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a b s t r a c t

The usage of generative adversarial networks (GAN)s for synthetic time-series data generation has
been gaining popularity in recent years with applications from finance to music composition and
processing of textual content. However, beyond their reported success, few comparisons exist with
other artificial intelligence (AI) methods or standard mathematical models. Here, we test GANs
performance, comparing them with a well-known mathematical model, namely a Markov chain. We
implement comparative metrics based on one- and two-point statistics to evaluate the performance of
each method. We find that, similarly to other AI approaches, GANs struggle to capture rare events and
cross-feature relations and are unable to create synthetic faithful data. GANs are relatively successful in
replicating the auto-correlation function, but they still lag significantly behind simple Markov chains.
We also provide a qualitative explanation for this limitation of AI approaches.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the improvements in computation capabilities and the
ncreasing accessibility of large amounts of data, non-parametric
odels of time-series have become increasingly popular. It is
asy to understand why that is the case: non-parametric models
ave an almost universal application without the laborious task
f understanding and reducing the problem to a core of funda-
ental quantities to describe a system, often with inaccurate but
ecessary simplifications.
In this context, artificial neural networks (ANNs) based al-

orithms are used, e.g. to predict wind speeds [1], wind power
utput [2], air quality [3], the evolution of the price financial
ssets [4], the rate of infections during a pandemic outbreak [5]
r the number of patients arriving at a hospital’s emergency
ervices [6].
While it is obvious that being able to predict the future of

tatistical quantities is useful, these methods can further be used
n data augmentation when the original data is insufficient, or,
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e.g. in the medical domain, to produce anonymised data that can
be shared without strict ethical constraints.

Among these methods, one of the most popular is generative
adversarial networks (GANs) [7], which, after their success in
faithfully creating realistic images, have recently become popular
in time-series replication [8]. GANs consider two ‘‘coupled’’ ANNs
playing a zero-sum game. The first ANN is called ‘‘generator’’
and creates synthetic data with the objective to ‘‘fool’’ the sec-
ond ANN. This latter ANN is called ‘‘discriminator’’ and tries to
distinguish if a particular set of data is synthetic or not.

GANs have been applied to biomedical signal data, where
they have been used to model the time-evolution of data from
electrocardiogram, electroencephalogram, electromyography and
photoplethysmography [9]. GANs have also been used in natu-
ral language processing [10], generating music [11,12], predict-
ing pedestrian trajectory [13] and in predicting the evolution
of financial assets [14]. In the realm of biomedical signal data,
one type of time-series with several potential applications is
eye-tracking data, which can be used to determine personality
traits [15], drug consumption habits [16,17], as well as diagnosing
attention-deficit hyperactivity disorder [18,19] and autism [20].

In this paper, we will test the performance of GANs in re-

producing stochastic trajectories and compare them with some
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Fig. 1. Representation of a GAN: the generator tries to create data as faithfully
as possible, while the discriminator attempts at distinguishing real data from
that produced by the generator.

benchmarks from stochastic modelling. Eye-tracking data are par-
ticularly appropriate to evaluate GANs’ performance for two rea-
sons. Firstly, eye-tracking data reflect a broad panoply of foot-
prints flagging particular health states and features of human
behaviour. Secondly, they have very large kurtosis, i.e. they are
prone to extreme events, typically due to fast gaze relocations
in-between two areas of interest. These extreme events lead
to heavy-tailed distribution and ANN-based methods have been
shown to struggle to capture these distributions’ tails.

Thus, within the family of non-parametric models, we com-
are GANs’ performance with that of Markov models, which are
benchmark to describe stochastic time series [21]. Similarly

o AI methods, Markov models can be used to replicate a given
et of data without the knowledge of the underlying process.
hen compared to its AI counterparts, Markov models have some

dvantages: they can provide a unique time-continuous descrip-
ion of the system, or, alternatively, assert that a given process
s not time-homogeneous (stationary) or time-continuous [22].
urthermore, in a Markov model each parameter of the model has
straightforward meaning and thus an inspection of the model
an give us information about the system, something that does
ot generally happen for ANN-based methods.
We start in Section 2 by describing the technical details in

he implementation of different GAN architecture and Markov
hains. In Section 3 we describe the data that will be used to
est GANs and Markov models. Besides eye-tracking data we
ill consider synthetic data. Section 4 focuses on comparing the
esults obtained when using GANs and Markov chains for both
ynthetic and empirical data and finally, Section 5 concludes the
anuscript.

