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Abstract: Deep neural networks are complex machine learning models that have shown promising
results in analyzing high-dimensional data such as those collected from medical examinations. Such
models have the potential to provide fast and accurate medical diagnoses. However, the high
complexity makes deep neural networks and their predictions difficult to understand. Providing
model explanations can be a way of increasing the understanding of “black box” models and building
trust. In this work, we applied transfer learning to develop a deep neural network to predict sex from
electrocardiograms. Using the visual explanation method Grad-CAM, heat maps were generated from
the model in order to understand how it makes predictions. To evaluate the usefulness of the heat
maps and determine if the heat maps identified electrocardiogram features that could be recognized
to discriminate sex, medical doctors provided feedback. Based on the feedback, we concluded that, in
our setting, this mode of explainable artificial intelligence does not provide meaningful information
to medical doctors and is not useful in the clinic. Our results indicate that improved explanation
techniques that are tailored to medical data should be developed before deep neural networks can be
applied in the clinic for diagnostic purposes.

Keywords: explainable artificial intelligence; electrocardiograms; heat maps

1. Introduction

Electrocardiograms (ECGs) are widely used in hospitals and clinics to evaluate the
electrical currents in the heart and discover anomalies such as Myocardial Infarction
(MI). The method provides high-resolution time series data and is fast, inexpensive, and
easily accessible, making ECGs an obvious target for Artificial Intelligence (AI). Machine
Learning (ML) is a subfield of AI that learns from data. The usefulness of ML to extract new
information from ECGs has been shown by earlier research that predicted sex from ECGs [1],
a phenotype medical doctors are unable to infer from reading ECGs. There is also a high
potential for exploiting the power of ML to develop systems for the automatic medical
diagnosis of patients. Earlier research has, e.g., shown that ML models are able to accurately
diagnose atrial fibrillation, hypertrophic cardiomyopathy, and long QT syndrome from
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ECGs [2–4]. However, understanding what parts of the input data ML models use to make
predictions is often challenging. This is especially true regarding complex models such as
deep neural networks. Explainable Artificial Intelligence (XAI) aims to make ML models
more interpretable by providing explanations about the models and their predictions.
Explaining a model and its outputs can increase the end-users’ trust in the model. In the
medical field, the lack of interpretability of ML models has been identified as an important
challenge that can limit the implementation of such models in the clinic [5,6]. From a
clinical perspective, it is, therefore, important to successfully explain the model’s outputs
to healthcare personnel. Moreover, understanding the model’s predictions can provide
insight into the domain of interest since the model might detect relationships that are not
obvious to humans [1].

Prior work evaluating heat maps for explaining diagnostic models in the fields of
radiology and ophthalmology concluded that the explanations did not highlight areas of
relevance for medical doctors [7,8]. On the other hand, heat maps did focus on a specific
feature in ECGs when a deep neural network was developed to distinguish sex, providing
new medical knowledge to cardiologists [1]. Due to diverging results, the aim of this paper
was to further explore whether visual XAI methods can increase our understanding of
“black box” ML models for a medical application. More specifically, we investigate the
usefulness of heat maps in the clinic for interpreting sex differences in ECGs, inspired by
the work by Hicks et al. [1]. It is increasingly recognized that females have higher rates
of misdiagnosis of MI relative to males [9] and suffer longer delays before treatment [10].
While the observed sex differences likely relate predominantly to differences in illness
presentation, we reasoned that understanding sexual dimorphism in ECG presentation
of MI could be useful in defining sex-specific adverse ECG features. We applied transfer
learning of a deep neural network, originally developed on data from two population
studies [11,12], to predict a patient’s sex from ECG signals. The model was fine-tuned
on data from the PTB-XL dataset [13,14]. Furthermore, heat maps were created using an
explanation method called Gradient-Weighted Class Activation Mapping (Grad-CAM) to
explain model predictions for normal and MI ECGs [15]. Practicing physicians evaluated
the heat maps, concluding that the heat maps were not clinically useful and did not high-
light consistent waveforms in the ECGs. Instead, the heat maps increased the skepticism
toward the model. Before applying deep neural networks for ECG-based medical diagnoses
in the clinic, we, therefore, recommend developing explanation methods that are tailored
to medical data analysis and towards medical practitioners’ needs.

The main contributions of our work are:

• We assessed the usefulness of Grad-CAM-based heat maps as a tool for interpreting
deep neural networks’ decision-making processes in analyzing ECGs, offering a critical
evaluation of the utility of current XAI methodologies in clinical settings.

