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Abstract

We propose a novel a posteriori error assessment for the single-reference coupled-

cluster (SRCC) method called the S-diagnostic. We provide a derivation of the S-

diagnostic that is rooted in the mathematical analysis of different SRCC variants. We

numerically scrutinized the S-diagnostic, testing its performance for (1) geometry op-

timizations, (2) electronic correlation simulations of systems with varying numerical

difficulty, and (3) the square-planar copper complexes [CuCl4]
2−, [Cu(NH3)4]

2+, and

[Cu(H2O)4]
2+. Throughout the numerical investigations, the S-diagnostic is compared

to other SRCC diagnostic procedures, that is, the T1, D1, and D2 diagnostics as well as

different indices of multi-determinantal and multi-reference character in coupled-cluster

theory. Our numerical investigations show that the S-diagnostic outperforms the T1,

D1, and D2 diagnostics and is comparable to the indices of multi-determinantal and

1

andre.laestadius@oslomet.no


multi-reference character in coupled-cluster theory in their individual fields of applica-

bility. The experiments investigating the performance of the S-diagnostic for geometry

optimizations using SRCC reveal that the S-diagnostic correlates well with different

error measures at a high level of statistical relevance. The experiments investigating

the performance of the S-diagnostic for electronic correlation simulations show that the

S-diagnostic correctly predicts strong multi-reference regimes. The S-diagnostic more-

over correctly detects the successful SRCC computations for [CuCl4]
2−, [Cu(NH3)4]

2+,

and [Cu(H2O)4]
2+, which have been known to be misdiagnosed by T1 and D1 diagnos-

tics in the past. This shows that the S-diagnostic is a promising candidate for an a

posteriori diagnostic for SRCC calculations.

1 Introduction

While the underlying mathematical theory of the quantum many-body problem is, on a fun-

damental level, well described, the governing equation, namely, the many-body Schrödinger

equation, remains numerically intractable for a large number of particles. In fact, the many-

body Schrödinger equation poses one of today’s hardest numerical challenges, mainly due

to the exponential growth in computational complexity with the number of electrons. Over

the past century, numerous numerical approximation techniques of various levels of cost

and accuracy have been developed in order to overcome this curse of dimensionality. Ar-

guably, the most successful approaches are based on coupled-cluster (CC) theory1, which

defines a cost-efficient hierarchy of increasingly accurate methods, including the so-called gold

standard of quantum chemistry—the coupled-cluster singles-and-doubles with perturbative

triples (CCSD(T))2 model.

Despite the great success of CC theory, its reliability is not yet fully quantifiable. More

precisely, aside from a few heuristically derived results, there exists no universally reliable

diagnostic that indicates if the computational result is to be trusted. This shortcoming

is most apparent in the regime of transition metal compounds and molecular bond break-
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ing/making processes, systems dominated by strong nondynamic electron-correlation effects,

where several methods based on CC theory tend to fail along with all other numerically

tractable approaches.

Therefore, a posteriori error diagnostics are urgently needed in the field. Until very

recently, the diagnostic approaches available were limited to the so-called T1 (also called

τ1)
3,4, D1 and D2 diagnostic5,6, and the max T2 amplitude diagnostic. Despite clear nu-

merical evidence that diagnostics based on the single excitation amplitudes, such as the T1

and D1 diagnostics, do not provide reliable indicators7, they are commonly used due to the

lack of alternatives. Recently, an alternative set of multi-reference indices was introduced

which provided a number of a posteriori diagnostic tools8 christened the “indices of multi-

determinantal and multi-reference character in coupled-cluster theory”. In the context of 8,

the term “multi-determinantal character” describes how many of the N -correlated electrons

are described within the virtual orbitals of a given reference determinant. The term “multi-

reference character” then further classifies that the multi-determinantal character originates

from strong electronic correlation effects. These tools are highly descriptive and able to

determine different molecular scenarios in which CC theory may fail. It is also worth men-

tioning the work by Duan et al. for a more comprehensive study of different diagnostics that

is not limited to wave function methods9.

We propose an alternative error diagnostic derived from the mathematical analysis of CC

theory that provides sufficient conditions for a locally unique and quasi-optimal solution to

the CC working equations. Central to our derivation is the strong monotonicity property,

as introduced by Schneider10 in the context of CC theory, which is eponymous for our

S-diagnostics. The strong monotonicity property guarantees that we have a locally unique

(approximate) solution to the CC equations and quadratic convergence of the energy towards

the full configuration interaction limit with respect to the CC truncation level1. The S-

diagnostic is constructed to indicate if the strong monotonicity property is fulfilled or not.

1Strictly speaking, this has so far only been proven for sufficiently large amplitude spaces, see Theorem 4.1
and 4.5 in 11.
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We emphasize that while strong monotonicity is sufficient for inferring the success of CC

simulations, it is not a necessary condition. In other words, it does not function as an

if and only if statement and therefore does not allow to infer failure of CC simulations.

The provided S-diagnostic should therefore be understood as an indication of successful CC

computations, as well as a potential indication of unsuccessful CC computations. However,

it is important to note that the latter cannot be inferred with certainty.

Along this line, it is important to note a distinction between the proposed S-diagnostics

and previously suggested indices that assess the multi-determinantal and multi-reference

nature in CC theory. Unlike these indices, the S-diagnostics do not directly indicate the

inherent multi-reference character of the exact wave function. Instead, the S-diagnostics

are specifically tailored to the Hartree-Fock reference and are particularly well-suited for

application in single-reference correlation methods. This characteristic sets them apart and

underscores their suitability in such scenarios.

Due to the intricate mathematical aspects involved, we present a comprehensive mathe-

matical motivation for the proposed S-diagnostic in Sections 2 and 3. These sections lay the

foundation for the final equations 39a, 39b, and 39c. To ensure computational feasibility,

we incorporated quantum chemical considerations during the mathematical derivation. One

consequence of this, however, is that it is not possible to derive a definitive cut-off value for

the S-diagnostic, which would indicate a threshold below which we could confidently rely on

the performed CC simulations. Therefore, we rely on numerical investigations to determine

this cut-off value. It is important to note that the presented cut-off value is preliminary,

and a more systematic investigation regarding this value will be the focus of future research.

While these mathematical considerations are of significant importance, they involve a certain

level of technical rigor. Therefore, readers who are less inclined towards mathematics may

choose to skip these sections and proceed directly to the numerical investigations presented

in Section 4.

Furthermore, we emphasize that the computational results presented in this study serve
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as an initial exploration of the proposed S-diagnostic. In order to achieve this objective,

we have deliberately concentrated our efforts on well-established model systems that ex-

hibit significant failure modes of CC theory, as well as failure modes observed in previously

suggested diagnostics. Nonetheless, it is essential to acknowledge that a more expansive

and comprehensive investigation is required to fully comprehend the diagnostic’s potential.

This entails a broader exploration encompassing a diverse range of chemical motifs, which

is currently the focus of ongoing research.

Compared to the recently suggested nine indices that describe the multi-determinantal

and multi-reference character in coupled-cluster theory8, the S-diagnostic is a diagnostic

technique that can be applied to multi-determinantal and multi-reference scenarios alike.

