
the performance of different ML-based methods is needed. In this 
study, the methods mentioned above are compared and discussed 
extensively.  

(e) More importantly, a high-accurate prediction model could help 
researchers evaluate the effects of GGBFS on the compressive 
strength of concrete in simpler, quicker, and more economical 
method than time-consuming and pricy experimental studies. 

This research analyzes the compressive strength of concrete con-
taining GGBFS using various machine learning-based models. The goal is 
to optimize the prediction of compressive strength by comparing the 
results of different models using standard performance metrics and 
Taylor diagrams. The study utilizes a comprehensive database to train 
and evaluate the models. The most accurate model will be identified, 
and its equation will be presented for practical use in determining the 
compressive strength of concrete with GGBFS. The study flowchart is 
depicted in Fig. 1, clearly visualizing the research process. Overall, this 
research offers a comprehensive analysis of the compressive strength of 
concrete incorporating GGBFS, utilizing cutting-edge machine learning 
techniques to provide accurate predictions. 

3. Database collection 

Totally 625 test results are gathered from 625 experimental tests 
conducted on the compressive strength of concrete containing GGBFS 
(Boğa et al., 2013; Bilim et al., 2009; Chidiac and Panesar, 2008; Oner 
and Akyuz, 2007; Lee et al., 2006; Li and Zhao, 2003; Sengul and Tas-
demir, 2009; Becknell and Hale, 2005; Arivalagan, 2014; Deboucha 

et al., 2015; LaBarca et al., 2007; Cramer and Sippel, 2005; Samad et al., 
2017; Anand et al., 2017; El-Hassan and Kianmehr, 2018; Gowri et al., 
2016; Sridevi et al., 2016; Dabhekar et al., 2017; Nagendra et al., 2016; 
Kumar et al., 2017; abhekar et al., 2017). It is worth explaining that the 
concrete compressive strength (CCS) in the collected database is the test 
results on either cylindrical or cubic samples. This research considers the 
cylinder (150 × 300 mm) compressive strength. The cubic compressive 
strength is converted to the equivalent cylindrical strength (CCScylindrical 
= 0.80 × CCScubic). The variable parameters considered in all the 
research studies, as mentioned above, are ordinary Portland cement 
(OPC, kg/m3), GGBFS to cement ratio (G/C), GGBFS grade, water (W, 
kg/m3), coarse aggregate (CA, kg/m3), fine aggregate (FA, kg/m3), 
testing age (days). Since test parameters have a notable effect on the 
concrete compressive strength (CCS, MPa), they are all considered as 
inputs for the prediction models as well, and the only output is concrete 
compressive strength. Table 2 provides the statistical properties of the 
inputs and output. 

According to the data in Table 2, the concrete compressive strength 
of all the samples is 3.40–80.32 MPa, which covers quite an extensive 
range. It simply means that the proposed models could be used for 
concrete mixtures with compressive strength in the aforementioned 
range. The distribution of the output and input parameters is also 
illustrated graphically in Fig. 2. It should be explained that the vertical 
axe in the diagrams represents the number of collected data corre-
sponding to each parameter’s value. In contrast, the horizontal axe re-
fers to each parameter’s value considered in this study. Otherwise 
mentioned, Fig. 2 depicts the amount of data collected for each value of 
the considered input and output variables. As an example, the last dia-
gram demonstrates that a considerable portion of the collected concrete 
samples has a compressive strength in the range of 20–40 MPa. 

