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Abstract
We show that there are distinct periods when three ocean variability series in the Atlantic and the Pacific Oceans persistently 
lead or lag each other, as well as distinct periods when ocean variability series lead the rate of changes in global temperature 
anomaly (∆GTA) and in atmospheric  CO2 concentration (1880–2019). The superimposed lead-lag (LL) relations that can be 
formed from the five climate series (three ocean series, GTA and  CO2), ΣLL(10), change directions or weaken synchronously 
at 6 years: 1900, 1926, 1965, 1977, 1997, and 2013. During the same years, the Pacific decadal oscillation (PDO) changes 
between positive ( +) and negative (-) phases, but with an additional phase shift in 1947/48. We find bi-decadal oscillations 
in the rate of change in global temperature, ∆GTA, during the same years. Since the hiatus periods are closely related to the 
cold phase (-) in PDO, the hiatus periods may also be related to global changes in ocean interactions.

1 Introduction

There are two sets of characteristics that govern ocean vari-
ability and show global teleconnection patterns. One is the 
cycle periods (CP) or frequencies that describe variability 
for single ocean variability series (Saenko et al. 2004; Chen 
and Wallace 2016; Wills et al. 2018; Gong et al. 2020). The 
second characteristics is the changes in the lead-lag (LL) 
relations between paired ocean variabilities.

To identify lead-lag (LL) relations between pairs of five 
climate time series, we use a high-resolution LL (HRLL) 
method. Teleconnection patterns for the LL relations 
between paired ocean variabilities have been noticed in sev-
eral studies (Wu et al. 2011a, b, Meehl et al. 2013, Chylek 
et al. 2014 a, Delworth et al. 2017, Seip and Gron 2019), 
but they have not been given a well-defined role in global 

warming. When LL relations are established, studies often 
compare variability in two ocean regions, like the North 
Atlantic Ocean and the Pacific Ocean, over multidecadal 
time spans (d’Orgeville and Peltier 2007; Zhang et al. 2011). 
Quantification of LL relations between cyclic climate vari-
ables has, with some exceptions, e.g., Kestin et al. (1998), 
been made for the whole length of the available series, often 
assuming that the series are semi-stationary.

The three most prominent ocean candidates for heat 
redistribution between upper and lower ocean layers are the 
Atlantic Ocean, the Pacific Ocean and the Southern Ocean 
(South of 35 oS) (Meehl et al. 2011; Cheng et al. 2017; 
Stolpe et al. 2017; von Kanel et al. 2017; Yao et al. 2017). 
Meehl et al. (2011, p. 361) show in a model study that the 
lower ocean layers that receive heat during the hiatus periods 
have an upper limit of about 300 to 700 m. The contributions 
from the Pacific decadal oscillation (PDO) and the Atlantic 
meridional overturning circulation (AMOC) to ocean heat 
uptake are discussed by, e.g., Chen and Tung (2018), Caesar 
et al. (2021) and Oldenburg et al. (2021). Furthermore, the 
atmosphere also transports heat and the partitioning of heat 
transport between the ocean and the atmosphere depends 
upon latitude. (Czaja and Marshall 2006).

Our hypothesis is that there are teleconnected and syn-
chronized changes in LL relations between superimposed 
(stacked) ocean variabilities (∑LL) and that the syn-
chronized changes and the change in global temperature 
anomaly (∆GTA) have a reciprocal impact on each other, 

 * Knut L. Seip 
 knut.lehre.seip@OsloMet.no

 Ø. Grøn 
 oyvind.gron.no@gmail.com

 H. Wang 
 hui.wang@noaa.gov

1 OsloMet - Oslo Metropolitan University, Pilestredet 35 
N-0130, Oslo, Norway

2 NOAA/NWS/NCEP/Climate Prediction Center, 5830 
University Research Court, NCWCP, College Park, 
MD 20740, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-023-04617-8&domain=pdf
http://orcid.org/0000-0002-9400-0794


 K. L. Seip et al.

1 3

∑LL ↔ ∆GTA. (The ΣLL will be explained further in the 
method section). The hypothesis can be tested using the 
time series from about 1880 to present. The older part of 
the series may not be directly instrumentally observed but 
has been reconstructed by the observation of proxies or by 
modeling.

The rationale is that when ocean variabilities in a basin 
persistently drive synchronous, but delayed variabilities in 
another basin and this influence ceases and turns around, 
there are likely “bridges” between the oceans and between 
ocean layers during such periods (Newman et al. 2016). 
Changes in ocean variability generally affect the atmos-
phere and ocean heat distributions (Dai et al. 2015; Chen and 
Tung 2018; Gong et al. 2020; Liu et al. 2020) and thereby 
GTA (Wu et al. 2019). Strong movements of ocean waters 
may also affect carbon dioxide  (CO2) sequestration (Gual-
lart et al. 2015) and thereby indirectly GTA. Furthermore, 
since oceanic heat distribution has been shown to affect the 
climate over land (McCabe et al. 2004, Sutton and Hodson 
2005, Chylek et al. 2014 a, Liu et al. 2020), the combined 
impact may strengthen the land component of GTA. We here 
focus on an analysis of the observational data and not upon 
physical mechanisms. The question of the influence of exter-
nal forcing as a potential driver of coherent shifts is outside 
the scope of the present work, but we comment on some 
suggestions for possible mechanisms.