We complement our theoretical derivation of the S-diagnostic with numerical simulations

scrutinizing its validity for different geometry optimizations, and electronic correlation com-

putations for systems of varying numerical difficulty for single reference coupled-cluster meth-

ods.

The rest of the article is structured as follows. We begin with a brief review of CC theory,

followed by a short summary of the mathematical results derived in previous works which

lay the mathematical foundation for the proposed S-diagnostics. Then, we derive the main

result, i.e., the S-diagnostics which are subsequently numerically scrutinized.

2 Theory

2.1 Brief overview of coupled-cluster theory

In CC theory the wave function is parametrized by the exponential |ψ⟩ = eT̂ |ϕ0⟩. Here, |ϕ0⟩

is the reference determinant defining the occupied spin orbitals, and T̂ =
∑

µ tµX̂µ =
∑

k T̂k

is a cluster operator, where T̂k excites k = 1, . . . , N electrons—k is the excitation rank of a

given T̂k—from the occupied spin orbitals into the virtual spin-orbitals. All possible excited

determinants can be expressed as |µ⟩ = X̂µ|ϕ0⟩ for some multi-index µ labeling occupied and
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virtual spin-orbitals. The governing equations determining amplitudes (tµ), and therewith

also the CC energy ECC(t), are given by fCC(t) = 0, where


ECC(t) = ⟨ϕ0|e−T̂ ĤeT̂ |ϕ0⟩,

(fCC(t))µ = ⟨µ|e−T̂ ĤeT̂ |ϕ0⟩.
(1)

More compactly, Eq. (1) can be expressed using the CC Lagrangian12,13

L(t, z) = ECC(t) +
∑
µ

zµ(fCC(t))µ = ⟨ϕ0|(Î + Ẑ†)e−T̂ ĤeT̂ |ϕ0⟩, (2)

where (zµ) are the Lagrange multipliers which are the dual variables corresponding to (tµ). In

the extended CC theory14–16 (ECC), which will be used to introduce additional information

to our S-diagnostic, the Lagrangian is replaced with the more general energy expression

EECC(t, λ) = ⟨ϕ0|eΛ̂
†
e−T̂ ĤeT̂ |ϕ0⟩. (3)

Consequently, through the substitution eΛ̂ = Î + Ẑ, we have EECC(t, λ) = L(t, z). The

stationarity condition can then be formulated as FECC = 0, where

FECC = (∂ΛEECC, ∂TEECC) (4)

is the so-called flipped gradient17. The partial derivatives with respect to the amplitudes in

Eq. (4) are given by

∂λµEECC = ⟨µ|eΛ̂†
e−T̂ ĤeT̂ |ϕ0⟩,

∂tµEECC = ⟨ϕ0|eΛ̂
†
[e−T̂ ĤeT̂ , X̂µ]|ϕ0⟩.

(5)

Since the number of determinants, and therewith the size of the system’s governing

equations, suffer in general from the curse of dimensionality (i.e., it grows exponentially fast

with the number of electrons), restrictions are necessary to ensure the system’s numerical

tractability. In practice this is achieved by restricting excitations to excited determinants
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that correspond to a preselected index set—this is referred to as truncation. Such excitation

hierarchies are commonly denoted as singles (S), doubles (D), etc. We emphasize that

the CC working equations, as a system of polynomial equations, typically have a large

number of roots, and the corresponding landscape of said roots is highly non-trivial18–20.

Consequently, different limit processes have to be considered separately and carefully studied.

More precisely, the convergence of the CC roots with respect to the basis set discretization,

i.e., convergence towards the complete basis set limit, is a fundamentally different limit

process from the convergence with respect to the coupled-cluster truncations. Hence, it

is important to note that the convergence of the numerical root finding procedure for the

truncated standard (or extended) CC equations does not by itself imply convergence of the

roots to the corresponding exact roots. In other words, whether the discrete roots converge

to the exact roots cannot simply be assumed to be true in general.

Before proceeding further with the derivation of the S-diagnostic, we wish to provide

the reader with a more precise description of the underlying mathematical conventions in

coupled-cluster theory. We first emphasize the distinction between the cluster amplitudes

and the corresponding wave function. Although related, these objects live in different spaces

which we shall elaborate on subsequently. First, the wave function object |ψ⟩ = eT̂ |ϕ0⟩ lives

in the N -particle Hilbert space of square-integrable functions, i.e., L2 = {ψ :
∫
|ψ|2 < +∞},

with finite kinetic energy.2 We remind the reader of the notation for the L2-inner product

⟨ψ′|ψ⟩, and its induced norm ∥ψ∥2L2 = ⟨ψ|ψ⟩. Second, we consider operators that act on

said wave functions, e.g., the Hamiltonian Ĥ or excitation operators T̂ , Λ̂, etc. In this case,

we can introduce a norm expression for the operator inherited from the function space it is

2Mathematically, assuming finite kinetic energy is important for the well-posedness of the Schrödinger
equation. In a “weak” formulation this is given by (here for simplicity leaving out spin degrees of freedom)∫

R3N

|∇ψ(r1, . . . , rN )|2dr1 . . . drN < +∞.

In the mathematical literature this can be summarized by ψ ∈ H1 (Sobolev space)21. This extra constraint
of finite kinetic energy is moreover important for the “continuous” (i.e., infinite dimensional) formulation of
coupled-cluster22.
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defined on. For example, let Ô be an operator defined on L2 then we define the L2 operator

norm

∥Ô∥L2 = sup{∥Ôψ∥L2 : ∥ψ∥L2 = 1}. (6)

Note that this reduces to the conventional matrix norm in the finite-dimensional case. Third,

the CC amplitudes (tµ) live in the Hilbert space of finite square summable sequences denoted

the ℓ2-space. This space is equipped with the ℓ2-inner product21, i.e., let x = (xµ) and

y = (yµ) be two finite sequences, the ℓ2-inner product is defined as

⟨x, y⟩ℓ2 =
∑
µ

xµyµ,

which induces the norm ∥x∥2ℓ2 = ⟨x, x⟩ℓ2 . Henceforth, we shall denote the full amplitude

space by V , and the truncated amplitude space by V(d); we emphasize that we use “d”

in this section to distinguish objects that are subject to imposed truncations, i.e., coupled

cluster amplitude vector truncations such as CCSD. We moreover follow the mathematically

convenient convention that uses a generic constant C.

Having laid down the basic definitions, we now recall a result that gives insight into the

root convergence of CC theory which can be established using a fundamental existence result

of nonlinear analysis10,11,17,22,23. To state this result, we need two more definitions:

Local strong monotonicity. Let t, t′, t∗ be cluster amplitudes with T̂ , T̂ ′ and T̂∗ denoting

the corresponding cluster operators. Set

∆(t, t′) = ⟨fCC(t)− fCC(t
′), t− t′⟩ℓ2 , (7)

and furthermore ∆T̂ = T̂ − T̂ ′. Then the CC function fCC is said to be locally strongly

monotone at t∗ if for some r > 0, γ > 0 and all t, t′ within the distance r of t∗

∆(t, t′) ≥ γ∥t− t′∥2ℓ2 . (8)
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Local Lipschitz continuity. The function fCC is said to be locally Lipschitz continuous at

t∗ with Lipschitz constant L > 0 if

∥fCC(t)− fCC(t
′)∥ℓ2 ≤ L∥t− t′∥ℓ2 (9)

for any t, t′ in a ball around t∗. Note that in the finite-dimensional case, fCC is indeed locally

Lipschitz since it is continuously differentiable.