. Algorithms and methods

.1. GANs architectures

GANs are a subset of AI algorithms following the structure
epresented in Fig. 1. The generator is initialised with a random
oise vector z0 as input from which a time-series is generated.
his time-series is then analysed by the discriminator, which will
et either real data x or data generated by the generator, z, and
ill try to distinguish between both.
These two networks are trained together in a min–max game

ashion [23]. The discriminator is trained to maximise its cor-

ect labelling of the input as real or fake, while the generator

2

Table 1
The generator and the discriminator used in each of the GAN architectures
addressed in this paper, cf. Fig. 1.
GAN Generator Discriminator

RCGAN LSTM LSTM
TimeGAN bidirect. LSTM bidirect. LSTM
SigCWGAN AR-FNN C-Sig-W1
RCWGAN AR-FNN AR-FNN

tries to minimise it and tries to ‘‘fool’’ the discriminator. Ideally,
this simultaneous adversarial training will eventually lead to the
generator learning to create outputs that mimic the statistical
properties of the original data: as the discriminator gets more
accurate so must the generator in order to fool it.

Mathematically, a GAN implementation considers the follow-
ing objective function

L(G(z),D(x)) = Ex∼ρx [logD(x)]

+ Ez∼ρZ [log (1 − D(G(z)))] , (1)

where D(x) ∈ [0, 1] is the discriminator-assigned probability of
x being a real data point. Thus, Ex∼ρx [logD(x)] is the expected
fraction of correct guesses by the discriminator about real data
series x, among all trials in which the discriminator is evaluating
real data. In this context, G is the function characterising the
generator which maps an input noise series z into a series G(z).
See Fig. 1. Therefore, 1 − D(G(z)) represents the probability the
discriminator assigns of G(z) correctly being labelled as generated
data. The probability distributions of the real data series x, of the
nput noise z and of the generated series G(z) are represented as
ρx, ρz and ρG, respectively.

The task of the generator is to bring the probability distribu-
tion ρG of the generated series G(z) as close as possible to the
distribution ρx of real data series x, such that both terms on the
right-hand side are decreased. Simultaneously, the discriminator
will try to maximise both expected values, one by maximising
D(x), and the other by minimising D(G(z)). Therefore, having
defined the objective function in Eq. (1), the optimisation scheme
which trains the GAN model solves the min–max problem

min
G

max
D

L(G(z),D(x)) . (2)

Within the general GAN framework, several architectures are
possible with different types of ANNs as generators and dis-
criminators. In this paper, we consider a selection of different
architectures, indicated in Table 1 together with the specific types
of generators and discriminators. Details on how to train GAN
architectures are given in Appendix B.

2.1.1. Recurrent conditional GAN
Recurrent conditional GAN (RCGAN) was one of the first time-

series GAN models introduced [24], as a model for replicating
multi-valued time-series of medical data, namely the evolution
of the health state of patients in emergency care, with the moti-
vation to both predict the patient outcomes and generate faithful
synthetic data unconstrained from privacy concerns.

As the name suggests, it uses recurrent neural networks for
the generator and discriminator with Long Short-Term Memory
(LSTM) cells [25].

2.1.2. TimeGAN
TimeGAN was introduced in 2019 with the aim to outperform

several state-of-the-art GANs [26], presenting concrete examples
from stock market and energy consumption data. TimeGAN com-
bines a classical GAN architecture with an autoencoder a type of
ANN composed of two networks, one that ‘‘encodes’’ a series into
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ymbols and another one that ‘‘decodes’’ the symbols back into
series [27]. TimeGAN consists of four networks. In the classical
AN part of the algorithm, a recurrent neural network (RNN) is
sed as a generator and a bidirectional LSTM as a discriminator.
nstead of giving the discriminator the original real data as input
o classify it as real or fake, it is given the encoded vector of the
eal data, after being processed by an autoencoder.