This paper is organized as follows. In Sect. 2, we give 
key characteristics of the climate data used in the study. In 
Sect. 3, we give an outline of the methods used, but with 
emphasis on the high-resolution LL (HRLL) method. In 
Sect. 4, we show the results for the three ocean time series, 
the ∆GTA, and the  CO2, and the stacked LL relations for 
ten pairs of climate variables, ΣLL (10), that can be formed 

from the five series. We discuss the results in Sect. 5 with 
some emphasis on the empirical patterns we identify and 
some unresolved questions. In Sect. 6, we draw conclusions.

2  The data

We examine two variables that are closely related to cli-
mate variability in the Pacific Ocean and one variable that 
is related to the Atlantic Ocean. The first time series is the 
Southern Oscillation Index (SOI) from Ropelewski and 
Jones (1987), Allan et al. (1991), Konnen et al. (1998). The 
second is the Pacific decadal oscillation (PDO) from Mantua 
et al. (1997). The third is the Atlantic meridional overturn-
ing circulation (AMOC). The AMOC series is an extended 
series supplied by Caesar et al. (2021). The AMOC series 
is supported by proxy observations that are not expressed 
as temperatures. The instrumental AMOC series started in 
2004. Characteristics for the series and their references are 
listed in Table 1.

The AMOC measures volume transport (Sv) due to 
overturning between surface and deep-water currents in the 
Atlantic Ocean. From 2004 the AMOC is identified in two 
versions, as depth limited and as density limited. The PDO 
index is a standardized value of the leading principal com-
ponent (PC) time series for the North Pacific SST mode 
 (20O–70ON). The SOI measures sea level pressure differ-
ences between Tahiti and Darwin, Australia, as a proxy for 
tropical Pacific “ocean variability.” The AMOC and SOI 
were chosen, because both AMOC and SOI have been candi-
dates for explaining changes in ocean heat transport (Jackson 
et al. 2015; Chen and Tung 2018).

Table 1  Data on climate variability series. AMOC is the Atlantic 
meridional overturning circulation, PDO is the Pacific decadal oscil-
lation, and SOI is the Southern Oscillation Index. Detrending is either 
linear or made with a  2nd order polynomial function. “St.Dev. raw 

series” is the standard deviation of the numerical values for the raw 
series and “St.Dev. LOESS series” is the corresponding values for the 
LOESS (0.3) smoothed series.  CO2 is additionally smoothed

1.) The data series is an extended series supplied by Caesar et al. (2018). The instrumental series start in 2004
2.) https:// www. esrl. noaa. gov/ psd/ gcos_ wgsp/ Times eries/ PDO/
3.) https:// www. esrl. noaa. gov/ psd/ gcos_ wgsp/ Times eries/ Data/ soi. long. data
4.) https:// data. giss. nasa. gov/ giste mp/ graphs/ graph_ data/ Global_ Mean_ Estim ates_ based_ on_ Land_ and_ Ocean_ Data/ graph. txt
5.) https:// www. esrl. noaa. gov/ gmd/ ccgg/ trends/ data. html and (http:// scrip psco2. ucsd. edu/ data/ atmos pheric_ co2/ prima ry_ mlo_ co2_ record. html)

Climate variability Unit Start year End year St. Dev. 
raw series

Detrending LOESS 
smoothing 
LL-rel

St. Dev. 
LOESS 
0.3,2%

Reduction, % References

AMOC Sverdrup 1871 2016 0.26 Linear 0.3, 2 0.14 54 1
PDO None 1900 2017 0.79 Linear 0.3,2 0.46 72 3
SOI Nm−2 1866 2017 0.73 Linear 0.3,2 0.14 19 4
GTA oC 1880 2019 0.12 2 pol 0.3,2 0.07 58 5
CO2 ppm 1880 2019 4.3 2 pol 0.8,2

0.3,2
0.85 20 6

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/soi.long.data
https://data.giss.nasa.gov/gistemp/graphs/graph_data/Global_Mean_Estimates_based_on_Land_and_Ocean_Data/graph.txt
https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
http://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html


Global lead‑lag changes between climate variability series coincide with major phase shifts…

1 3

Global‑mean temperature anomaly, GTA  We use the global 
land–ocean temperature index from the National Aeronaut-
ics and Space Administration (NASA) Goddard Institute for 
Space Studies (GISS) for GTA. The data are updated every 
month and may change within their margin of error (Lenssen 
et al. (2019), Ruedy, NASA Goddard Space Flight Center, 
personal communication).

The hiatus periods The global-mean temperature has 
showed a rising trend during the last centennial. However, 
since 1880s, there have been three slowdowns in global 
warming (hiatus periods) that have been associated with 
changes in ocean dynamics (Wu et al. 2019). A recent study 
shows that volcanic eruptions have been closely associated 
with cold periods on a multidecadal scale (Buntgen et al. 
2020). We define the hiatus periods as the portions of the 
GTA time series where the slopes (∆GTA) during the hia-
tus periods are less than 1/20 of the range of the slopes. By 
examining the running average slope (n = 20) of a detrended 
GTA series, the hiatus periods are found to be from 1894 
to 1912, from 1943 to 1975, and from 1998 to 2014. The 
hiatus periods last 16 to 32 years. For a comparison, slope 
values calculated by Yao et al. (2017) were in a range of zero 
to 0.014°C  yr−1 for decadal time windows for the period 
1900 to 2014. The GTA time series measure the surface 
temperatures, which can be a slowdown in the warming of 
the whole earth climate system because heat may be stored 
in deep ocean layers (Yan et al. 2016; Chen and Tung 2018).