With these definitions at hand, we can recall the following result10,11:

Let fCC(t∗) = 0 and assume that fCC is locally strongly monotone with constant γ > 0 at

t∗. Furthermore, let V(d) ⊂ V be a truncated amplitude space with Pd being the orthogonal

projector onto V(d) and fd a discretization of fCC, i.e., fd = PdfCC. Then, the following

holds:

1. t∗ is locally unique, i.e., |ψ∗⟩ = eT∗|ϕ0⟩ is the only solution within a sufficiently small

ball.

2. There exists a sufficiently large d0, such that for any d > d0, there exists t
(d)
∗ ∈ V(d)

such that fd(t
(d)
∗ ) = 0. This root is unique in a ball centered at t∗ (for some radius r)

and we have quasi-optimality of the discrete solution t
(d)
∗ i.e.

∥t(d)∗ − t∗∥ℓ2 ≤
L

γ
dist(t∗,V(d)), (10)

where dist(v,V(d)) is the distance from v to V(d) measured using the norm of V, and L

is the Lipschitz constant of fCC at t∗.

3. For d > d0, the discrete equations fd(t
(d)
∗ ) = 0 have locally unique solutions, and in

addition to the amplitude error estimate (10), we have the quadratic energy error bound

|ECC(t
(d)
∗ )− E0| ≤ C1∥t∗ − t(d)∗ ∥2ℓ2 + C2∥t∗ − t(d)∗ ∥ℓ2∥z∗ − z(d)∗ ∥ℓ2 , (11)
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where E0 is the ground state energy and z∗ and z
(d)
∗ are the Lagrange multiplier of the

exact and truncated equations, respectively. The constants C1, C2 > 0 arise in general

from particular continuity considerations11,22 which shall not be further characterized

here.

We emphasize that the result in Ref. 22 is more elaborate since it is concerned with an

infinite dimensional amplitude space. Here, we implicitly assume a finite-dimensional am-

plitude space which allows us to present the result in the simpler but equivalent ℓ2-topology.

This result ensures that the CC method is convergent as the truncated cluster amplitude

space V(d) approaches the untruncated limit and that the energy converges quadratically.

Note also that the above results hold for conventional single-reference CC theory but can be

formulated for the extended CC theory as well with some slight modifications (see Ref. 17).

2.2 Strong Monotonicity Property

The local strong monotonicity at a root of the CC equations is the mathematical basis of

what we deem as a reliable solution obtained from a truncated CC calculation since this

implies a unique solution of fd = 0 for sufficiently good approximate V(d) as well as a

quadratic convergence in the energy. Moreover, it follows that the Jacobian of both fCC and

fd are non-degenerate at such a solution. (For a mathematical analysis that addresses the

degenerate case, see Ref. 24.) In order to derive the S-diagnostic, we start with a brief review

of the proof presented in the literature17,22,23, while making some slight improvements. We

subsequently establish Eq. (8) up to second order in ∥t − t′∥ℓ2 under certain assumptions.

To that end, we define

∆2(t∗; t, t
′) = ⟨∆T̂ ϕ0|e−T̂∗(Ĥ − E0)e

T̂∗|∆T̂ ϕ0⟩. (12)
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Now, suppose that fCC(t∗) = 0, then by Taylor expansion we find

∆(t, t′) = ∆2(t∗; t, t
′) +O((∆t)3). (13)

For the proof, we refer the reader to Ref. 11. We emphasize that the core idea of the proof

is a Taylor expansion of eT̂ and eT̂
′
around T̂∗, which does not require t∗ itself to be small,

rather, the assumption is that we are within a certain neighborhood of t∗.

By Eq. (13), if ∆2(t∗; t, t
′) ≥ γ′∥t − t′∥2ℓ2 with γ′ > 0 for t, t′ within distance r′ from t∗,

then it is possible to find r > 0 such that Eq. (8) is true for γ ∈ (0, γ′] for t, t′ at distance at

most r ≤ r′) from t∗. Consequently, we wish to establish

∆2(t∗; t, t
′) ≥ γ′∥t− t′∥2ℓ2 (14)

for some γ′ = γ′(t∗) > 0.

Henceforth, we assume that the ground state of Ĥ exists and is non-degenerate, i.e.,

Ĥ admits a spectral gap γ∗ > 0 between the ground-state energy E0 and the rest of the

spectrum of Ĥ. The mathematical formulation of the intuitive notion of the spectral gap is

as follows

γ∗ = inf

{
⟨ψ|Ĥ − E0|ψ⟩

⟨ψ|ψ⟩
: |ψ⟩ ⊥ |ψ∗⟩

}
> 0. (15)

Moreover, we assume that the reference |ϕ0⟩ is such that it is not orthogonal to the ground-

state wave function. With these assumptions, we can establish an improved version of

Lemma 11 in Ref. 17 and Lemma 3.5 in Ref. 11: If t∗ solves fCC(t∗) = 0 then for |ψ⟩ ⊥ |ϕ0⟩

⟨ψ|Ĥ − E0|ψ⟩ ≥ γeff∗ ∥ψ∥2L2 , (16)

where

γeff∗ =
γ∗

∥eT̂∗ϕ0∥2L2

. (17)
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Note that Eq. (17) is a very appealing result that quantitatively relates the effective spectral

gap to the quality of the reference determinant, i.e., how close the reference determinant is to

the ground state. In particular, for T∗ = 0 we recover the full spectral gap, which agrees with

the ground state being the reference state in this particular case, whereas if the reference

determinant is poorly chosen, even a large spectral gap decimates to a small effective gap.

Equation 16 can be obtained as follows: Let P∗ be the projection onto the solution |ψ∗⟩,

then

⟨ψ|Ĥ − E0|ψ⟩ = ⟨ψ − P∗(ψ)|Ĥ − E0|ψ − P∗(ψ)⟩

≥ γ∗∥ψ − P∗(ψ)∥2L2

= ∥ψ∥2L2 − 2Re⟨ψ|P∗(ψ)⟩+ ∥P∗(ψ)∥2L2

= ∥ψ∥2L2 −
|⟨ψ|ψ∗⟩|2

∥ψ∗∥2L2

= ∥ψ∥2L2 −
|⟨ψ|(eT̂∗ − Î)ϕ0⟩|2

∥ψ∗∥2L2

.

(18)

We next note that

|⟨ψ|(eT̂∗ − Î)ϕ0⟩|2

∥ψ∗∥2L2

≤ ∥ψ∥2L2

∥(eT̂∗ − Î)ϕ0∥2L2

∥ψ∗∥2L2

= ∥ψ∥2L2

(
1− 1

∥ψ∗∥2L2

)
,

which inserted in Eq. (18) yields the desired result.