TimeGAN uses three loss functions to control the training:
econstruction loss; supervised loss; and unsupervised loss. The
econstruction loss is calculated using the output of the decoder
nd is used to calculate the gradients for the encoder and the
ecoder. The unsupervised loss is based on the discriminator’s
utput and, similarly to the min–max loss function of the original
AN Eq. (1), is used for calculating the generator and discrimina-
ors gradients. Finally, the supervised loss is calculated based on
oth the generator’s output and the encoder’s output of the real
ata, and is used for calculating the gradients of the generator and
he encoder. Some authors implement TimeGAN with the GAN
art only without the autoencoder part of the algorithm [28]. We
ere follow that implementation.

.1.3. SigCWGAN and RCWGAN
The Conditional Sign-Wasserstein GAN (SigCWGAN) was de-

igned with the purpose to capture temporal dependencies in
ulti-dimensional time-series data while being able to correctly
odel the tail of its underlying distribution [28]. To capture

his, a new metric is introduced, namely the so-called Signature
asserstein-1 (C-Sig-W1), which serves as the discriminator of

he GAN. The usage of this metric is supposed to be not only
ore robust but also computationally less expensive to train

han a typical ANN. For further mathematical details about the
iscriminator the interested reader should consult Ref. [28].
In this architecture, the authors introduce as a generator a

hree-layer feed-forward neural network residual connections
nd parametric ReLUs as activation functions, which determines
f the output of a neuron activates the next neuron or not.
he authors call this ANN, Autoregressive Feed-Forward Neural
etwork (AR-FNN). The generator has the main aim to capture
uto-regressive processes and thus be able to capture the time-
ependency of the process. More details can be found in the
ppendix of the original paper [28].
The authors of SigCWGAN also implemented a GAN where

oth the generator and discriminator are RNNs with the afore-
entioned AR-FNN cells. This architecture is called Recurrent
onditional Wasserstein GAN (RCWGAN). In this paper, we will
onsider this architecture.
The original author’s pytorch implementation of the all previ-

usly mentioned GAN algorithms can be found in Github [29].

.2. Markov-chain models for reproducing time-series

Markov models were introduced in 1906 [30] with the general
im to model conditional probabilities and thus being able to
rovide a description of the time-evolution of a stochastic pro-
ess. They were implemented firstly in an effort to estimate the
robability of finding a vowel in a text, based on the knowledge
f the previous letter [21].
By definition, a time-series Xt is said to follow a Markov

rocess if it fulfils the Markov property:

r(Xt=j = x̂j | Xt=j−1 = x̂j−1, . . . , Xt=0 = x̂0) =

Pr(Xt=j = x̂j | Xt=j−1 = x̂j−1) , (3)

for all positive integers j, where capital letters mean stochastic
variables at different time steps and lowercase letters are the re-
spective values of those variables. Successive values are measured

at constant time intervals ∆t .

3

The Markov condition implies that, at all times, any prediction
on the future of time series Xt depends only on the current state
of the system and not on past states. For that reason, Markov pro-
cesses are often said to be ‘‘memoryless’’. The Markov property is
a simplification that, in the strict sense, does not apply to most
natural systems, but it is very convenient because by computing
the conditional probability Pr(Xt=j = x̂j | Xt=j−1 = x̂j−1) we
can describe the full time-evolution of the system, i.e. two-point
statistics contains all the information about the process. More
details on how to generate a Markov process in this way are given
in Appendix C.