• Our findings highlight the shortcomings of the existing explanation methods, specifi-
cally in their failure to provide meaningful or in clinical practice applicable insights to
medical practitioners.

• We emphasize the need for critical evaluations of existing methods and for improve-
ments and advancements in XAI techniques before they can be effectively utilized for
clinical practice.

• We argue for the development of more holistic XAI methods that cover all aspects of a
model’s functioning, from its development to its predictions (batch or real-time).

• We underline the importance of interdisciplinary collaboration in creating model
explanations that are genuinely useful to healthcare professionals, ensuring that these
methods meet the unique needs of medical professionals.

The rest of the paper is structured as follows: The dataset and method are described
in Section 2. The results are presented in Section 3 and discussed in Section 4. Finally,
conclusions are drawn in Section 5.
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2. Materials and Methods
2.1. Dataset

We obtained raw signal data from 21,837 12-lead ECGs from 18,885 patients (some
patients contributed several ECGs) collected using devices from Schiller AG between
1989 and 1996 from the PTB-XL dataset [13,14] publicly accessible at Physionet [16]. The
dataset has been described in detail previously [13]. The ECGs lasted for 10 s each and
were recorded using a sampling frequency of 500 Hz [14]; see also Figure 1. Patient
characteristics, including sex, age, body weight, and cardiac diagnoses, are also available.
The dataset is balanced with regard to sex. Five diagnostic superclasses are included:
normal, MI, ST-segment and T-wave changes, conduction disturbances, and hypertrophy.
Normal ECGs and MI are the largest superclasses [13].

Figure 1. Example of an Electrocardiogram (ECG) from the PTB-XL dataset, showing Lead II. Time is
on the x-axis, and amplitude is on the y-axis. The ECGs were sampled at a frequency of 500 Hz per
second. Each ECG lasted for 10 s, giving 5000 measurements per lead.

2.2. Deep Neural Network

Generative Adversarial Networks (GANs) consist of two ML models: a generator and
a discriminator. The generator generates fake data, which mimic the observations in the
training dataset. The discriminator is trained to distinguish real data in the training dataset
from fake data produced by the generator. The generator and discriminator are trained
together by competing against each other. The generator tries to fool the discriminator
by creating increasingly more realistic data, while the discriminator tries to disclose the
generator [17]. Because the discriminator is a binary classifier, it can be fine-tuned to
perform other classification tasks.

Because the focus of this study was to evaluate model explanations in clinical practice
rather than developing novel neural network architectures, we applied transfer learning
using the discriminator of a previously developed GAN called Pulse2Pulse [18]. The
GAN was trained on data from two population studies [11,12] to produce normal ECGs.
Pulse2Pulse can generate fake ECGs with similar intervals and amplitudes as real ECGs [18].
We transferred the weights from the discriminator of the GAN after it had been trained
for 2500 epochs, at which point, the GAN reached its highest performance in the original
paper [18]. Originally, the discriminator classified ECGs as real or fake. In our experiments,
we changed the discriminator to predict sex by fine-tuning it on the training and validation
data from the PTB-XL dataset. Its architecture is outlined in Figure 2. Transfer learning
is an attractive tool, especially in cases with little training data [19]. Similar approaches
have been described for damage detection in concrete structures [20] and stain-free cell
classification [21]. To our knowledge, this is the first time transfer learning has been applied
to a GAN discriminator for classification in cardiology.
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Figure 2. Architecture of the Pulse2Pulse discriminator, which was applied for transfer learning in
the current study. Leaky ReLU is the activation function. Abbreviations: Conv1d = one-dimensional
Convolutional layer, PhaseShuffle = Phase Shuffling layer. The figure was inspired by the figure
in [18].

Due to computational demand, we used 5000 and 200 samples for training and valida-
tion, respectively. These samples were randomly picked from the recommended training
and validation parts of the PTB-XL dataset, eliminating the risk of selection bias. The model
was fine-tuned for 1000 epochs on the selected training and validation samples, and the
model weights from the epoch with the highest accuracy on the validation samples were
saved. The full test set was used to evaluate the final model. Because a single patient could
contribute with more than one observation (ECG) to the dataset [13], we ensured that all
ECGs from the same patient were placed in either the training, validation, or test set. This
way of splitting the data on the patient level was performed to avoid data leakage. For
comparing model performance on MI ECGs and normal ECGs, samples annotated as either
MI or normal were extracted from the test set and analyzed as two separate sub-test sets.
Subjects included in these subsets were also present in the full test set. To avoid ECGs
with empty or contradicting diagnostic superclasses, only subjects with one registered
diagnostic superclass were included in the additional sub-test sets. The distributions of
males and females in the data used to train and test the model are provided in Table 1.