With the inequality (16) at hand, we can establish the inequality

∆2(t∗; t, t
′) = ⟨∆T̂ ϕ0|e−T̂∗(Ĥ − E0)e

T̂∗ |∆T̂ ϕ0⟩

≥ γeff∗ ∥∆T̂ ϕ0∥2L2 − CGCC(T̂∗)∥∆T̂ ϕ0∥2H1 ,

(19)

where C is a constant that depends on the Hamiltonian Ĥ and

GCC(T̂∗) = ∥eT̂∗ − Î∥L2 + ∥e−T̂ †
∗ − Î∥L2∥eT̂∗∥L2 . (20)
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Equation (19) follows from the definition of ∆2 and that

∆2 = ⟨∆T̂ ϕ0|Ĥ − E0|∆T̂ ϕ0⟩+ ⟨∆T̂ ϕ0|Ĥ − E0|(eT̂∗ − Î)∆T̂ ϕ0⟩

+ ⟨(e−T̂ †
∗ − Î)∆T̂ ϕ0|Ĥ − E0|eT̂∗∆T̂ ϕ0⟩,

then, using that Ĥ is a bounded operator in the energy norm and the estimate in Eq. (16),

we obtain the desired result in Eq. (19).

3 The S-Diagnostic

Given the reformulation of the strong monotonicity property in Eq. (19), we consider a

computation to be successful if the results fulfill Eq. (19). In order to derive an a posterioi

diagnostic, we reformulate this inequality in a way that yields a function that indicates

a reliable computation. To ensure the tractability of the said function we introduce the

following approximations, which will yield diagnostic functions of different flavors, later

referred to as S1, S2, and S3, respectively.

Approximation (i) A first-order Taylor approximation of eT̂∗ and the trivial operator

norm inequality 3 yields

∥eT̂∗ϕ0∥2L2 ≈ 1 + ∥T̂∗∥2L2 . (21)

Approximation (ii) For GCC we use (i) and make the approximation (linearization)

GCC(T̂ ) ≈ 2∥T̂∥L2 . (22)

3

∥T̂∗ϕ0∥L2 ≤ ∥T̂∗∥L2∥ϕ0∥L2 = ∥T̂∗∥L2

13



Approximation (iii) As outlined in Ref. 23, we can moreover estimate

(1 + ∥Ẑ∗∥2L2)1/2 ≈ (1 + ∥T̂∗∥2L2)−1/2. (23)

This approximation follows by equating the bra and ket wave functions (in the bivariational

formulation) e−T̂ †
∗ (Î + Ẑ∗)|ϕ0⟩ = ∥eT̂∗ϕ0∥−2

L2 e
T̂∗|ϕ0⟩ with eΛ̂∗ = Î + Ẑ∗ and approximating

e−T̂ †
∗ (Î + Ẑ∗)|ϕ0⟩ ≈ (Î + Ẑ∗)|ϕ0⟩. (24)

With these approximations at hand, we can derive three variants of the S-diagnostic that

we shall investigate subsequently.

3.1 The S1-diagnostic

Starting from Eq. (19), we first note that we are considering the finite-dimensional case, and

therefore there exists a constant C > 0 such that

∆2(t∗; t, t
′) ≥

[
γeff∗ − CGCC(T̂∗)

]
∥∆T̂ ϕ0∥2L2 (25)

holds. Next, we employ Approximation (ii) in the definition of GCC(T̂∗), and combine Ap-

proximation (i) with the definition of γeff∗ in Eq. (17), i.e.,

γeff∗ ≈ γ∗

1 + ∥T̂∗∥2L2

. (26)

This yields

γeff∗ − CGCC(T̂∗) ≈
γ∗

1 + ∥T̂∗∥2L2

− 2C∥T̂∗∥L2 . (27)

Requiring that this expression is positive, we obtain the success condition

1

2
>
C

γ∗
(1 + ∥T̂∗∥2L2)∥T̂∗∥L2 . (28)
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3.2 The S2-diagnostic

By applying Approximation (iii) to Eq. (28), we obtain a success condition that involves the

Lagrange multipliers, namely,

1

2
>
C

γ∗

∥T̂∗∥2L2

(1 + ∥Ẑ∗∥2L2)
. (29)

3.3 The S3-diagnostic

To obtain a diagnostic that includes the Lagrangian multipliers without making use of Ap-

proximation (iii), we shall follow the argument on strong monotonicity of the extended CC

function FECC defined above. Note that although we use the extended CC formalism in this

section (i.e., where the Lagrange multipliers are treated as a second set of cluster amplitudes),

the derived diagnostic is for the conventional single reference CC method. Subsequently, we

assume that truncations of T̂ and Λ̂ are at the same rank, i.e., the truncated scheme follows

as described above for V(d) but takes the double form V(d) × V (d) and with Pd being the

orthogonal projector onto Vd × Vd. Note that this aligns with practical implementations of

the CC Lagrangian. For brevity, let Û = (T̂ , Λ̂), Û∗ = (T̂∗, Λ̂∗) and Û
(d)
∗ = (T̂

(d)
∗ , Λ̂

(d)
∗ ) and

furthermore, set Fd to be the Galerkin discretization of FECC, i.e., Fd(Û
(d)) = PdFECC(Û

(d)).

In Ref. 17 strong monotonicity of FECC was established under certain assumptions, and

recently generalized to a class of extended CC theories25. We, therefore, refer the reader

to these references for the full proof, here we shall only address those parts relevant to our

diagnostics.

Similarly to the CC case, local strong monotonicity of FECC holds if

∆ECC := ⟨FECC(u)− FECC(u
′), u− u′⟩ ≥ γ∥u− u′∥2 (30)

for some positive constant γ. Note that we here extended the notation such that u carries

both the primal-, and dual variables. Furthermore, we let ∆ECC up to second order in ∥u−u′∥
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be denoted ∆ECC
2 and similarly to Eq. (19) we have

∆ECC
2 (u∗;u, u

′) ≥ γeff∗ ∥∆Ûϕ0∥2L2 − CGECC(Û∗)∥∆Ûϕ0∥2H1 , (31)

where

GECC(Û) = GECC(T̂ , Λ̂)

= ∥e−T̂ †
eΛ̂∥L2∥eT̂ − Î∥L2 + ∥e−T̂ †

eΛ̂ − Î∥L2 +K∥ϕ0∥H1∥e−T̂ †∥L2∥eT̂∥L2∥eΛ̂ − Î∥L2

for some positive constant K.