3. Data and evaluation metrics

3.1. Synthetic data

The first set of data analysed in this paper is a synthetically
generated Vector Auto-Regressive (VAR) process. In one dimen-
sion, a VAR(p) process assumes that the observable at the present
time t is defined from its values in the previous p observations
apart a small random noise. In our case, the observable is the
velocity of the eye-gaze, which means that we consider spa-
tial increments of the positions in both x and y direction. For
increments (∆X) the VAR (p) model reads

∆Xt =

p∑
n=1

φn∆Xt−n + ξt (σ ) , (4)

where ξ is normally distributed random number with zero mean
and σ standard deviation. Consequently, in a VAR(p) process,
apart from Gaussian fluctuations, the future increments are de-
fined through a linear combination of the last p increments.
Again, the time labelling is done indicating the number of ele-
mentary constant time intervals ∆t . Here we take ∆t = 1 and
generate around 85 thousand points (the same number as the
empirical eye-tracking dataset we use), given the initial condition
∆X0 = 0

In what follows, we consider a VAR(1) process, meaning that
future increments are determined by a random number and the
increment immediately preceding it. We consider, however, a
VAR(1) process on a two-dimensional plane (X and Y ), with some
correlation between ∆X and ∆Y , given by σXY . Our process is thus
defined by the system of equations

∆Xt = φX∆Xt−1 + ξ
(X)
t (σX , σXY ) ,

∆Yt = φY∆Yt−1 + ξ
(Y )
t (σY , σYX ) ,

(5)

where ξ
(X)
t (σX , σXY ) represents the stochastic fluctuations in the

X-dimension, with zero mean, standard deviation σX and a cor-
relation σXY with the stochastic fluctuations in the Y -dimension.
We will consider a process purely isotropic, i.e. σX = σY ≡ σ and
φX = φY ≡ φ.

The VAR(1) process is one of the most simple synthetic time-
series that are correlated in time. It is, by construction, a Markov
process, allowing us to test the accuracy of our implemented
model, and, for φ > 0, it is suitable to test the commonly
mentioned limitation of NN and GAN algorithms in modelling the
tails of a distribution. In Fig. 2 (top) a two-dimensional VAR(1)
process is represented, with σ = 1, φ = 0.8 and σXY = 0.8, with
an inset showing the respective scatter plot of the increments in
both X- and Y -directions. From this inset, we observe that indeed
∆X and ∆Y are positively correlated, with a clear propensity of
the values to lay on the main diagonal. Furthermore, we observe
that values on the extremes of ∆X (corr. ∆Y ) tend to follow also
extreme values of ∆X (corr. ∆Y ), thus illustrating the positive
auto-correlation of both coordinates (φ = 0.8). In this paper we
will use three types of VAR processes, namely with the values of
p = 1, 2 and 3.
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Fig. 2. Top: Representation of a trajectory of two dimensional VAR(1) process
(left) and its corresponding increments (right). This time-series was synthetically
generated with positive auto-correlation φ = 0.8 and positive feature correlation
XY = 0.8. Thus, values are distributed mainly on the diagonal corresponding to
he first and third quadrants. Bottom: Representation of a gaze trajectory (left)
nd its corresponding increments (right). This series was empirically estimated
ith a modern eye-tracker. Typically, gaze positions are concentrated on a

imited area which is alternated with fast relocation trajectories.

.2. Eye-tracking data

The eye-tracking data was collected at Oslo Metropolitan Uni-
ersity with the Eye-link Duo, a state-of-the-art equipment with a
aximum frequency of 2000 Hz and a precision of 0.1 degrees of
isual angle. Here we have downsampled our data to a frequency
f 200 Hz and blinks have been removed, yielding around 85
housand data-points. Units of X and Y are presented in pixels
f the viewing screen and eye-tracking data was extracted while
he participant was engaged in trying to find pre-selected targets.
or this purpose, images from the book Where’s Wally? were

used. Eight pictures were used, each one for two minutes. It is
very unlikely that two minutes are enough to find all the pre-
selected targets in a large image and the experiment was set up
this way to make sure that a participant is kept engaged through-
out the experiment. The data was collected following all ethical
requirements approved by the Norwegian Center for Research
Data (Norsk senter for forskningsdata), with the application with
Reference Number 176347.