Considering the variables with a high effect on the target output is 
critical for developing an accurate model. In order to figure out which 
parameters have the highest and lowest effect on the output, the cor-
relation between parameters should be determined. Among various 
correlations introduced so far (e.g., Intra-class, Rank), the Pearson 
method is more common among researchers (Nettleton, 2014; Williams 
et al., 2020). Pearson correlation coefficient (PCC) is defined as the ratio 
of covariance of two parameters, cov (X, Y), to the multiplication of their 
standard deviation, σxσy, as given in Eq. (1): 

Fig. 1. Research flowchart.  
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ρX,Y =
cov(X,Y)
σXσY

=

∑
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(yi − y)2

√ (1)  

where x and y are the mean of X and Y datasets, respectively and ρX,Y is 
Pearson correlation coefficient which is in the range of (− 1,1); ρX,Y = 1 
stands for their high correlation while ρX,Y = 0 reflects the linear 

independence of X and Y. It should be explained that since Pearson 
correlation shows a linear relationship, ρX,Y = 0 does not mean that the 
parameters do not correlate. Still, they might have a nonlinear corre-
lation (Kotu and Deshpande, 2018). It is worth stating that a negative 
correlation means an inverse relationship between two parameters 
(Berman, 2016). Table 3 presents the Pearson correlation coefficient 
matrix of the inputs and output. According to Table 3, coarse aggregate, 

Table 2 
Statistical properties of the input and output parameters.   

Minimum Maximum Mean Median Variance STD 

OPC (kg/m3) 70.00 450.00 241.81 235.50 4863.17 69.74 
GGBFS/Cement 0.00 4.00 0.62 0.42 0.51 0.72 
GGBFS grade 80.00 120.00 101.03 100.00 163.31 12.78 
W (kg/m3) 83.70 295.00 186.07 150.70 2032.40 45.08 
CA (kg/m3) 723.00 1166.00 1037.71 1102.30 10651.59 103.21 
FA (kg/m3) 477.00 1328.00 743.77 733.90 23564.12 153.51 
Age (days) 1.00 365.00 86.46 28.00 14998.94 122.47 
CCS (MPa) 3.40 80.32 29.15 27.96 136.32 11.68  

Fig. 2. Graphical illustration of the output and input parameters.  

Table 3 
Pearson correlation coefficients of the parameters considered in the models.   

OPC (kg/m3) G/C GGBFS grade W (kg/m3) CA (kg/m3) FA (kg/m3) Age (days) CCS (MPa) 

OPC (kg/m3) 1        
G/C − 0.5546 1       
GGBFS grade 0.0503 − 0.2955 1      
W (kg/m3) 0.0002 0.2793 − 0.2039 1     
CA (kg/m3) − 0.0888 − 0.3877 0.525 − 0.4268 1    
FA (kg/m3) 0.0279 − 0.1745 − 0.3518 − 0.6036 − 0.2302 1   
Age (days) − 0.0242 0.0031 0.0312 0.1669 0.0432 − 0.1916 1  
CCS (MPa) 0.2344 ¡0.0179 ¡0.1773 ¡0.0213 ¡0.4345 0.2275 0.3772 1  
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testing age, and OPC have the highest correlation with the compressive 
strength of concrete since they have a key effect on the concrete 
strength. On the other hand, G/C exhibits the lowest correlation among 
other input variables. 

4. Models 

In this section, the ML-based methods are defined, and then the 
characteristics of the proposed prediction models are explained. 

4.1. Decision Tree (DT) 

The Decision Tree method is a supervised ML technique that could be 
applied to classifications and regression problems. When the target 
output is a continuous value, regression DT is used, while classification 
DT is utilized for non-continuous values. This method is called Decision 
Tree because it uses a tree-shape graph for predicting the target output: 
the leaf nodes correspond to the class label and the branches are the 
features (or conditions) of the class labels (Liu et al., 2015; Bellini, 
2019). DT approach has many advantages, including (a) being simple to 
understand, interpret and visualize, (b) capable of being used for both 
classification and regression problems, (c) having the possibility of 
incorporating decision technique with a decision tree, and (d) having the 
asset of modeling a high degree of nonlinearity in the relationship be-
tween the target output and the input variables (Nisbet et al., 2009; 
Shobha and Rangaswamy, 2018). On the other hand, being prone to 
overfitting and having difficulty in classifying multiple output classes 
are reported as shortcomings of this approach (Nisbet et al., 2009). 