Starting from Eq. (31), we note again that since we are considering finite-dimensional

Hilbert spaces, there exists a constant C > 0 such that

∆ECC
2 (u∗;u, u

′) ≥
[
γeff∗ − CGECC(Û∗)

]
∥∆Ûϕ0∥2L2 . (32)

We next employ a variation of Approximation (iii): For GECC we make the substitution

eΛ̂ = Î + Ẑ and approximate with a low-order Taylor expansion

G̃ECC(T̂ , Ẑ) := GECC(T̂ , Λ̂(Ẑ)) ≈ C(∥T̂∥L2 + ∥Ẑ∥L2). (33)

Hence, we arrive at the approximation (and we remind the reader that C is used as a generic

constant)

γeff∗ − CGECC(Û∗) ≈
γ∗

1 + ∥T̂∗∥2L2

− C(∥T̂∗∥L2 + ∥Ẑ∗∥L2). (34)

Requiring that this expression is positive, we find the condition

1 >
C

γ∗

(
(1 + ∥T̂∗∥2L2)(∥T̂∗∥L2 + ∥Ẑ∗∥L2)

)
≈ C

γ∗

(
(1 + ∥T̂∗∥2L2)∥T̂∗∥L2 +

∥Ẑ∗∥L2

1 + ∥Ẑ∗∥L2

)
. (35)

16



3.4 Approximation of operator norms using singular values

The above-derived success conditions Eqs. (28), (29) and (35) can in principle be imple-

mented for approximate C and γ∗. However, the norm expressions involved will depend on

the system size. This can be illustrated by simply placing copies of a molecular system at a

distance such that they are at least numerically non-interacting. In that case, the reliability

of the overall CC calculation is determined by the CC calculations of a single copy, yet, the

operator norm of the cluster operator ∥T̂∥L2 will scale with the system’s size.

To remedy this serious difficulty, we consider an alternative interpretation of the clus-

ter operators26: The CCSD method yields a set of single amplitudes (tai ) forming a ma-

trix in Rnocc×nvirt and a set of double amplitudes (tabij ) forming a fourth-order tensor in

Rnocc×nocc×nvirt×nvirt . As outlined in Ref. 26, in order to capture the pair correlation we re-

shape the fourth-order tensor that describes the double amplitudes as a matrix in Rn2
occ×n2

virt ,

an operation that is also known as “matricization”. In order to include pair correlations

captured by the single amplitudes, we can moreover extend (tabij ) to also include products of

single amplitudes which yields MT ∈ Rn2
occ×n2

virt with matrix elements

[MT ]ij,ab = tabij + (tai t
b
j − tbit

a
j ). (36)

The singular value decomposition then yields

MT = UTΣTV
⊤
T , (37)

where UT , VT are real orthogonal matrix and ΣT is diagonal. We will subsequently use the

spectral norm, i.e., the largest singular value, here denoted as σ(MT ) to approximate the

operator norm, i.e.,

∥T̂∥L2 ≈ σ(MT ) =: σ(t) (38)

and similarly for the dual variable z. Incorporating this into the success conditions Eqs. (28),
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(29) and (35) yields the S-diagnostic functions used in this article

S1(t) :=
1

γ∗
(1 + σ(t)2)σ(t), (39a)

S2(t, z) :=
1

γ∗

σ(t)

1 + σ(z)2
, (39b)

S3(t, z) :=
1

γ∗

[
(1 + σ(t)2)σ(t) +

σ(z)

1 + σ(z)2

]
, (39c)

where the spectral gap γ∗ must be replaced by an approximation which, for simplicity, we

choose to be the HOMO-LUMO gap. For computed cluster amplitudes (t) and Lagrange

multipliers (z), the above functions will yield an S-diagnostic value. In the following numer-

ical investigations, we will first investigate the statistical correlation between the computed

S-diagnostic value and different measures of error. Second, we will investigate a quantitative

bound for the S-diagnostic value beyond which the computations may not be reliable and

further benchmark computations with more profound error classifications are advised.

4 Numerical simulations

In this section, we numerically scrutinize the proposed S-diagnostic procedures derived in

the previous sections. All simulations are performed using the Python-based Simulations

of Chemistry Framework (PySCF)27–29. First, we perform geometry optimizations on a

medium-sized set of molecules comprising all molecules that were investigated in Refs. 3,5,6

to test the T1, D1, max T2 and D2 diagnostic, respectively. With this data at hand, we

can propose an initial set of values, beyond which our diagnostic suggests interpreting the

computational results with caution and if possible benchmarking with additional methods

that allow for a more profound error classification. Second, we target small model systems

whose multi-reference character can be controlled by simple geometric changes. Third, we

numerically investigate transition metal complexes that have been shown to be misdiagnosed

by the T1 and D1 diagnostics7. In the subsequently performed simulations, all electrons are
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correlated.

4.1 Correlation in Geometry Optimization

In order to quantify the correlation between the S-diagnostics and the error of the CC

method, we numerically investigate the Spearman correlation30 between the error of in sil-

ico geometry optimizations and the corresponding value of the S-diagnostics. We perform

geometry optimizations for 34 small to medium-sized molecules that were previously studied

in relation to CC error classifications3,5,6, see Table 1.

Table 1: Molecules which are used in the geometry optimization presented here.

H2N2 HOF C2H2 ClOH H2S O3 FNO
ClNO C2 C3 CO HNO HNC HOF
Cl2O P2 N2H2 HCN CH2NH N2 C2H4

F2 HOCl Cl2 HF CH4 H2O SiH4

NH3 HCl CO2 BeO H2CO CH2

The calculations are performed using the CC method with singles and doubles (CCSD)

using the cc-pVDZ basis set provided by PySCF; the geometry optimization is performed

using the interface to PyBerny31. The numerically obtained results are compared with exper-

imentally measured equilibrium, zero-point average geometries of the considered systems in

their gas phases extracted from the Computational Chemistry Comparison and Benchmark

Data Base (CCCBDB)32. Since the computed atomic positions cannot be directly compared,

we introduce the bond-length matrix that describes the pairwise distance between the atoms

in the molecular compound. This bond-length matrix can be directly compared with the

bond-length matrix provided by CCCBDB if we label and order the atoms of the correspond-

ing system accordingly. It is important to note that the utilization of the cc-pVDZ basis set

introduces a basis set error into the computational process. However, according to a study

by Spackman et al. 33, this error corresponds to a constant scaling factor for equilibrium

geometry computations. Since the Spearman rank correlation measures the extent to which

the relationship between two variables can be described by a monotonic function, it remains
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unaffected by such a constant scaling factor. In other words, the correlation obtained in the

subsequent experiment remains unaffected by the basis set error. We investigate the correla-

tion between the S-diagnostics and three possible error characterizations obtained from the

absolute difference of the bond-length matrices denoted D(diff):

i) The maximal absolute error (∆r
(max)
abs ):

∆r
(max)
abs = max

i,j
D

(diff)
ij

ii) The averaged absolute error (∆r
(ave)
abs ):

∆r
(ave)
abs =

∑
i,j D

(diff)
i,j

Natoms

iii) The averaged relative error (∆r
(ave)
rel ):

∆r
(ave)
rel =

∑
i,j D

(diff)
i,j

Natoms maxi,j D
(diff)
ij

Computing the Spearman correlation between the errors listed above and the proposed S-

diagnostics, we find that all suggested S-diagnostics correlate well with all the error measures

suggested, i.e., we consistently find correlations of rsp > 0.5 with p < 0.0008, see Table 2.