In Fig. 2 (bottom) we see an illustration of a gaze trajectory,
with, in the inset, its corresponding increments. As described in
the literature, we observe periods where the eyes are fixated
around a point (called fixations) and periods of relocations (called
saccades). Indeed we observe some extreme velocity events and
the velocity time-series presents an excess kurtosis of κ ∼ 50.

The presence of extreme events is a welcomed feature of gaze
trajectories that makes them particularly suitable to study the
performance of ANN based methods. It has been widely reported
that ANN-based methods struggle to capture extreme events [2]
with some models analysed here explicitly stating their ability
to overcome this limitation in replicating the tails of a distri-
bution [28]. Real data used to assess ANN performance has a
considerably small kurtosis, 5 < κ < 15, and thus includes
4

Fig. 3. Illustration of some of the relevant quantities to describe gaze tra-
jectories, namely gaze velocity, gaze direction (θ ) and the angle between
two consecutive gaze relocations (ϕ). Here, the two steps r⃗1 and r⃗2 occurred
ithin constant time-lags ∆t . Consequently, the velocity magnitude is given by,
.g. ∥v⃗1∥ = ∥r⃗1∥/∆t .

uch less extreme events. There are two important examples of
on-Markov behaviour. One is the so-called inhibition of return
IoR) [31], a known mechanism by which, for some time, the
uman gaze avoids visiting the same area after it has recently
eft it. The other is screen confinement, by which eye-tracker
aze trajectories are restricted to a screen area, and which intro-
uces non-trivial long-range dependencies on the series of gaze
elocities.
Three quantities are important to describe gaze trajectories:

he velocity magnitude, ∥v∥, the angle, θ , of a given velocity with
he horizontal axis, and the angle, ϕ, between two consecutive
measurements. All three quantities are illustrated in Fig. 3. In
what follows we will access the performance of a model by
its ability to replicate the distribution of these three quantities,
together with the time evolution of the velocity magnitude ∥v∥.

3.3. Evaluation metrics

The question of which metrics are preferable in evaluating the
performance of a GAN is open to debate [32–34]: most research
on the topic is focused on GANs’ applications to images.

In Ref. [24] the authors assess the similarity between a sample
of synthetically generated data and an empirical original sample,
by employing a metric called maximum mean discrepancy. With
it, the average fluctuations of the values in both synthetic and
empirical samples are compared with the difference between
samples. The authors also introduce a scheme called train-on-
synthetic-test-on-real (TSTR). It requires labels for the generated
data, as well as a supervised learning model that is able to classify
well the original data when trained with it. Then, the synthetic
generated data is first used to train the classifier, and finally, the
classifier is tested with real data. If it is able to correctly label that
data, it means that synthetic fully anonymous data is suited to
create models with real-world predictive power. In Ref. [26] the
authors use a statistical method for visualising high-dimensional
data in a two-dimensional map, called t-distributed stochastic
neighbour embedding. This method enables one to visualise the
distribution of the data. To study the preservation of correlations
between different dimensions of the data, principal component
analysis is used. While the profile of auto-correlations is not
directly assessed, the authors compare conditional probability
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Table 2
Moments of the probability distribution function of |v| for each dataset and the corresponding Markov/GAN generated data. We see that, when it comes to modelling
he distribution of |v|, the Markov model is relatively successful. GAN models, however, consistently underestimate the values of the moments of the distribution. In
articular, GAN models have difficulty capturing long tails of the distribution, as can be seen by the reduced values of the kurtosis. The only exception is TimeGAN
or the VAR(2) dataset, but notice that, in this case, the value of the standard deviation is largely underestimated. The difficulty in replicating the moments of the
v|-distribution is even more pronounced in the empirical case of gaze trajectories which is significantly more complex than a VAR process.