4.2. Random Forest (RF) 

One of the elaborations of DT is the Random Forest approach which 
Breiman introduced in 2001 by combining classification and regression 
trees and bagging (Fawagreh et al., 2014; Breiman, 2001). RF contains 
many decision trees, which trains several trees in parallel by boot-
strapping technique and considers the average of the predictions made 
by trees as the target output. Overall, RF is an ensemble classifier based 
on bootstrap, followed by aggregation (Dabiri et al., 2022b). The ben-
efits of RF are: (a) high accurate results in the case of using large data-
bases, (b) being simple and fast to implement, and (c) higher accuracy in 
comparison to other ML-based methods, as reported in many research 
studies (Nisbet et al., 2009). 

As could be figured out from the above-mentioned explanations, the 
number of trees is a critical factor in the accuracy of an RF model. Fig. 3 
demonstrates the number of trees against the R2-score for finding the 
number of trees, which leads to the highest accuracy. As observed, the 

highest R2 (0.97) belongs to the model with 66 trees; therefore, this 
model is considered for predicting the compressive strength of concrete 
with GGBFS. 

4.3. Support Vector Machine (SVM) 

Support Vector Machine, developed by Vapnik (Cortes and Vapnik, 
1995; Vapnik, 1999), is a supervised training algorithm based on sta-
tistical learning theory (Satapathy et al., 2019). The method creates 
hyperplanes to classify the features. From the viewpoint of mathematics, 
SVM could be expressed as: 

Minimizing 12‖w‖
2
+ C

∑N
i=1(ξi +ξi

∗) Subjected to the linear loss function 
defined in the limits as below: 
⎧
⎪⎪⎨

⎪⎪⎩

yi − wφ(xi) − b − ξi ≤ ε
− yi + wφ(xi) + b − ξ∗i ≤ ε
ξi, ξi∗ ≥ 0

(2.a)
(2.b)
(2.c)

where yi represents the estimated values, φ(x) is a nonlinear mapping 
function, w stands for the matrix showing the position of the hyper-plane 
for N data points and ξi and ξi

∗ is the difference between the actual 
values and uncertainty margins (see Fig. 4) (Mishra, 2021). The best 
plate is the one maximizing the margin between the two classes. 
Consequently, the support vectors are the closest data points to the 
hyperplane (Dukart, 2015). The explanations, as mentioned earlier, are 
displayed schematically in Fig. 4. 

4.4. K-nearest Neighbors (KNN) 

Fix and Hodges (1989) introduced the K-nearest Neighbors algo-
rithm and Joseph Hodges in 1951 and then was modified by Cover and 
Hart (1967). KNN is a supervised ML-based algorithm that can be used 
for classification and regression problems (Mishra, 2021). KNN is based 
on finding K closest samples in the attribute space (Shokrzade et al., 
2021). The distance and similarity functions are the main factors that 
considerably affect the predicted value’s accuracy (Bhattacharya et al., 
2017). The most known function for continuous variables used in KNN 
regression is Minkowski (Eq. (3)). It is worth noting that by considering 
p = 1 and p = 2, the Minkowski distance function will be known as 
Manhattan and Euclidean distance functions, respectively. 

Fig. 3. R2-score values were obtained for the different numbers of trees in the 
proposed RF model. Fig. 4. Schematically illustration of SVM.  
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(
∑N

i=1
|(Xi − Yi)|p

)1/p

(3)  

where Xi and Yi are two data points in an N-dimension space (in our 
model, N = 2). A simple application of KNN is to introduce the average 
of the K-nearest samples to the actual sample as the predicted target 
output. Therefore, the optimum number of K neighbors could signifi-
cantly lead to the most accurate results (Naik et al., 2021). 

The KNN model proposed in this study uses the Euclidean distance 
function (p = 2). Furthermore, according to the process of finding the 
most optimum K shown in Fig. 5, seven neighbors resulted in the highest 
accuracy (R2 = 0.85). 