The largest correlation is observed between the maximal absolute error (∆r
(max)
abs ) and S2

and S3 where we find a correlation of rsp = 0.58476 with p = 0.00018. For comparison,

we compute the Spearman correlation for the previously suggested T1, D1, max T2 and D2

diagnostic in Table 2. We find that T1, and D1, are uncorrelated to all the errors that we

investigate here, i.e., rsp < 0.3 with p > 0.1. The max T2 diagnostic shows no correlation with

the averaged absolute and relative error; the max T2 diagnostic shows some correlation with

the maximal absolute error, however, at a weak statistical relevance. The D2 diagnostic6

shows a correlation with the averaged absolute error (∆r
(ave)
abs ) and the averaged relative error
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(∆r
(ave)
rel ), where we find a correlation of rsp = 0.36886 with p = 0.026847 and rsp = 0.35496

with p = 0.033646, respectively. We moreover compare the S-diagnostics with the recently

suggested indices of multi-determinantal and multi-reference character in CC theory8. We

find that similar to the S-diagnostics, the EEN index8 correlates well with the maximal

absolute error (∆r
(max)
abs ); we observe a correlation of rsp = 0.53572 with p = 0.000759.

Directly comparing the Spearman correlation of the S-diagnostics with the T1, D1, max T2

and D2 diagnostic, we see that the S-diagnostics have a significantly higher correlation than

the heuristically motivated diagnostics T1, D1, max T2 and D2 diagnostics while exhibiting

a higher level of stochastic significance. Comparing the Spearman correlation of the S-

diagnostics with the indices of multi-determinantal and multi-reference character in CC

theory, we find that the S-diagnostic and EEN show similar correlation with the maximal

absolute error (∆r
(max)
abs ) with a comparable level of stochastic significance.

Table 2: Spearman correlation between the S-diagnostics computed form CCSD amplitudes
and different errors in geometry optimization. The entries show the rank correlation and the
corresponding p-value, i.e., rsp and p, respectively.

∆r
(max)
abs ∆r

(ave)
abs ∆r

(ave)
rel

rsp p rsp p rsp p
S1 0.57910 0.000215 0.57761 0.000225 0.53668 0.000740
S2 0.58476 0.000180 0.58584 0.000174 0.54543 0.000581
S3 0.58476 0.000180 0.58584 0.000174 0.54543 0.000581
T1 0.03025 0.863034 0.00489 0.977416 0.02265 0.895674
D1 0.27675 0.107522 -0.00541 0.975040 -0.02034 0.906294

max T2 0.342910 0.047105 0.214668 0.222779 0.198472 0.260490
D2 0.16974 0.329625 0.36886 0.026847 0.35496 0.033646
EEN 0.53572 0.000759 0.42059 0.010643 0.33694 0.044488

In order to obtain an approximate trusted region suggested by the S-diagnostics, we

require a descriptive function that maps the value obtained from an S-diagnostic to the

error in geometry. Since the Spearman correlation describes a monotone relation between

the quantities, we may not assume that this relation is linear. We, therefore, perform a

piecewise linear fit to the data obtained in this simulation, see Fig. 1. We here allow for

four segments which are optimized to reach the best approximation by means of a piecewise
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linear function. We emphasize that larger numbers of segments yield similar approximations,

see Fig. 1b. Performing this piecewise linear fit, we observe that the function is constant

on some segments. Based on the data distribution, we conclude that this constant behavior

is artificial and caused by the test set not being sufficiently versatile. In particular, no

quantitative conclusions can be drawn from the piecewise linear fit function for values S3 > 1.

Therefore, from the geometry optimizations performed here, we can merely conjecture to

raise a concern about the validity of CC calculations performed for values of the S-diagnostics

v
(3)
crit ≥ 1. Based on the piecewise linear fit, S3 = 1 corresponds to an error larger than

0.035 a0. A larger statistical investigation with a larger variety of molecules and basis

set discretizations is delegated to future works. We emphasize that this first estimation

of vcrit is particularly pessimistic since the data set is not versatile enough to give a precise

estimation of vcrit. Indeed, in the subsequently performed simulations, we show a more refined

estimation of vcrit that reveals v
(2)
crit = 1.9 and v

(3)
crit = 1.8, for S2, and S3, respectively, obtained

by comparison with the situation-specific index of multi-determinantal and multi-reference

character in coupled-cluster theory8. These cut-off values are merely preliminary since they

are obtained from a comparably small statistical investigation and from the subsequently

investigated edge cases for CC theory. A more comprehensive and extensive statistical

investigation aimed at obtaining improved critical values for the S-diagnostics is the subject

of future research.

Aside from CC-based simulations, we can also perform MP2 simulations, and use the

obtained doubles amplitudes to compute the S-diagnostics. We find that the proposed

S-diagnostics correlate similarly well with MP2 based calculations as it does for CCSD,

see Table 3

4.2 Model Systems

In this section we investigate the use of the proposed S-diagnostics for four model systems

whose multi-reference character can be controlled by simple geometric change: (1) twisting
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Figure 1: The maximal error in geometry optimization as a function of the S3 value. (a)
The green line corresponds to a piecewise linear fit to the data using four segments for the
piecewise linear function. (b) Piecewise linear fits to the data with a varying number of
segments.

Table 3: Spearman correlation between S-diagnostics computed from MP2 doubles ampli-
tudes and different errors in geometry optimization.

∆r
(max)
abs ∆r

(ave)
abs ∆r

(ave)
rel

rsp p rsp p rsp p
S1 0.55992 0.000384 0.54569 0.000577 0.49781 0.002006
S2 0.56687 0.000313 0.54801 0.000541 0.49858 0.001968
S3 0.55992 0.000384 0.54569 0.000577 0.49781 0.002006
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ethylene, (2) the C2v insertion pathway for BeH2 (Be · · · H2)
34, (3) the H4 model (transition

from square to linear geometry)35 (4) the H4 model (symmetrically disturbed on a circle);

the computations are performed in cc-pVTZ basis.

4.2.1 Twisting ethylene

We begin by numerically investigating the proposed S-diagnostics for ethylene twisted around

the carbon–carbon bond, see Fig. 2.

ΘH

C

H

H

C

H

H

C

H

C
H

H

Figure 2: Depiction of the ethylene (C2H4) model with twist angle Θ.

At a twist angle of 90°, this system shows a strong multi-reference character. This can

be seen as follows: At the equilibrium geometry, i.e., in a planar geometry, the two carbon

p orbitals are perpendicular to the molecular plane forming bonding π and anti-bonding π∗

orbitals. In this geometry, the ground state doubly occupies the π-orbital. As we twist around

the carbon–carbon bond, the overlap between the two p orbitals decreases and becomes zero

at 90°. Therefore, at 90° the π and π∗ orbitals become degenerate and the π-bond is broken.

This (quasi) degeneracy can also be observed numerically by computing the HOMO-LUMO

gap as a function of the twist angle, see Fig. 3a. Computing the corresponding ground-state

energy as a function of the twist angle, we observe the characteristic energy cusp at exactly

90°, see Fig. 3b.

Due to the quasi degeneracy around 90°, we compare the S-diagnostics with the MRI

index suggested in Ref. 8. We clearly see the indication of the quasi degeneracy in the

MRI index, see Fig. 4b. The S-diagnostics also indicate the problematic region around 90°.

By numerically comparing Fig. 4a and 4b, we find that a cut-off value of v
(2)
crit = 1.9 and

v
(3)
crit = 1.8 for S2 and S3, respectively, indicates the same region of quasi degeneracy as the
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Figure 3: (a) HOMO-LUMO gap of C2H4 as a function of the twist angle (b) RHF and
RCCSD energies of C2H4 as a function of the twist angle

MRI index.
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Figure 4: (a) The proposed S-diagnostics of C2H4 as a function of the twist angle, the dashed

horizontal lines correspond to v
(2)
crit = 1.9 and v

(3)
crit = 1.8, respectively. (b) The previously

suggested MRI of C2H4 as a function of the twist angle.