Table 1. Sex distributions in the training, validation, and test sets. Test normal and test Myocardial
Infarction (MI) ECG are subsets of the full test set.

Dataset Female Male Total

Training 2437 2563 5000
Validation 90 110 200
Test 1066 1137 2203
Test normal ECG 427 486 913
Test MI ECG 118 138 256

2.3. Model Explanations

There are several ways to explain ML models. Intrinsic explanations aim to explain
the inner workings of a model by using the model’s internal weights. Grad-CAM [15]
is among the most-popular visual intrinsic explanation methods. Since it also showed
successful results in explaining sex predictions from ECGs in earlier work [1], Grad-CAM
was a natural choice of explanation method in this study. The method provides heat maps
that highlight the areas in an image where the activations in the model are strongest given
a certain prediction. Consequently, the end-user can investigate what regions in the image
the model reacts to when predicting what the image represents. Even though ECGs are time
series data, they can be analyzed using the standard 10 s rhythm strip containing registered
electrical signals captured over eight leads. We adopted this approach, making it possible
to apply Grad-CAM to our model and data. For heat map generation, a modified version
of the PyTorch Grad-CAM package was applied (https://github.com/jacobgil/pytorch-
grad-cam, accessed on 6 July 2023). Heat maps were extracted from the penultimate
convolutional layer in the neural network to obtain adequate resolution for the heat maps.

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
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The resulting heat maps had the time dimension on the x-axis and the amplitude of the
ECG signals on the y-axis.

2.4. Feedback from Physicians

To evaluate the heat maps as an explanation method and determine if our methodol-
ogy identified ECG features that could be recognized to discriminate sex, two practicing
physicians examined the heat maps with ECG waveforms overlaid. The physicians were
located in the United Kingdom and Denmark, respectively, and had experience in general
practice, general internal medicine, diabetes, and endocrinology. The feedback from the
physicians was structured as an interview, where the physicians inspected the heat maps
and spoke out about what they thought. They also asked questions if something was
unclear and suggested improvements. The interviews were recorded for future reference
after acquiring oral informed consent.

Furthermore, some selected heat maps were qualitatively evaluated for closer inves-
tigation of the quality. The heat maps were chosen purposefully, selecting the 15 heat
maps from normal male and female ECGs that were classified with the highest certainty
by the model. All eight leads that the model was trained on (Leads I, II, and V1–V6) were
included in the heat maps. Each physician evaluated the heat maps independently, blinded
to sex, and provided a written summary of their impressions. The results were discussed
in plenary before a common decision was made, inspired by the Delphi method [22].

2.5. Technical Details

All programming was performed using Python Version 3.8.11 and the PyTorch library
Version 1.9.1 for the deep neural network. The experiments were performed on an NVIDIA
DGX-2 server consisting of 16 NVIDIA Tesla V100 GPUs with 32 GB memory each. The
source code is publicly available (https://github.com/AndreaStoraas/UsefulnessECG_
Heatmaps.git, accessed on 6 July 2023).

3. Results
3.1. Model Performance

The model performance was measured based on the model’s ability to separate males
and females ECGs. Figure 3 shows the accuracies of the final model on the training,
validation, and test sets. The model achieved an accuracy of 81% on the validation set and
74% on the hold-out test set. Moreover, the model performed better on men than women.
For additional insight into the error distribution, the confusion matrix for the test set is
provided in Figure 4. When comparing the model performance on the subsets of the test
set containing normal ECGs and MI ECGs, the accuracy dropped from 80% to 71%. Again,
the model performed better on men than women.