4.5. Artificial Neural Network (ANN) 

The Artificial Neural Network is a nonlinear model similar to the 
complicated biological nervous system function of the human brain 
(Abiodun et al., 2018; Chaabene et al., 2020). This popular and accurate 
method has been increasingly applied in various fields, including social 
science, art, and engineering (Abiodun et al., 2018). The main compo-
nents of an ANN model are artificial neurons, connections, weights, and 
activation functions. The information propagation is performed through 
the connections that get the neurons’ data to deliver to the next neurons 
(Abiodun et al., 2018; Chaabene et al., 2020). Each connection is 
assigned a weight that reflects the significance of its input on the output. 
Each neuron combines the information received from other neurons 
with an activation function and then sends it to the following neuron. 
This iteration process is continued until an acceptable predicted output 
is reached (Golafshani et al., 2012). In general, an ANN model is formed 
by an input layer, hidden layer(s), and an output layer. The number of 
neurons in the input layer is the same as the number of variables 
considered inputs. The number of hidden layers, on the other hand, 
might vary for each model and affect the accuracy of the results 
noticeably. The activation function could be considered for hidden and 
output layers, while a bias value could be considered for input and 
hidden layers. In the framework of mathematics, the output could be 
formulated as Eq. (4) (Mishra, 2021): 

Oj = f
∑(

wijIi + b
)

(4)  

where Oj is the predicted target output, wij is the weight, Ii is the input 
variable, and b is bias. 

The optimized architecture of an ANN model could be developed by 
trial and error (Mishra, 2021). The final ANN model obtained for pre-
dicting the compressive strength of concrete incorporating GGBFS, 
contains ten inputs, two hidden layers with nineteen neurons in each 
layer. The Scaled Exponential Linear Units (SELU) activation function 

(Eq. (5)) (Klambauer et al., 2017) and 20 batch sizes were considered for 
the model. Bias value was also considered for all the hidden and input 
layers. Fig. 6 compares the number of neurons with the corresponding 
R2-score for the proposed model. The architecture of the final proposed 
ANN model is displayed in Fig. 7. 

f (x) = Selu(x) = λ

{
x x ≥ 0

α(ex − 1) x < 0

α ≈ 1.6733 λ ≈ 1.0507

(5)  

5. Results 

In this section, the predicted values obtained by each model are 
graphically compared with the actual values of both sub-databases 
(training and testing). Fig. 8 shows the correlation between the pre-
dicted and actual values, while Fig. 9 compares the predicted values 
with the corresponding actual value. 

The comparison made in Figs. 8 and 9 confirms the high ability of the 
proposed models to learn the relationship between the input parameters 
and the output. Based on the graphical comparison illustrated in Figs. 8 
and 9, it could be stated that the model DT possesses the highest accu-
racy while the model KNN shows the lowest accuracy. All the models, 
however, exhibited acceptable reliability. The quantitative comparison 
between the models is presented in the following section to reach a more 
proper conclusion. 

6. Accuracy evaluation 

The prediction models could be evaluated through different ap-
proaches. The present study assesses the models by (a) common per-
formance metrics and (b) Taylor diagram. 

6.1. Performance metrics 

The most common performance metrics which reflect the accuracy of 
a prediction model are R2, R, root mean square error (RMSE), mean 
square error (MSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE). The fundament of the above-mentioned pa-
rameters is based on the difference between the actual and the corre-
sponding predicted value. The obtained performance metrics for all the 
models are reported in Table 4. 

As can be observed in Table 4, the DT and RF models are the most 
accurate models with the highest R2 (0.94). Conversely, the model KNN 
possesses the lowest accuracy. It could also be claimed that all the 
models with an R2-score higher than 0.85 exhibited high reliability for 
predicting the compressive strength of concrete containing GGBFS. 

Fig. 5. Finding the optimum number of neighbors in KNN.  
Fig. 6. R2-score versus the number of neurons in hidden layers for the 
ANN model. 