4.2.2 C2v insertion pathway for BeH2

Next we shall investigate the C2v insertion pathway for BeH2 (Be · · · H2)
34. The model

represents an insertion of the Be atom into the H2 molecule. The transformation coordinate
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connects the non-interacting subsystems (Be + H2) with the linear equilibrium state (H-Be-

H), see Fig. 5

H

Be

H

H

Be

H

Figure 5: Depiction of the C2v insertion pathway for BeH2.

We here follow the insertion pathway outlined in Ref. 34 and denote the position of the

beryllium atom by X-position, where X-position equal to zero corresponds to the linear

equilibrium state and X-position equal to five corresponds to the non-interacting subsys-

tems. The transition state of this chemical transformation has a pronounced multi-reference

character. Another distinguishing feature of this model system is a change in the charac-

ter of the dominating determinant in the wave function along the potential energy surface.

There are two leading determinants in the wave function, each of which dominates in a

certain region of the potential energy surface while both are quasi-degenerate around the

transition-state geometry. This results in discontinuities as can be seen in Figs. 6a and 6b.

Taking the change in the dominating determinant around this critical point explicitly into

account results in a smoother potential energy surface36,37. However, since our objective

is to identify the quasi-degenerate region using the S-diagnostics, we here do not take this

change explicitly into account.

Due to the quasi degeneracy that appears along the transition path, we again compare

the proposed S-diagnostics with the MRI index suggested in Ref. 8. We clearly see the

indication of the quasi degeneracy in the MRI index, see Fig. 7b. The region indicated by

MRI< −0.99 corresponds to x ∈ [2.6, 3.05]. The S-diagnostics also indicate a region where

the CC computations are potentially unreliable. It is worth mentioning that choosing the

critical values similar to the previous example, i.e., v
(2)
crit = 1.9 and v

(3)
crit = 1.8, the predicted

region corresponds to x ∈ [2.5, 4.5] and x ∈ [2.5, 4.25], respectively. In order to reproduce
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Figure 6: (a) HOMO-LUMO gap as a function of the X-position (b) RHF and RCCSD
energies as a function of the X-position.

the same region of quasi-degeneracy as indicated by the MRI index, the critical values have

to be adjusted to v
(2)
crit = 3.8 and v

(3)
crit = 3.5, respectively.
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Figure 7: (a) shows the S-diagnostics, the dashed horizontal lines correspond to v
(2)
crit = 1.9

and v
(3)
crit = 1.8, respectively. (b) shows the previously suggested MRI

4.2.3 H4 model (transition from square to linear geometry)

Next, we shall investigate the proposed S-diagnostics applied to the H4 model. The H4

model is a standard transition model that allows steering the quasi-degeneracy using a single
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parameter, namely, the transition angle α where α = 0 corresponds to a square geometry

and α = π/2 corresponds to a linear geometry. Following Ref. 35, we set a = 2.0 (a.u.),

see Fig. 8.
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α α
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Figure 8: Depiction of the H4 model undergoing the transition from a square geometry to
linear geometry model by the angle α.

As the transition angle α tends to zero, the HOMO-LUMO gap closes and the system

shows signs of (quasi) degeneracy, see Fig. 9a
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Figure 9: (a) HOMO-LUMO gap of H4 as a function of the transition angle (b) RHF, CCSD
and FCI energies of H4 as a function of the transition angle

Due to the quasi degeneracy near α = 0, we again compare the proposed S-diagnostics

with the MRI index. We clearly see the indication of the quasi degeneracy in the MRI index,

see Fig. 10b. The S-diagnostics also indicate the problematic region near zero transition

angle. A cut-off value of v
(2)
crit = 1.9 and v

(3)
crit = 1.8 results in S2 and S3, respectively,

indicating the same region of quasi degeneracy as the MRI index.
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Figure 10: (a) The S-diagnostics of H4 as a function of the transition angle, the dashed

horizontal lines correspond to v
(2)
crit = 1.9 and v

(3)
crit = 1.8. (b) The previously suggested MRI

of H4 as a function of the transition angle.

For this small model Hamiltonian, it is moreover feasible to perform computations at the

FCI level of theory, see Fig. 11. This comparison yields a quantitative comparison of error

and S-diagnostics.

4.2.4 H4 model (symmetrically disturbed on a circle)

Another variant of the H4 model that is commonly employed to evaluate CC methods consists

of four hydrogen atoms symmetrically distributed on a circle of radius R = 1.738 Å38.

For small or large angles, the system resembles two H2 molecules that are reasonably well

separated, but as the angle passes through 90°, the four atoms form a square yielding a

degenerate ground state. The exact energy is smooth as a function of the angle, but at the

RHF level, we observe a cusp at 90°, similar to the rotation of the carbon-carbon bond in

ethylene. We follow the system’s geometry configuration outlined in Ref. 39, see Fig. 12.

We see that as the transition angle Θ tends to π/2 radians (90°), the HOMO-LUMO gap

closes and the system shows signs of (quasi) degeneracy, see Fig. 13a.

Due to the quasi degeneracy near Θ = π/2 (90°), we again compare the proposed S-

diagnostics with the MRI index. We clearly see the indication of the quasi degeneracy in
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log scales. The area left of the vertical black, dashed green, and dashed light green lines
correspond to the regions where the MRI, S2, and S3 diagnostic indicate a potential failure
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Figure 12: Depiction of the H4 model undergoing a symmetric disturbance on a circle modeled
by the angle Θ.
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Figure 13: (a) HOMO-LUMO gap of H4 as a function of the transition angle (b) RHF,
RCCSD energies of H4 as a function of the transition angle.
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the MRI index, see Fig. 14b. The S-diagnostics also indicate the problematic region near

zero transition angle. A cut-off value of v
(2)
crit = 1.9 and v

(3)
crit = 1.8 results in S2 and S3,

respectively, indicating the same region of quasi degeneracy as the MRI index.
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Figure 14: (a) The S-diagnostics of H4 as a function of the transition angle, the dashed

horizontal lines correspond to v
(2)
crit = 1.9 and v

(3)
crit = 1.8. (b) The previously suggested MRI

of H4 as a function of the transition angle.

For this small model Hamiltonian, it is moreover feasible to perform computations at

the FCI level of theory, see Fig. 15. This comparison reveals the variational collapse of

the CCSD energy, see Fig. 15a, and moreover yields a quantitative comparison of error and

S-diagnostics. The trusted region suggested by the S-diagnostics corresponds to a CCSD

energy error smaller than 2 · 10−4 a.u. which is below the chemical accuracy threshold.

Since the simulations performed in the previous section suggest that the previously used

T1, D1, and D2 diagnostics are uncorrelated, or merely weakly correlated, we do not report

their performance here. The computations showing the performance of the T1, D1, max T2

and D2 diagnostics can be found in the Supporting Information, see Figs. S10 to S13.