Carbon dioxide  CO2 The data were downloaded from the 
NOAA web page, which also contains the references. The 
series were extended with recent  CO2 data from Scripps 
Institute of Oceanography, which were averaged from 
monthly data (Table 1). All time series are normalized to 
unit standard deviation in Fig. 1a and detrended and LOESS 
(0.3) smoothed in Fig. 1b; see Methods for LOESS param-
eters. We will discuss the droplines in Fig. 1b in the discus-
sion section.

3  Methods

We first describe the detrending and smoothing of the data, 
thereafter the method for calculating high-resolution LL 
relations. All calculations were made either in Excel or with 
functions in the program package SigmaPlot©. All data, all 
calculations, and the numerical data supporting the figures 
are available from the authors.

3.1  Detrending and smoothing of raw data

For the GTA and the  CO2 series, we used a second order 
polynomial function since the series show a progressively 

increasing trend. For  CO2 we found that a 70-year long cycle 
dominates its variability. We therefore smoothed the polyno-
mial series strongly using the LOESS local smoothing algo-
rithm with parameters f = 0.8 and p = 2 and let the residual 
from the smoothed curve represent the multi-decadal  CO2 
variation. The parameter (f) determines the local domain 
as a fraction of the whole series, and the parameter (p) 
determines the degree for a polynomial fitting. We always 
use p = 2 in this study and therefore use the nomenclature 
LOESS (f) in the following. The three hiatus periods last 
several decades, as the positive (+ , warm, relative to the 
average) and negative (-, cold) phases do in ocean variabil-
ity series. Therefore, we are interested in the mechanisms 
that act on multi-decadal time scales. We LOESS (0.3) 
smoothed the ocean variability series to separate decadal 
variability from multidecadal variability. We will discuss 
further the effects of detrending and smoothing in the dis-
cussion section.

Since the data are measured in different units and show 
different order of magnitudes, they can be normalized by 
dividing with unit standard deviation without loss of infor-
mation. It is an added advantage that the measurement units 
have no influence on the calculations. To see how smoothing 
would emphasize long cycles in the PDO, the AMOC and 
the SOI, we applied power spectrum density (PSD) algo-
rithm to the raw data and to the LOESS (0.3) smoothed data. 
The results show that, except for very short cycles (< ≈ 5 
yrs.), only long cycles (> 20 yrs.) break the 95% confidence 
interval after smoothing, as shown in Fig. 1c and d.

3.2  The high‑resolution LL method

The HRLL method is a technique for calculating running 
average LL relations. It is based on a dual representation of 
pairs of time series x(t) and y(t). Presentation of the method 
follows closely that of Seip and McNown (2007) and Seip 
et al. (2018), but recently Krüger (2021) has described a 
method related to wavelet analysis that is based on similar 
principles. Alternative group of methods are cross correla-
tion methods and Power spectrum density (PSD) methods. 
PSD are discussed in (Kestin et al. 1998), but those methods 
as well as the cross correlation methods require long quasi 
stationary series, ≥ 30 years to give good results. Figure 2a 
shows both series plotted on the y-axis and with time as the 
x-axis. In Fig. 2b, the series are plotted in a phase space with 
x(t) on the x-axis and y(t) on the y-axis. Two perfect sine 
functions would show an ellipse with the major axis in the 
1:1 or the 1: -1 direction. The two series in Fig. 2a shift in 
being leading and lagging and the direction of the rotation 
of the trajectories in Fig. 2b, clockwise or counterclockwise, 
determines which series is leading and which is lagging. 
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We quantify the rotational patterns in the phase plot by the 
angle, θ,1

where v1 and v2 are two vectors formed by two sequential 
trajectories between three sequential points in the phase plot. 
The angles, θ, result in a time series for a set of paired cyclic 
series, N-2 time steps long.

LL- strength. From the angles, we define a lead-lag 
strength as:

(1)� = sign
(
v1 × v2

)
∙ Acos

(
v1 ∙ v2

|
|v1

|
| ∙

|
|v2

|
|

)

Fig. 1  Data series. a) Raw series normalized to unit standard devia-
tion and shifted vertically for display purposes. b) Series detrended, 
centered, normalized to unit standard deviation and LOESS (0.3) 
smoothed. Blue droplines show dates for synchronized changes in 
lead-lag relations for ten pairs of climate variables. The dashed line 
shows an additional sign-change for PDO (Wills et  al. 2018). Red 
horizontal lines denote hiatus periods. c) Power spectral analysis for 

the full raw time series of the AMOC, the SOI and the PDO and six 
partial series, from the beginning to 1950 and from 1951 to the end. 
Peaks above the 95% confidence limit are at 3–4 years, 12 years, 15 
years, 21 years, 23–24 years, 29 years, and 36–37-38 years. See text 
for details. d) Power spectral analysis for the LOESS(0.3) smoothed 
time series in (b) with peaks above the 95% confidence limit at 3 
years, 6 years, 21–23 years, and 28–29 years

1 With x- coordinates in A1 to A3 and y-coordinates in B1 to B3 
the angle is calculated by pasting the following Excel expression 
into the Excel box C2: = SIGN((A2-A1)*(B3-B2)-(B2-B1)*(A3-
A2))*ACOS(((A2-A1)*(A3-A2) + (B2-B1)*(B3-B2))/(SQRT((A2-
A1)^2 + (B2-B1)^2)*SQRT((A3-A2)^2 + (B3-B2)^2))).
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where  Npos and  Nneg are the numbers of positive and nega-
tive rotations in a sample of N tot =  Npos +  Nneg rotations. The 
variable LL ranges between -1 (the y-variable leads the x 