M. Kioumarsi et al.                                                                                                                                                                                                                             



Cleaner Engineering and Technology 13 (2023) 100604

7

6.2. Taylor diagram 

Taylor diagram is one of the most useful approaches for evaluating 
the performance of prediction models. This diagram illustrates the most 
reliable and, thus, the most accurate model by comparing its distance to 
the reference point (actual values) (Band et al., 2021; Taylor, 2001). The 
position of a model is determined by three parameters: standard devi-
ation (vertical and horizontal axis), correlation coefficient (radial lines) 
and RSME (circular lines centered at the actual value point). The closest 
model to the reference point is considered the most accurate model 
(Band et al., 2021). 

The proposed prediction models are compared in the Taylor diagram 
shown in Fig. 10. The DT and RF models are the closest points, while the 
KNN model is the farthest to the reference point (blue star). Therefore, as 
reported previously in Table 4, the DT and RF models with the highest 
R2, lowest RMSE, and standard deviation are introduced as the most 
accurate ML-based methods for predicting the compressive strength of 
concrete incorporating GGBFS. 

7. Sensitivity analysis 

The sensitivity analysis aims at realizing the effect of GGBFS grade 
and value on the compressive strength of the concrete mixture. To this 
end, a test result is considered from an experimental study available in 
the literature (Bilim et al., 2009). Then, a database including 23 data 
was generated by altering the ratio of GGBFS to cement in the range of 
0–1 with the step of 0.2 for 3-day, 7-day and 28-day testing age (six 
datasets for each testing age as given in Table 5, rows 1–6, 7–12 and 
13–18, respectively). The compressive strength of the generated data-
base was predicted by the RF model, which showed a high-performance 

accuracy. 
The effect of GGBFS grade was also assessed by generating three 

datasets with different GGBFS grades (80–120 by the step of 20) and 
predicting their compressive strength using the previously developed RF 
model (rows 19–23 of Table 5). It is worth noting that other materials of 
the generated concrete mixtures were considered unchanged. Table 5 
presents the predicted values and their difference with the reference 
mixture. The variation of f’c due to G/C value and grade is graphically 
depicted in Fig. 11 and Fig. 12, respectively. It should be explained that 
for an easier understanding of the influence of G/C value and grade on 
concrete compressive strength, the vertical axe of Figs. 11 and 12 are 
normalized by being divided to f’c of normal concrete without GGBFS, 
and f’c of concrete containing GGBFS grade 80, respectively. This 
normalization could result in more generalized equations provided later 
in this section. 

Taking Table 5 and Fig. 11 into account, it could be figured out that 
by increasing GGBFS, generally, concrete compressive strength de-
creases. However, the reduction rate is not constant. In other words, by 
replacing cement with GGBFS up to almost 40%, f’c decreases slightly 
(up to 16.38%). For GGBFS to cement ratio = 0.60, f’c reduces consid-
erably (up to 43.12%), and eventually, it remains roughly unchanged for 
GGBFS to cement ratio higher than 0.80. Overall, it could be claimed 
that replacing cement with GGBFS, up to 40%, does not affect the 
compressive strength of concrete considerably and thus could be rec-
ommended regarding its benefits in terms of environment and con-
struction cost. The f’c variations observed in this section due to adding 
GGBFS in concrete align with the results of similar experimental studies 
(Boğa et al., 2013; Sengul and Tasdemir, 2009). Moreover, based on the 
parametric study results, prediction equations with high accuracy values 
(R2 ≥ 0.86) are obtained and suggested for calculating f’c of concrete 

Fig. 7. The architecture of the final ANN model.  
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incorporating GGBFS in different testing ages of 3 days, 7 days and 28 
days as given in Equations 6a-c, respectively: 

f ’
c,GGBFS =

[

− 0.465
(
G
C

)

+ 0.968
]

× f ’
c

(

R2 = 0.97
)

(6a)  

f ’
c,GGBFS =

[

− 0.532
(
G
C

)

+ 1.010
]

× f ’
c

(

R2 = 0.88
)

(6b)  

f ’
c,GGBFS =

[

− 0.320
(
G
C

)

+ 1.039
]

× f ’
c

(

R2 = 0.86
)