4.3 Transition metal complexes

Transition metal complexes are in general considered to be strongly correlated systems. To

simulate the electronic structure and properties of transition metal complexes, different com-
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Figure 15: (a) The energy error of CCSD compared to the FCI reference energy. Note that in
the region of 1.3–1.8 radians the CCSD energy is lower than the FCI reference energy, which
indicates the variational collapse of the CCSD energy in this region. (b) The absolute value
of the energy error of CCSD compared to the FCI reference energy using semi-log scales.
The area between the vertical black and green and light green dashed lines correspond to the
regions where the MRI and the S2 and S3 diagnostics indicate a potential failure of CCSD,
respectively.

putational approaches can be used, depending on the specific system and the level of accuracy

required40–45. However, as shown in Ref. 7, for the three square-planar copper complexes

[CuCl4]
2−, [Cu(NH3)4]

2+, and [Cu(H2O)4]
2+ the single reference CC method performs very

well despite the large D1 diagnostic value. We use these systems to scrutinize the proposed

S-diagnostics for larger systems that are known to be misleadingly diagnosed by the D1

diagnostics.

Similar to Ref. 7, we perform the simulation of [CuCl4]
2−, [Cu(NH3)4]

2+, and [Cu(H2O)4]
2+

in 6-31G basis using UHF and ROHF as reference states. Also, He, Ne, and Ar cores were

frozen in the nitrogen, chlorine, and copper atoms, respectively, resulting in 41 electrons

in 50, 66, and 74 orbitals for the [CuCl4]
2−, [Cu(H2O)4]

2+, and [Cu(NH3)4]
2+ molecules,

respectively. We list the ground state energies obtained at the mean-field level of theory and

the corresponding CCSD results in Table 4; we moreover list the HOMO-LUMO gap which

enters in the S-diagnostics.

The results in Table 4 show that UHF and ROHF calculations predict similar energy
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Table 4: Energies values and HOMO-LUMO gap obtained with UHF, ROHF, and UCCSD
calculations given the reference state from UHF and ROHF, respectively.

UHF γUHF UCCSD ROHF γROHF UCCSD
[CuCl4]

2− -3476.764 0.453 -3477.119 -3476.763 0.146 -3477.119
[Cu(NH3)4]

2+ -1862.977 0.564 -1863.663 -1862.976 0.351 -1863.663
[Cu(H2O)4]

2+ -1942.225 0.677 -1942.914 -1942.224 0.340 -1942.914

values. Moreover, using the UHF, or ROHF reference state results in similar CCSD energy

values. It is worth noticing that ROHF yields a generally smaller HOMO-LUMO gap. Since

the performed CCSD calculations differ in their reference, we can compute the S-diagnostics

for both sets of calculations. The results obtained from a UHF and ROHF reference are

listed in Table 5 and in Table 6, respectively.

Table 5: S-diagnostics obtained for the three square-planar copper complexes [CuCl4]
2−,

[Cu(NH3)4]
2+, and [Cu(H2O)4]

2+ in spin unrestricted formulation with UHF reference.

S1 S2 S3 T1 D1 D2

[CuCl4]
2− 0.208 0.409 0.406 0.019 0.158 0.110

[Cu(NH3)4]
2+ 0.203 0.403 0.398 0.014 0.130 0.121

[Cu(H2O)4]
2+ 0.155 0.308 0.305 0.011 0.072 0.116

We see that all S-diagnostic variants suggest that the CCSD calculations were successful,

and do not require additional numerical confirmation. This is opposed to the D1 diagnostics,

which aligns with the results reported in Ref. 7.

Table 6: S-diagnostics obtained for the three square-planar copper complexes [CuCl4]
2−,

[Cu(NH3)4]
2+, and [Cu(H2O)4]

2+ in spin unrestricted formulation with ROHF reference.

S0 S1 S2 T1 D1 D2

[CuCl4]
2− 0.645 1.285 1.27 0.020 0.167 0.110

[Cu(NH3)4]
2+ 0.326 0.646 0.638 0.015 0.139 0.121

[Cu(H2O)4]
2+ 0.309 0.614 0.607 0.011 0.077 0.116

Similar to the results in Table 5, we see that all variants of the S-diagnostic suggest that

the CCSD calculations were successful. However, it is worth noticing that the S-diagnostic

values have increased compared to the values reported in Table 5.
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5 Conclusion

In this article, we proposed three a posteriori diagnostics for single-reference CC calculations

which we called S-diagnostics, due to their origin from the strong monotonicity analysis.

Contrary to previously suggested CC diagnostics, the S-diagnostics are motivated by math-

ematical principles that have been used to analyze CC methods of different flavors in the

past10,11,17,22,25,46.

We performed a set of geometry optimizations for small to medium-sized molecules in

order to reveal the correlation between the S-diagnostics and the error in geometry from

CCSD calculations. The test set comprised all molecules that were used in previous articles

concerning CC diagnostics3–6. Our investigations revealed that the S-diagnostics correlate

well and with large statistical relevance with different errors in geometry. This yields a

first and very pessimistic estimate of the critical values for the S-diagnostics beyond which

the computational results should be confirmed using further and more careful numerical

investigations. We want to emphasize that the critical values presented here are preliminary

estimates, providing only a rough indication. A more comprehensive and extensive statistical

investigation aimed at obtaining improved critical values for the S-diagnostics is the subject

of future research. The observed correlation between the S-diagnostics and the different

errors in geometry are comparable to the recently suggested EEN index8. A heuristic test

revealed that the S-diagnostics also correlate well and with large statistical relevance with

the error in geometry at the MP2 level of theory. This suggests that the S-diagnostics can

also be used as an a posteriori diagnostic for MP2 calculations. Our numerical simulations

moreover showed that diagnostics based on single excitation cluster amplitudes, i.e., D1 and

T1, are uncorrelated to errors in geometry optimization.

In addition, we investigated the S-diagnostics for models that undergo a transition from a

parameter region in which CC calculations are reliable to a regime where the CC calculations

require further numerical investigations—in this case, due to (quasi) degeneracy of the ground

state. The S-diagnostics detect the corresponding regions of (quasi) degeneracy well. In
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fact, its performance is comparable to the recently suggested MRI indicator—an a posteriori

indicator for multi-reference character8.

The last set of numerical simulations targeted transition metal complexes which have

recently been carefully studied7. The previously performed benchmark calculations7 revealed

that diagnostics based on single excitation amplitudes severely misdiagnose the performance

of CCSD for these transition metal complexes. Our computations confirm this, and moreover,

show that the S-diagnostics correctly confirm the accuracy of the CCSD results outlined

in Ref. 7.

These carefully performed numerical investigations suggest that the S-diagnostic is a

promising candidate for an a posteriori diagnostic for single-reference CC and MP2 calcu-

lations. To further confirm this, benchmarks on a larger set of molecules will be performed

in the future. Moreover, since the mathematical analysis of the single-reference CC method

generalizes to periodic systems as well, we believe that the S-diagnostics can moreover be

applied to simulations of solids at the CC and MP2 level of theory.

Throughout our numerical investigations, we observe a subpar performance of the T1 and

D1 diagnostics. This suggests that those diagnostics should once and for all be removed as

a posteriori diagnostic tools for single-reference CC calculations.
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