Mean Standard deviation Skewness Excess of kurtosis

VAR(1)

Data 2.0 1.27 1.1 1.39
Markov 2.00 ± 10−2 1.30 ± 10−2 1.10 ± 3 · 10−2 1.4 ± 10−1

RC 1.00 ± 4 · 10−2 6.8 · 10−1
± 5 · 10−2 1.2 ± 2 · 10−1 2 ± 1

Time 1.10 ± 2 · 10−2 7.1 · 10−1
± 1 · 10−2 7.8 · 10−1

± 6 · 10−2 3 · 10−1
± 2 · 10−1

SIGCW 1.20 ± 2 · 10−2 7.2 · 10−1
± 2 · 10−2 1.00 ± 7 · 10−2 1.0 ± 3 · 10−1

RCW 1.40 ± 3 · 10−2 8.7 · 10−1
± 2 · 10−2 9.3 · 10−1

± 7 · 10−2 8 · 10−1
± 3 · 10−1

VAR(2)

Data 1.5 1.0 1.0 1.2
Markov 1.500 ± 4 · 10−3 9.80 · 10−1

± 3 · 10−3 1.10 ± 10−2 1.20 ± 5 · 10−2

RC 8.9 · 10−1
± 2 · 10−2 5.1 · 10−1

± 1 · 10−2 7.2 · 10−1
± 6 · 10−2 6 · 10−1

± 2 · 10−1

Time 2.80 ± 4 · 10−2 1.8 · 10−1
± 10−2 5.0 ± 10−1 3.00 ± 9 · 10−2

SIGCW 1.100 ± 7 · 10−3 8.40 · 10−1
± 6 · 10−3 1.00 ± 2 · 10−2 8.7 · 10−1

± 7 · 10−2

RCW (Diverges) (Diverges) (Diverges) (Diverges)

VAR(3)

Data 2.1 1.4 1.1 1.2
Markov 2.200 ± 9 · 10−3 1.400 ± 8 · 10−3 1.00 ± 1 · 10−2 1.20 ± 7 · 10−2

RC 1.80 ± 10−2 4.4o · 10−1
± 9 · 10−3

−5 · 10−1
± 5 5 · 10−1

± 10−1

Time (Diverges) (Diverges) (Diverges) (Diverges)
SIGCW 1.00 ± 10−2 7.10 · 10−1

± 8 · 10−3 1.10 ± 3 · 10−2 1 ± 10−1

RCW (Diverges) (Diverges) (Diverges) (Diverges)

Eye-Gaze

Data 3.2 6.2 5.8 4.1 · 10+1

Markov 3.3 ± 10−1 6.2 ± 3 · 10−1 5.8 ± 2 · 10−1 4.1 · 10+1
± 3

RC 4.20 · 10−1
± 5 · 10−3 2.90 · 10−1

± 5 · 10−3 1.50 ± 8 · 10−2 2.9 ± 5 · 10−1

Time 3.70 · 10−1
± 4 · 10−3 2.20 · 10−1

± 3 · 10−3 1.20 ± 8 · 10−2 2.4 ± 6 · 10−1

SIGCW 1.200 ± 7 · 10−3 7.70 · 10−1
± 7 · 10−3 1.30 ± 4 · 10−2 2.6 ± 3 · 10−1

RCW 4.50 · 10−1
± 9 · 10−3 3.7 · 10−1

± 10−2 2.0 ± 2 · 10−1 6 ± 1
N
p
t

i

d

distributions as an indicative measure of the ability to capture
time dependencies and make predictions about the future of
the series. Finally, in Ref. [28], the authors check the probability
density and auto-correlation functions, using the L1-distance. In
ultidimensional data, this metric is also used to evaluate differ-
nces in feature correlation. The TSTR scheme is also used by the
uthors to evaluate performance.
In broad terms, one usually wants to check two aspects of the

enerated data: (i) if the generated distribution is similar to the
riginal data and (ii) if the time-dependency and its possible long
ime-correlations reproduce those of real data. To estimate how
ell an algorithm replicates the distribution of the original data,
e evaluate the distributions of the velocity magnitude ∥v∥ and
ach angle, θ and ϕ (see Fig. 3).
In order to compare the similarity between distributions, we

ill use the Jensen–Shannon (JS) divergence, which is a sym-
etrised version of the Kullback–Leibler (KL) divergence, fulfill-

ng the properties of a distance, in this case, between distribu-
ions. The KL divergence is defined by

KL(ρemp||ρsyn) =

∫
ρemp log

(
ρemp

ρsyn

)
. (6)