(6c)  

where f’c is the compressive strength of normal concrete with a specific 
mixture, f’c,GGBFS is the compressive strength of the concrete containing 
GGBFS and the same mixture as the normal concrete, and (G/C) is the 
ratio of GGBFS to cement. AS could be observed in Equations 6a-c, the 
compressive strength of concrete with GGBFS is a function of the cement 

Fig. 8. Correlation between the predicted and actual values for (a) DT, (b) RF, (c) SVM, (d) KNN and (e) ANN.  
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Fig. 9. Comparing the actual values with the predicted values for (a) DT, (b) RF, (c) SVM, (d) KNN, and (e) ANN.  
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replaced by GGBFS and the compressive strength of normal concrete. 
Otherwise noted, an equation independent of normal concrete 
compressive strength could not be given because the strength of GGBFS 
concrete is highly dependent on the concrete mixture (e.g., water, fine 
and coarse aggregate, etc.). For example, the 3-day compressive strength 
of concrete with a specific mixture in which GGBFS replaces cement by 
20% would be 0.875f′c, where f’c is the compressive strength of the 
concrete without GGBFS and the same mixture. 

Regarding GGBFS grade, the predicted values fluctuated for different 
grades considered in this study. Similar conclusions have also been made 
in previous research (Xu et al., 2014). Using the predicted values illus-
trated in Fig. 12, a prediction equation with R2 = 1.00 is suggested for 
obtaining f’c when GGBFS grade (GG) changes: 

f ’
c,GGBFSi =

[
1.156×10− 5GG2 − 0.0258GG+2.326

]
× f ’

c,GGBFS80

(
R2 = 1.00

)

(7)  

where f’c,GGBFSi is the compressive strength of concrete containing 
GGBFS grade i, GG is the GGBFS grade and f’c,GGBFS80 is the compressive 
strength of concrete incorporating GGBFS grade 80. By implementing 
Equations 6a-c into equation (7), the compressive strength of a concrete 
mixture with a specified f’c in which cement is replaced with GGBFS by 
G/C ratio and grade GG could be determined by equations 8a, b and c, 
respectively after 3, 7 and 28 days: 

f ’
c,GGBFSi,3− day =

[
1.156 × 10− 5GG2 − 0.0258GG+ 2.326

]

×

[

− 0.465
(
G
C

)

+ 0.986
]

× f ’
c

(8a)  

f ’
c,GGBFSi,7− day =

[
1.156 × 10− 5GG2 − 0.0258GG+ 2.326

]

×

[

− 0.532
(
G
C

)

+ 1.010
]

× f ’
c

(8b)  

f ’
c,GGBFSi,28− day =

[
1.156 × 10− 5GG2 − 0.0258GG+ 2.326

]

×

[

− 0.320
(
G
C

)

+ 1.039
]

× f ’
c

(8c)  

8. Conclusions 

The main objective of this study was to compare the accuracy of ML- 
based techniques for predicting the compressive strength of concrete 
containing GGBFS. To this end, a database including 625 results of 
experimental tests was collected from peer-reviewed international 

Table 4 
Performance metrics of the proposed prediction models.   

Equation DT RF SVM KNN ANN 

R2 
∑

i

(

ŷi −
1
n
∑n

1
yi

)2

∑

i

(

yi −
1
n
∑n

1
yi

)2 

0.94 0.94 0.87 0.85 0.92 

R 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

i

(

ŷi −
1
n
∑n

1
yi

)2

∑

i

(

yi −
1
n
∑n

1
yi

)2

√
√
√
√
√
√
√
√
√
√

0.97 0.97 0.93 0.92 0.96 

RMSE 
(MPa) 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

1
(ŷi − yi)

2
√ 3.18 3.32 4.5 4.08 3.10 

MSE 1
n
∑n

1
(ŷi − yi)

2 10.11 11.02 20.25 16.64 9.61 

MAE 
(MPa) 

1
n
∑n

1

⃒
⃒ŷi − yi

⃒
⃒ 2.36 2.60 3.52 3.17 2.36 

MAPE 1
n
∑n

1

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒

8.00 10.49 16.91 46.11 9.27  

Fig. 10. Comparison of the models by Taylor diagram.  