3.2. Heat Maps

To explore which features of ECGs drove sex discrimination by the model, we created
heat maps using observations in the normal and MI sub-test sets that were correctly
classified by the model. In total, 919 heat maps were created and analyzed. The heat map
colors ranged from red to blue, where red represents the most-important areas and blue
represents the least-important areas. During heat map inspection, we found patterns of
dark-blue heat maps, indicating low model importance, and brighter or red heat maps,
indicating higher model importance. A general finding was that females typically had dark-
blue heat maps, while males had heat maps that were more evenly distributed between
blue and red. More specifically, 93.3% of the heat maps from females were dark, while
the corresponding number for heat maps from males was 60%. Examples of heat maps of
different color patterns are provided in Figure 5. The ECG signals from Lead II are overlaid.

https://github.com/AndreaStoraas/UsefulnessECG_Heatmaps.git
https://github.com/AndreaStoraas/UsefulnessECG_Heatmaps.git
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Figure 3. Performance of the Machine Learning (ML) model on the training, validation, and test sets.
Separate accuracies for males and females in the test set are also included.
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Figure 4. Confusion matrix for the final model when predicting sex on the full hold-out test set.

3.3. Feedback from Physicians

Two practicing physicians independently reviewed a sample of heat maps in an at-
tempt to identify features in ECG waveforms that our model used for sex prediction and to
evaluate the heat maps’ usefulness for explaining the model predictions. Unfortunately, nei-
ther physician could identify features of the ECG waveform that consistently corresponded
to the highlighted areas of the heat map, which the model utilized for discrimination.

Most of the heat maps did not highlight the same part of each QRS complex, such
as the downslope of the R-wave. This was found to be counterintuitive by the physicians
because they usually interpret QRS complexes separately. The physicians expected the
model to react to the same part of each QRS complex, making a repeating pattern of red
areas in the heat maps. Since this was typically not the case, it was difficult to link the
high-attention areas to specific features of an ECG. Moreover, the physicians’ confidence in
the deep neural network decreased after the heat map evaluation.

Some ECGs had quite bad quality and were challenging for medical doctors to inter-
pret. The physicians suspected that the bad-quality ECGs might explain why the heat maps
were uninformative since the model can learn and react to noise in the data.
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(a) Predicted probability = 0.000.

(b) Predicted probability = 0.000.

(c) Predicted probability = 0.986.

(d) Predicted probability = 0.093.

Figure 5. Example heat maps with overlaid ECG signals showing different color patterns. Corre-
sponding predicted probabilities are provided below each example. For Subplots (a,b,d), values
close to 0 indicate higher model confidence, while for Subplot (c), values close to 1 indicate higher
confidence.

The extracted heat maps for female individuals were typically dark-blue (indicating
that Grad-CAM did not find characteristic features in the females), while this was not the
case for males. The physicians suggested that the model learned characteristic patterns for
males. If these patterns were absent, the model simply classified the ECG as female.
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During the interviews, the physicians asked for the predicted probabilities and the data
distribution. We, therefore, extracted and inspected the predicted probabilities together
with the heat maps; see also Figure 5.

The physician consensus was that our XAI approach is not useful for identifying
ECG features that can highlight novel sexually dimorphic electrocardiographic features
to physicians.

4. Discussion

The physicians could not define any clinically meaningful ECG waveforms that the
model consistently reacted to. As such, it is unlikely that the heat maps will be helpful in
highlighting sexually dimorphic ECG features for clinical practice. More specifically, the
physicians found it difficult to understand the heat-map-generation process and thought
that the model reacted to areas in the ECGs that doctors would not react to. Even though
medical doctors do not know how to infer sex from ECGs, earlier findings suggest the
downslope of the R-wave to be an important feature for sex classification [1]. Despite
applying the same heat map method in this study, our heat maps did not consistently
highlight these ECG segments. Because the model interpreted 10 s-long ECGs, the attention
was distributed over a larger period of time, not focusing on one QRS complex, which
may result in smearing the attention out. Training the model on the median ECGs instead
might make the heat map evaluation easier for medical doctors. Median ECGs aggregate
the periodic signals and contain less noise. Each heat map is then restricted to a single QRS
complex, which might be more informative to physicians. This way of aggregating periodic
signals can be a useful preprocessing method when explanations are given as heat maps,
also beyond ECG analysis. In this study, median ECGs were not applied due to the nature
of the available data and because we applied transfer learning from an earlier model, which
was developed on 10 s ECGs.

Heat maps have several drawbacks as explanation methods. First, they depend on
which layer in the neural network they are extracted from. For Grad-CAM, the resolution
of the heat map is similar to the size of the convolutional feature map [15]. The last
convolutional layers are typically chosen because they capture higher-level details in the
input data while also containing detailed spatial information [15]. In our model, the last
convolutional layer had only five neurons, resulting in heat maps of low resolution. For
improved resolution, heat maps were extracted from the second to last convolutional layer.
Furthermore, heat maps explain single predictions and are less suitable for providing global
explanations about how the model works on the entire dataset. For future work, different
techniques for aggregating heat maps from several predictions will be tested.