(2)LL =
(
Npos − Nneg

)
∕
(
Npos + Nneg

) -variable) and + 1 (the y-variable lags the x- variable). The 
LL values are depicted as the black bars in Fig. 2c. We calcu-
late the 95% confidence interval (dashed lines in Fig. 2c and 
Fig. 3d) by calculating the persistence of rotational direc-
tions for two uniformly random series with length 9. The 

LL-strength 
Ang(sines) 
-CI 
+CI 

ySD 
x leads y 
xSD 

Fig. 2  Method example. Calculating lead-lag (LL) relations and 
LL – strength. a) Two sine functions: the smooth curve is a sim-
ple sine function, sin (0.5t), the dashed curve has the form: sin 
(0.5t + ϕ × RAND()) where ϕ =  + 0.785 for t = 1–10 and ϕ = -0.785 
for t = 11–20. RAND() is the Excel random generator. Both x and 
y are centered and normalized to unit standard deviation, SD. Bold 
part of the simple sine function, xSD, shows that it leads ySD. b) In a 
phase plot with sin (0.5t) on the x- axis and the sin(0.5t + ϕ RAND()) 
on the y-axis, the time series rotates first clockwise (1 to 10, negative 
by definition) then counterclockwise 11 to 20; θ is the angle between 

two consecutive trajectories. The wedge suggests the angle between 
the origin and lines to observations 0 and 1. See text for details. c) 
Angles between successive trajectories (light gray bars) and LL—
strength (black bars). Dashed lines suggest confidence limits for 
persistent rotation in the phase plot and persistent leading or lag-
ging relations in the time series plot. Figure redrawn after Seip et al. 
(2018). d) The LL relation and the correlations between cyclic time 
series with common cycle period, λ, as a function of the phase shifts, 
ϕ, between the paired series
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number nine is a tradeoff between using a short time window 
to identify changes in LL- strength and the ability to calcu-
late confidence interval (CI). However, with smoothed series 
the probability to detect θ values that have the same sign 
increases. Thus, the CI does not strictly apply for smoothed 

series, and we use the term “pseudo significant” for CI lines 
as long as the LL values do not reach their maximum values 
of ± 1.0. (For short series, arcsine transformation does not 
well approximate a normal distribution.)
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We apply this method to the detrended, smoothed, and 
normalized data in Fig. 1b. Thus, it is possible to identify 
the length of time windows where one series leads another, 
and when they shift in being leading or lagging. In addition 
to the LL relation between paired cyclic time series, we also 
calculate an ordinary linear regression (OLR) between the 
series. If the β—coefficient (the slope) are positive, the two 
series are said to be pro-cyclic. If the coefficient is negative, 
the two series are said to be countercyclic. Figure 2d shows 
how LL relations and the β -coefficient depend on the shift 
between the paired sine functions. If the shift, φ, between 
two series x(t- φ) and y(t) are less than ¼ of their common 
cycle period, series x(t) is leading series y(t) and the two 
series are pro-cyclic. However, most cyclic series do not 
satisfy the formal conditions for OLR (Pyper and Peterman 
1998). Furthermore, if two paired series have causal rela-
tions to each other, the cause would be shifted backwards 
relative to the other but could still be closely similar to the 
first. We here do not shift the series relative to each other 
because the sign of the LL relations as well as its shift, φ, 
may change with time. The OLR test statistics therefore only 
suggest the strength of the association between the two time 
series.

3.3  Stacking LL relations

If there are teleconnections that govern the LL relations 
between global ocean variability series, then when the LL 
strength series LL(x,y) are stacked (superimposed) the peri-
ods with high strength should reinforce each other, and peri-
ods where the LL relations change should cancel each other. 
(When the LL relations change, their values will be close 

to zero because half of the angles, θ, in the expression for 
LL are positive and the other half is negative.) Therefore, 
if we see troughs in the stacked LL relations, they would 
distinguish a weakening of LL relations or global turning 
points for LL relations. The method we use is a version of 
the multiple window spectrum (MWS) method, (Johnson 
et al. 1996).

3.4  Stacking cycle periods

We identify cycle periods with three methods. First, we 
apply the PSD algorithm to the time series. The PSD pro-
duces a time series for the strength of the cycle periods in 
time series. As with the LL- series, we stack PSDs for sev-
eral climate time series. The assumption is that cycle periods 
that are common for several series will reinforce each other, 
whereas other cycle periods will cancel each other. Second, 
we identify the series crossings with the zero line for the 
series that first have been detrended, centered and normal-
ized to unit standard deviation. The third method depends 
on the dual presentation of cyclic series. A common cycle 
period for two series x (t) and y(t) will give a closed curve 
when the series are plotted on the x- and y- axes of a phase 
diagram for the two series. This last method is called the 
cumulative angle method.

4  Results

The time series of the five variables and the detrended and 
LOESS (0.3) smoothed time series are shown in Fig. 1a and 
b, respectively. In Fig. 1b, we also show the time series for 
∆GTA. We first show the result of LOESS smoothing on the 
identification of cycle periods, then the LL relations and last, 
the relation between ∆GTA,  CO2 and the stacked LL series.

4.1  Cycle periods

The PSD graph of the smoothed series can be compared 
to that of the raw series (Fig. 1c and d). By smoothing, the 
peaks that show decadal variations (12–15 years) become 
non-significant. The smoothed series are dominated by cycle 
periods 21–23 and 28–29 years long. However, the cycles 
identified in Fig. 1c are still present in Fig. 1d. The peaks 
at very short oscillations (< 5 years) are probably due to 
stochastic variations because two uniform stochastic distri-
butions will show a high frequency of oscillations less than 
5 years long (Seip et al. 2019a, b).