With this definition, JS divergence is defined as

DJS(ρemp||ρsyn) =
1
2

(
DKL(ρemp||ρ̄) + DKL(ρsyn||ρ̄)

)
, (7)

where ρ̄ =
1
2 (ρemp + ρsyn). The KL divergence is perhaps the

most common measure to quantify the similarity between dis-
tributions, since minimising the KL divergence leads to a maxi-
mum likelihood estimation. The JS divergence remains this im-
portant feature and, additionally, has a symmetric property, i.e.
DJS(ρemp||ρsyn) = DJS(ρsyn||ρemp), which in the present case is
more intuitive: while the generator tries to approximate the syn-
thetic distributions to the empirical ones, the discriminators try
to distinguish the empirical distributions from those generated by
the generator.
5

When it comes to quantifying how well the time-dependency
is replicated, we evaluate the auto-correlation of the velocity
magnitude ∥v∥. The auto-correlation is defined as the Pearson
correlation for each spatial coordinate, namely (for X)

γX (tlag) =
E
[
(X(t) − X)(X(t − tlag) − X)

]
E
[
(X(t) − X)(X(t) − X)

] , (8)

where X is the average of the variable (spatial coordinates) and
tlag is the time-lag for which the auto-correlation is computed
and E[x] symbolises the expected value of a stochastic variable x.
otice that, while gaze trajectories are not stationary stochastic
rocesses, both the AI models as well as the Markov model create
ime-homogeneous trajectories. In that sense, γX (and γY sep-
arately) evaluates the model’s ability to replicate the ‘‘average’’
dynamics of a given time-series.

To assess howwell an algorithm replicates the auto-correlation
function of each one of these three quantities we will consider the
L2-distance. The L2-distance between two functions femp(x), fsyn(x)
s given by

(femp, fsyn) =

(∫
∞

−∞

(femp(x) − fsyn(x))2dx
) 1

2

. (9)

4. Comparative analysis

The results of this paper are shown in Fig. 4 – together with
additional simulation in Appendix A, namely Figs. 6 and 7 –
and in Fig. 5, with the results to reproduce eye-gaze trajecto-
ries. Table 2 shows the expected value and the uncertainty of
the first four moments of the distribution of |v|-values, namely
mean, variance, skewness and kurtosis, for each case of original
data (synthetic, VAR-processes and empirical eye-gaze trajecto-
ries, and the corresponding Markov- and GAN-generated data.
Table 3 shows the similarity between empirical and modelled
data. For the distribution of each one of the three quantities
characterising eye-gaze trajectories (cf. Fig. 3) we indicate the
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d
a

Fig. 4. Results for reproducing the VAR(1) process with a Markov model and time-series GANs. On the first and second rows, the distribution and auto-correlation
unction of ∥v∥ are plotted. On the last two rows, the distributions of the angles θ and ϕ are shown.
Table 3
Algorithms’ performance in replicating a VAR process (top) and gaze trajectories (bottom) according to the metrics defined in Eqs. (9) and (7). Firstly, the accuracy
in replicating the distribution (first column) and auto-correlation (second column) function of ∥v∥ are calculated. The distance between the empirical and synthetic
istributions of the angles θ and ϕ are shown in the third and fourth columns respectively. It is possible to see that AI algorithms significantly fail in replicating
ny distribution of either ∥v∥, θ or ϕ. In what the auto-correlation of ∥v∥ are concerned, SigCWGAN comes close to a Markov process. With the distribution of θ

and ϕ so poorly replicated, however, it is difficult to assume that it correctly captures the time-evolution of the process.
Dist. |v| [DJS] Aut.corr. |v| [d(femp, fsyn)] Dist. θ [DJS] Dist. ϕ [DJS]

VAR(1)