Prior research supports our findings, showing that model explanations do not always
meet the needs of medical doctors [5,23]. One study explaining a deep neural network
predicting Alzheimer’s disease found heat maps not to produce medical imaging biomark-
ers that could be interpreted by humans [24]. For skin cancer detection, researchers found
Grad-CAM and kernelSHAP [25] not to provide heat maps with clinically meaningful
information [26]. Further on, two studies thoroughly evaluated several heat map methods
for interpreting X-rays analyzed using deep neural networks [7,27]. They concluded that
the heat maps were unable to generate consistent explanations that also highlighted the
regions of interest [7] and warned against applying the current heat map methods for
explaining deep neural networks in medical imaging [27]. Medical images can be quite
different from natural images, and deep neural networks are sometimes distracted by parts
of the data that seem irrelevant for the task [28]. Consequently, future work should explore
other XAI techniques than heat maps to explain ML models for ECG analysis. Moreover,
we experienced that the physicians asked for the model uncertainty and the dataset dis-
tributions of sex and diagnoses. Including this additional information can, therefore, be
useful when explaining and evaluating ML models for medical applications and increase
the doctors’ trust in the models.
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One concern among the physicians was the quality of the ECGs used for model
development. The data included in the PTB-XL dataset were collected more than 20 years
ago, between 1989 and 1996 [13]. At that time, the error rate for recording data using
medical devices was higher than today. Input data of bad quality will negatively affect the
generated heat maps and further affect the physicians’ heat map evaluations. However, our
model’s performance was acceptable, and other deep neural networks developed on the
same dataset for the same task achieved high accuracies (>84%) [29]. Therefore, the data
seem to be of sufficiently high quality for training ML models. The physicians’ negative
impression of the heat maps was most likely due to the applied explanation method and not
the neural network. Interestingly, the trust in the model decreased after showing the heat
maps to practicing physicians. Rather than being a useful tool for enhanced implementation
of ML systems, we found that explanations can, in some cases, increase the skepticism
toward the model. Taken together, our results underline the importance of tailoring the
explanation method to the specific use case and the end-users.

Our ML model achieved higher performance in classifying normal ECGs than MI
ECGs. One possible reason is that the majority of the ECGs in the training data were anno-
tated as normal, meaning that the model will be less familiar with MI ECGs. Because the
original discriminator was only trained on normal ECGs, this could also contribute to the
observed results. Nevertheless, the most-likely reason is disturbances in the ECGs caused
by MI, masking patterns that are used to distinguish between the sexes. Furthermore, the
model was better at classifying men than women, regardless of diagnosis. As shown in
Table 1, the sex distribution of the dataset was balanced, so it is unlikely that the observed
performance differences were caused by an overrepresentation of men. Indeed, ECGs differ
between the sexes [30,31], and female ECGs are more difficult to interpret than male ECGs.
Perhaps male ECGs include patterns that were recognized more easily by the model.

Our deep neural network was trained to infer sex from ECGs. While sex prediction
is not something that would be used in a clinical setting, we believe our evaluation of
the heat map explanations can be generalized to other deep-learning-based ECG analyses,
including the diagnosis of various cardiac conditions. Further research should, therefore,
look into how to explain deep neural networks for medical diagnosis in a way that meets
the needs of healthcare personnel.

A limitation of the current work is that we qualitatively evaluated one heat map
method, namely Grad-CAM, for explaining one deep neural network. An extended study
that both qualitatively and objectively evaluates a larger number of heat map methods on
several deep neural networks for ECG analysis has already been initiated by our research
group. It will be interesting to compare the findings from the presented work with similar
evaluations of other models and heat map methods.

5. Conclusions

This study investigated the usefulness of heat maps for explaining a deep neural
network predicting sex from ECGs. The results showed that the explanations were not
found useful by the domain experts and that the heat maps could not be applied to
obtain new medical knowledge. Our findings indicate that it is necessary to improve the
existing methods before they are ready to explain deep neural networks for diagnostic
purposes in the clinic. More effort should be made to develop holistic explanations that
cover all aspects of the model, from development to real-time predictions. Moreover,
interdisciplinary collaboration is essential to ensure that model explanations are useful for
healthcare personnel.
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