4.2  LL relations

The five variables, AMOC, SOI, PDO, GTA, and  CO2, will 
give ten pairs of LL relations that vary with time in the 

Fig. 3  Statistics for climate variables. a) The absolute value of the 
stacked LL relations for the ten sets of paired climate variables, ΣLL 
(10), the stacked LL relations for the three paired ocean variables: 
ΣLL(3)O and the stacked series for three pairs of series where the 
ocean variables are paired to GTA. ΣLL(3)GTA. The six lowest val-
ues in the graph are at the years 1900, 1926, 1965, 1977 1997 and 
2013. b) ∆GTAS and ∑LL(10); upper two series: ∑LL(10) and 
∆GTAS. LOESS(0.4, Residuals) and LOESS(0.1) smoothed; regres-
sion:1880–1955: r = 0.35, p < 0.001. Lower two series: ΣLL(10) and 
∆GTA. LOESS(0.4) smoothed, r =—0.39, p < 0.001. Red horizon-
tal lines denote hiatus periods in (b). Open circles show date for the 
troughs in (a). c) LL relations between global temperature change 
ΔGTA and all ten pairs of interaction series ∑LL(10) Residual after 
detrending with LOESS (0.4). The five climate variables are AMOC, 
SOI, PDO,  CO2, and GTA. Open circles show years when the bold 
curve crosses or touches the zero line. d) LL relations between global 
temperature change ΔGTA and all ten pairs of interaction series 
∑LL(10), the LOESS(0.4) smoothed line. Red droplines delimit 
the period 1926 to 1946. e) Phase plot for the pair ΣLL(10) and 
∆GTA LOESS(0.4) residuals and LOESS(0.1) smoothed during the 
period 1926–1946. f) Phase plot for the pair ΣLL(10) and ∆GTA, 
LOESS(0.4) residuals and LOESS(0.1) smoothed. Black dots corre-
spond to transition points between positive and negative LL relations 
in Fig. 3d

◂
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period 1880 to 2017 (PDO from 1900). Figure 3a shows 
stacked series of the absolute value of the three pairs that 
can be formed from the three ocean variables, ΣLL (3)O, 
the three series where the ocean variables are paired with 
GTA, ΣLL(3)GTA; and the 10 LL- pairs that can be formed 
from all five variables, ΣLL (10). During periods with 
peaks in the series, there are persistent LL relations. Dur-
ing the shorter periods with troughs, several series change 
the direction of LL relations simultaneously or the LL rela-
tions become weak (close to zero). It is seen that peaks and 
troughs occur at about the same time in the 10- and the 3- 
series. The climate indices changed direction synchronously 
in 1900, 1926, 1965, 1977, 1997, and 2013, with the change 
in 1997 as a strong event. The years for synchronous changes 
correspond with the beginning and end of the 1943–1975 
and the 1997/8—2013 hiatus periods. We examined closely 
the LL directions between the five variables 5 years before 
and after the 1997 hiatus period. In the sequences below, 
the arrows point from the leading series to the target series. 
The most pronounced changes were that we had the LL rela-
tions: GTA → AMOC → PDO five-years before 1997, but 
PDO → AMOC → GTA five years later, in 2003. We found 
the AMOC → PDO before and the PDO → AMOC after also 
the 1943–1975 hiatus, but the 1894–1912 hiatus shoved only 
weak and non-significant LL relations.

4.3  The ∆GTA, atmospheric CO2, ocean interactions, 
ΣLL (10)

To compare ∆GTA with the resulting LL relations, ΣLL (10) 
on a bi-decadal scale, we disentangle bi-decadal variation 
from variations with longer periods. We did this by LOESS 
(0.4) smoothing the series strongly and calculating the 
residuals as an expression for bi-decadal cycles. The results 
are shown in Fig. 3b. The open circles designate the years 
with troughs in the ΣLL(10). Figure 3c shows that oceanic 
and atmospheric interactions, ∑LL (10), both lead and lag 
ΔGTA on a decadal scale. The open circles suggest shifts in 
LL relations. Periods with persistent LL relations are about 
ten years. The LL relations for the strongly smoothed time 
series in Fig. 3b (lower two series) are shown in Fig. 3d.

In Fig. 3e, we show a phase plot of the bi-decadal series 
from 1926 to 1946. A phase plot for cyclic series allows us 
to make two interpretations. i) We will see if there is posi-
tive or negative association between the two series, and ii) 
the rotational direction of trajectories in the plot allows us 
to see which of the series is leading the other. From 1926 
to 1940, the rotation is clockwise and ∆GTA relatively per-
sistently leads ΣLL(10). From 1940 to 1946 rotations are 
counterclockwise and ΣLL(10) leads ∆GTA. It requires 17 
years to close a curve in the phase plot. This shows that 
there is a common cycle period of 17 years for the two series 
ΣLL(10) and ∆GTA. Figure 3f shows a phase plot for the 

low frequency component of ∆GTA and ΣLL(10). Years are 
shown in the figure when the rotational direction changes. 
The years correspond to changes in LL relations in Fig. 3d.

4.4  Structural break in 1960

The residual series (upper two series) are pro cyclic until 
1960 (r = 0.25, p < 0.05, n = 72) and the common cycle 
period is 21.1 ± 1.8 yrs. (Cumulative angle method). The 
strongly smoothed series are counter cyclic (r =—0.51, 
p < 0.001, n = 119) and show common cycle periods of 
65.3 ± 10.9 yrs. (Zero-crossings method).