Table 5 
Variation of concrete compressive strength by changing GGBFS value and grade.   

OPC G/C GGBFS grade W CA FA Testing Age f’c (MPa) (f
′

c,i − f
′

c,1)/f
′

c,1 

1 450 0.00 80 225 961.70 668.30 3 20.64 0.00 
2 360 0.20 80 225 961.70 668.30 3 18.07 − 12.44 
3 270 0.40 80 225 961.70 668.30 3 17.26 − 16.38 
4 180 0.60 80 225 961.70 668.30 3 13.47 − 34.72 
5 90 0.80 80 225 961.70 668.30 3 12.79 − 38.05 
6 0 1.00 80 225 961.70 668.30 3 11.14 − 46.04 
7 450 0.00 80 225 961.70 668.30 7 29.28 0.00 
8 360 0.20 80 225 961.70 668.30 7 27.08 − 7.51 
9 270 0.40 80 225 961.70 668.30 7 25.53 − 12.82 
10 180 0.60 80 225 961.70 668.30 7 16.65 − 43.12 
11 90 0.80 80 225 961.70 668.30 7 15.90 − 45.70 
12 0 1.00 80 225 961.70 668.30 7 15.96 − 45.51 
13 450 0.00 80 225 961.70 668.30 28 38.96 0.00 
14 360 0.20 80 225 961.70 668.30 28 39.05 0.24 
15 270 0.40 80 225 961.70 668.30 28 39.30 0.89 
16 180 0.60 80 225 961.70 668.30 28 31.87 − 18.20 
17 90 0.80 80 225 961.70 668.30 28 28.88 − 25.88 
18 0 1.00 80 225 961.70 668.30 28 28.68 − 26.39 
19 450 0.25 80 225 961.70 668.30 28 40.32 0.00 
21 450 0.25 100 225 961.70 668.30 28 36.28 − 10.02 
23 450 0.25 120 225 961.70 668.30 28 35.97 − 10.79  
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publications. The collected database was divided into two sub- 
databases: training (85%) and testing (15%). The input variables were 
ordinary Portland cement (OPC, kg/m3), GGBFS to cement ratio (G/C), 
GGBFS grade, water (W, kg/m3), coarse aggregate (CA, kg/m3), fine 
aggregate (FA, kg/m3) and testing age (days), and the output was con-
crete compressive strength. Decision Tree, Random Forest, Support 
Vector Machine, K-nearest Neighbors and Artificial Neural Networks 
models were developed. The predicted values by each model were 
compared to the actual values using performance metrics and the Taylor 
diagram. A sensitivity analysis was also conducted to determine the 

effect of GGBFS value and grade on concrete compressive strength. 
Based on the results, it could be concluded that:  

• All the proposed models were able to learn the relationship between 
the input variables and the output properly. Furthermore, the high 
accuracy of the predicted values confirms the reliability of the ML- 
based prediction models. Otherwise noted, ML-based models could 
be considered as inexpensive and quick methods for determining the 
compressive strength of concrete incorporating GGBFS instead of 
time-consuming and costly experimental tests.  

• Among all the proposed models, the DT model exhibited the highest 
accuracy with R2 = 0.96 and the KNN model had the lowest accuracy 
with R2 = 0.82. However, the reliability of the all-proposed models 
could be considered acceptable with an R2-score higher than 0.82.  

• The performance of other ML-based methods (e.g., M5P trees) and 
regression-based techniques (e.g., linear, nonlinear, and ridge 
regression) is not considered in this study; therefore, they could be 
evaluated in further studies.  

• The parametric study results clarified that by increasing the GGBFS 
to cement value in a concrete mixture, generally, f’c reduces in any 
testing ages (3-, 7- and 28-day testing ages in this study). More 
specifically, replacing cement with GGBFS up to 100% decreased 
concrete compressive strength up to 45.51%. Furthermore, changing 
the GGBFS grade led to a fluctuation in f’c. However, the mixture 
containing GGBFS grade 80 exhibited the highest compressive 
strength. 
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