5  Discussion

We find distinct timing of persistent LL relation between 10 
pairs that can be constructed from five variable: three ocean 
variables, the rate of change of GTA, ∆GTA, and atmos-
pheric  CO2. The changes in ΣLL(10) coincide with major 
phase shifts in PDO (shifts between warm and cold periods), 
and both starts and ends of the changes correspond well with 
the beginning and ending of the last two hiatus periods in 
global warming, Fig. 1b.

5.1  Cycle periods

An analysis of oscillations in the AMOC, the SOI and the 
PDO with the PSD method suggests that the series are super-
positions of distinct components of ocean oscillations with 
specific cycle periods. For PDO (or Pacific decadal vari-
ability, PDV), Newman et al. (2016, p. 4402) show that the 
series describe several distinct mechanisms and time scales.

Detrending and smoothing To disentangle component 
time series in the observed variability series, time series 
are often detrended, smoothed and normalized in some way. 
We smoothed the raw time series to more closely describe 
multidecadal variations. Oscillations of 21–23 years and 
28–29 years dominate the smoothed time series in the PSD 
graphs, and bi-decadal cycles are identified as common cycle 
periods for ∆GTA and ΣLL (10) for the residual series in 
Fig. 3b, upper two series. The oscillations of 21–23 years 
correspond to the interdecadal variations of 21.39 ± 1.34 
years identified by Wei et al. (2019), and were proposed by 
the authors to partially cause the last hiatus period 1998- 
2013. Wills et al. (2018, p.2491–2) found variabilities on the 
10–20-year time scales that contribute to the variability of 
their PDO series. However, Meehl et al. (2021, p. 41) sug-
gest that the AMO and PDO series are not cyclic and that 
the variability varies between about 10 and 30 years. We 
found with the cumulative angle method the average cycle 
periods to be 21 years and with a standard deviation of 9%. 
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We use the term cycle—series, but do not require that the 
cycles are stationary.

5.2  LL relations between ∆GTA, atmospheric CO2, 
and ocean variables

We first show our major results, then we list findings that 
may contribute to an explanation of the results. Third, we 
compare our results to observations reported in the literature.

We found that there is a concerted global change in the LL 
relations between pairs of five climate variables, ΣLL(10). 
The timing of the changes was identified by troughs in the 
time series for ΣLL(10). In Fig. 3a, we added droplines that 
correspond to the troughs. Four of the dates for pronounced 
changes in the ΣLL(10) relations were also found as major 
phase shifts for a PDO—like mode by Newman et al. (2016, 
Fig. 6) and by Wills et al. (2018 p. 2491), i.e., in 1925–26; 
1977, 1997–1998, and 2013–2014. There is one exception, 
the years 1946–1947 showed a shift in PDO, but no distinct 
trough in the ΣLL(10) series.

The patterns in Fig. 3a suggest that the LL relations 
between the ocean variables, ΣLL(3)O compare well with 
the patterns between all LL relations for all five variables:

The 1997–98 change was most pronounced. Five years 
before, the year 1992, was a year when PDO had a posi-
tive, warm phase and AMOC (unit Sv) a high value in its 
cyclic component. In 1992, we obtained the LL relation 
GTA → AMOC → PDO. In the year 2003, 5 years after 1997, 
PDO had a cold phase and the LL relation had switched 
to PDO → AMOC → GTA. In addition, the LL relation 
AMOC →  CO2 changed sign around 1997 to  CO2 → AMOC. 
There are also direct LL relations between PDO and GTA, 
but they were not so well synchronized with the LL- changes 
in 1997. Other studies also examine LL relations between 
the AMOC, the AMO, the North Atlantic Oscillation (NAO) 
and PDO. However, most studies use autocorrelation tech-
niques that apply to the full time series, e.g., Sun et al. (2021, 
AMOC time series 1871–2018) and Nigam et al. (2020, time 
series 1900–2018). Thus, their LL relations will probably be 
an average relative to ours.

In the literature, several other events around 1997 were 
reported. In 1997, the last hiatus phase was initiated. In 1998 
El Niño was in a warm phase, the Pacific cross equatorial 
wind index (m  s−1) was low, and Pacific precipitation anom-
alies were high, Hu et al. (2014, Figs. 1 and 2). Concurrent 
with changes in the AMOC around 1997, the Atlantic multi-
decadal oscillation (AMO) changed from a negative, cold 
phase, to a warm phase and this change was accompanied 
with a change in the zonal mean meridional stream func-
tion across equator in the Pacific  (5oS, 5° N), Gong et al. 

(3)

∑
LL(10) = 2.17 ×

∑
LL(3) + 2.15,R2 = 0.59, p < 0.001, n = 130

(2020, Fig. 9). However, the physical processes connecting 
LL relations and variabilities in PDO, the AMOC (units Sv) 
and the AMO (units oC for sea surface temperature) need to 
be analyzed further, (Yuhan Gong, School of Atmospheric 
Science, Nanjing University of Information Science & Tech-
nology, Nanjing 210044, China, personal communication.)

5.3  Cycle periods, LL‑ periods, and a structural 
break around 1960

Several studies refer to internal ocean mechanisms for ocean 
variabilities and some studies directly or implicitly assume 
that there are changing LL relations between ocean basins. 
An overview of research that examines how different physi-
cal processes contribute to PDO variability is given in New-
man et al. (2016).

5.3.1  The short, ≈ 20 years cycles

Internal ocean mechanisms Recently, Arzel et al. (2018, 
p. 6418) show that inter-decadal oscillations (≈ 20 years) 
are driven by a hydrodynamic (baroclinic) instability of 
the North Atlantic Current and no changes in the surface 
forcing (wind or heat flux) are needed. The energy source 
for the variability originates from the baroclinic instabil-
ity. With increasing eddy diffusivity, K, the cycle period 
moves into the multidecadal scale and increases up to about 
50 years. Seip and Grøn (2019) found that when two oscil-
lating time series interact, they will result in distinct cycle 
periods. Both studies may point to properties of stochastic 
series that interact, and the finding that shuffling a card deck 
seven times gives a random distribution (Bayer and Diaconis 
1992) may serve as a metaphor for the existence of distinct 
cycles resulting from interactions between stochastic series.

Heat exchange mechanisms A second group of explanations 
refer to heat exchange mechanisms between ocean basins 
that require time to take place. The causes for the variabili-
ties may be related to sequential interactivity between the 
Pacific and the Atlantic through the atmospheric Walker 
circulation and teleconnections (Meehl et al. (2021, p. 41), 
or sea surface temperature warming by long range radiation 
caused by warmer water and higher concentration of water 
vapor in the troposphere (Yao et al. 2022).

External mechanisms Volcanism has been suggested as a 
source for climate variability (Huybers and Langmuir 2009, 
2017; Birkel et al. 2018; Buntgen et al. 2020). In particular, 
the little ice ages during the last 2000 years have been asso-
ciated with volcanism, but association with hiatus periods 
is, to our knowledge, absent.
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Pro and counter cyclisity The interaction between the Pacific 
and the Atlantic takes time causing the temperature vari-
abilities to be shifted relative to each other, (but less than ½ 
variability length ≈ cycle period) and thus give the signature 
of pro-cyclicity. The time argument apply also if it is the 
Arzel et al. (2018) or the Seip and Grøn (2019) mechanisms 
that govern the cyclic behavior.

To our knowledge, no studies associate weak LL relations 
with hiatus periods. If the hiatus period is (partially) caused 
by the upper ocean layers being colder (or heat being trans-
ported to deep ocean layers < 300 m), then both the Atlan-
tic and the Pacific Ocean’s surface waters should cease to 
warm, or become colder (von Kanel et al. 2017; Yao et al. 
2017; Wu et al. 2019). Our results also suggests that there 
are persistent cycles within a narrow range of cycle period 
durations. Thus, based on the cold ocean temperatures in 
both the Atlantic and the Pacific oceans required by the hia-
tus theory (Wu et al. 2019) and on the regular periodicity of 
the ocean series we suggest that internal ocean mechanisms 
are the most likely explanation for the PDO’s and AMO’s 
oscillating behavior.

5.3.2  The long ≈ 60 years cycles

There is a superimposed longer temperature variation in 
∆GTA which lasts for about 65 years, and which is counter 
cyclic to ΣLL (10), R =—0.50, p < 0.001, Fig. 3b. The ampli-
tude of the long temperature variation, A, is about twice the 
amplitude of the short variations, a, with a/A = 0.48. We do 
not know the origin of the 65 years cycle and multidecadal 
long-term cycles are also difficult to identify because long-
term climate time series are based on proxy data and there-
fore uncertain. However, there is strong evidence that long-
term multidecadal to centennial variabilities occur, although 
it is uncertain if they belong to a series with pseudo-cyclic 
characteristics. For example, long-term climate variability 
of 40 years was reported for AMOC (Latif et al. 2022) and 
50–70 years climate oscillations were reported over the 
North Pacific and North America (Minobe 1997).

Internal ocean mechanisms Also, the long cycle periods, 
≈ 40–70 years., may be generated by the mechanisms sug-
gested by Arzel et al. (2018) or Seip and Grøn (2019).

Heat exchange mechanisms Cheng et al. (2015) suggest that 
there are global water column depths that change in being 
cool and warm and that may have impacted the recent sur-
face warming slowdown, but also contributed to a 60-year 
cycle period. The AMOC is suggested to deliver heat to 
the deep Atlantic Ocean (Chen and Tung 2018; Wei et al. 
2019) and if the heat transport changes direction, cycle-
like variabilities may occur. A survey of possible “bridges” 

between oceans and the atmosphere and between ocean 
basins is given in Wei et al. (2019). D’Asaro et al. (2011) 
link ocean-fronts to downward propagating internal waves, 
again being a possible cause for cycle variability on short 
and long timescales.

External mechanisms Volcanic eruptions may lead to multi-
decadal to centennial cold periods, by first instigating cold 
spells lasting for 2–4 years that then are followed by cas-
cades of mechanisms that lengthen the cold period (Marshall 
et al. 2022). However, the impact of volcanism is studied 
over long time spans, say during the last 2000 years (Bunt-
gen et al. 2020, the Common Era), whereas hiatus periods 
are only identified in temperature series from about 1880. 
So applying volcanism arguments to the recent industrial era 
are uncertain. The counter cyclic nature of the long cycles 
would indicate that the mechanisms that cause temperature 
variabilities use longer than ½ cycle common period to gen-
erate the temperature variability.

5.3.3  LL‑ periods and PDO

Most studies on the LL relations use cross-correlation tech-
niques where the skill of the LL characteristics improves for 
long stationary series. Thus, the studies only identify lead 
or lag relations that apply to the full series. In a study that 
compared modeling results (HadGEM2-ES), Seip and Wang 
(2018, Fig. 3) found similarities between LL relations for El 
Niño and PDO that would indicate that the model contains 
constructs that would be sufficient to identify causes for 
cycles in LL relations. However, they did not make further 
analyses.

Here, we found an almost perfect connection between the 
dates for weakening of the LL relations, ΣLL(10), and the 
dates when PDO shift between negative (-) and positive ( +) 
phases (There is one exception). One event could cause the 
other event, but the metaphor for what comes first, the “hen” 
or the “egg” may so far apply. We do not know if tempera-
ture changes in PDO drives LL changes in the oceans, or if 
it is the events with weakening of the ocean oscillations that 
changes temperatures in the PDO.

5.3.4  The hiatus periods

To our knowledge, there is no consensus on the ultimate 
cause of the hiatus periods in global warming. A train of 
causes and effects may be as follows. Starting from the 
observations of the hiatus periods, they seem to be linked 
to cold-water phases in ocean variabilities, e.g., Dai et al. 
(2015), Yao et al. (2017) and Wu et al. (2019). The cold-
water phases are linked to warm and cold phases at deep 
waters (Cheng et al. 2015) caused by transport of heat to 
large depths (Wu et al. 2019). If the pronounced troughs in 
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ΣLL(10) can be associated with water movements and heat 
transport, then changing LL relations may contribute to the 
hiatus periods, Fig. 1b. However, several smaller changes 
in ΣLL (10) do not appear to be related to the hiatus peri-
ods. Thus, our hypothesis that the teleconnected changes 
in LL relations and ∆GTA have reciprocal impact on each 
other, ΣLL ↔ ∆GTA are supported, but we do not know the 
importance of the reciprocal impact for the creation of hiatus 
periods. One hypothesis based on the LL relations found 
before and after the 1943 and the 1997/8 hiatus periods may 
be that changes in AMOC instigate a hiatus period whereas 
changes in PDO terminate it.

5.3.5  Structural break round 1960

The structural break in 1960 may be associated with a 
response to increasing atmospheric  CO2 and a weakening of 
the AMOC (Thornalley et al. 2018). There is also an increas-
ing trend in the  CO2 flux from the atmosphere to the oceans 
around 1960 (Le Quere 2016their Fig. 4d).

5.4  Robustness

The very good correspondence between ΣLL(10) and the 
major phase shifts in PDO strengthens the finding that there 
are both concerted changes in LL relations across the globe 
and the correctness and relevance of the PDO.

The PDO is assumed to be a superposition of several 
series that are generated by different mechanisms (Newman 
et al. 2016). Therefore, to make interferences about causal 
effects the series must be disentangles. There is no canoni-
cal way to choose the LOESS smoothing parameters since 
the chance is always that there are peaks caused by dynamic 
chaos (Sugihara and May 1990; Tømte et al. 1998) or by 
interactions between the embedded series (Seip and Pleym 
2000). However, several methods are employed to disen-
tangle component series. Moving average n-year periods is 
used by several authors, Chylek et al. (2014 a n = 5), Wu 
et al. (2019, n = 9 and 21). Wu et al. (2011a, b) used the so-
called ensemble empirical mode decomposition to identify 
the multidecadal variability.

5.4.1  Empirical results for the LL‑ method

In Fig. 3e, we plotted the time series for ΣLL(10) and ∆GTA 
from the years 1926 to 1946 in a phase plot. The trajectories 
correspond well to the time series pattern seen in Fig. 3b. 
In Fig. 3f, we see that the leading and lagging relations in 
Fig. 3d show up as counter- clockwise and clockwise rota-
tions in the phase plot.

To further examine the robustness of the LL relation, we 
applied the LL-method to the ∆GTA LOESS(0.3) smoothed 
series and examined the LL relation between this series and 

the same series shifted five years forward. The result showed 
that the series not shifted forward was leading the forward 
shifted series 100% of the time. Another empirical example, 
from economics, showed that a predictive sentiment index 
that per definition should be a leading index to industrial 
production (IP) was leading IP 78% of the time. When it was 
not leading, the economy was abnormal (Seip et al. 2019a, 
b).

Although we focus on the relations between the AMOC 
and the PDO, our study extends the relation between PDO 
and LL relations to the variables  CO2, GTA and SOI. The 
results for the latter variables were less strong than for the 
AMOC/ PDO pair and would need extended background 
theories for reasonable interpretations.

5.5  Future work

Our empirical study leaves several open questions. We do 
not know which of the suggested mechanisms that cause 
regular bi-decal cycles during the studied period. We do 
not know why the bi-decal cycles show pro cyclisity for 
∆GTA and ∆LL (10) or why the multidecadal series tend 
to show counter cyclicity. The results are empirical, and we 
suggest that further explanations than we can give here need 
to be explored in modeling studies. One could corroborate 
the modelling results by applying the HRLL method to the 
series generated by the model.

6  Conclusion

A relatively novel technique allows us to identify lead-lag 
(LL) relations over short periods. By applying this tech-
nique to ten pairs that can be formed from the five variables: 
AMOC, SOI, PDO,  CO2 and GTA, we identify synchronous 
timing of changes in LL relations during the years 1900, 
1926, 1965, 1977, 1997, and 2013. The years correspond 
almost exactly two years when PDO changes between warm 
and cold phases. The stacked LL relations, ΣLL(10), and 
the rate of change in GTA, ∆GTA, showed pro-cyclic, bi-
decadal (≈ 20 years) variability until about 1960. From 
1960 to 2015, both series still showed bi-decadal variabil-
ity, but not with synchronous movements. The pronounced 
1997 change in global LL relations coincided with a change 
from GTA → AMOC → PDO to the opposite LL relation 
PDO → AMOC → GTA, and the PDO changed from a warm 
to a cold phase and GTA showed a hiatus period.
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