Markov 6 · 10−3
± 2 · 10−3 7 · 10−2

± 1 · 10−2 6 · 10−2
± 10−2 1.4 · 10−1

± 2 · 10−2

RCGAN 3.4 ± 4 · 10−1 7 · 10−1
± 3 · 10−1 3.1 ± 6 · 10−1 1.2 ± 10−1

TimeGAN 2.8 ± 10−1 3.7 · 10−1
± 4 · 10−2 4.7 ± 3 · 10−1 1.5 ± 10−1

SigCWGAN 2.5 ± 10−1 1.3 · 10−1
± 4 · 10−2 6 · 10−1

± 10−1 3.2 · 10−1
± 4 · 10−2

RCWGAN 1.0 ± 10−1 3.0 · 10−1
± 3 · 10−2 6.8 ± 3 · 10−1 2.1 ± 2 · 10−1

VAR(2)

Markov 3.5 · 10−3
± 8 · 10−4 2.20 · 10−1

± 6 · 10−3 2.8 · 10−2
± 4 · 10−3 4.5 · 10−2

± 5 · 10−3

RCGAN 2.7 ± 2 · 10−1 1.6 ± 10−1 9.8 ± 3 · 10−1 1.7 ± 2 · 10−1

TimeGAN 2.80 ± 4 · 10−2 1.8 · 10−1
± 10−2 5.00 ± 2 · 10−2 3.00 ± 8 · 10−2

SigCWGAN 9.3 · 10−1
± 4 · 10−2 4 · 10−2

± 10−2 101
± 10−1 9.2 ± 10−1

RCWGAN (Diverges) (Diverges) (Diverges) (Diverges)

VAR(3)

Markov 3.1 · 10−3
± 8 · 10−4 9.2 · 10−1

± 10−2 2.9 · 10−2
± 4 · 10−3 8.9 · 10−2

± 8 · 10−3

RCGAN 5.2 ± 10−1 1.30 ± 7 · 10−2 4 · 101
± 1 1.20 · 101

± 3 · 10−1

TimeGAN (Diverges) (Diverges) (Diverges) (Diverges)
SigCWGAN 4.2 ± 10−1 1.8 · 10−1

± 5 · 10−2 1.60 · 101
± 2 · 10−1 3.0 ± 2 · 10−1

RCWGAN (Diverges) (Diverges) (Diverges) (Diverges)

Eye-Gaze

Markov 1.6 · 10−2
± 3 · 10−3 3.2 · 10−1

± 7 · 10−2 3.3 · 10−1
± 2 · 10−2 4.6 · 10−2

± 6 · 10−3

RCGAN 2.600 ± 3 · 10−3 6.7 · 10−1
± 10−2 1.1 ± 10−1 5 · 10−2

± 6 · 10−2

TimeGAN 2.600 ± 3 · 10−3 1.100 ± 5 · 10−3 1.2 ± 10−1 4.2 · 10−1
± 5 · 10−2

SigCWGAN 1.60 ± 2 · 10−2 4.3 · 10−1
± 2 · 10−2 9.3 · 10−1

± 4 · 10−2 1.20 · 101
± 10−1

RCWGAN 2.6 ± 4 · 10−1 8.90 · 10−1
± 8 · 10−3 2.2 ± 2 · 10−1 5.1 ± 2 · 10−1
numerical value of the Jensen–Shannon divergence between both
distributions (cf. Eq. (7)), while for the auto-correlation function
of the velocity magnitude we use the L2-distance (cf. Eq. (9)).
6

For each algorithm, 100 time-series were generated, each with
85 thousand data points, the same number of data points as the
original time-series.
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Fig. 5. Results for reproducing eye-gaze trajectories with a Markov model and time-series GANs. In the first column, the first 600 points of a trajectory are represented.
In the second column and third columns, the distribution and auto-correlation function of ∥v∥ are plotted. On the last two rows, the distributions of the angles θ

nd ϕ are shown.
a
.1. Replicating synthetic data

Starting with the results for the VAR(1) process (Fig. 4), we
bserve that the distribution of (absolute value of) velocity in-
rements has no heavy tails (first column). Even so, GAN models
onsistently fail to capture the large values of the distribution.
hey all perform at the same level, and, when compare with the
arkov chain model, the performance is two to three orders of
agnitude worse (cf. 3). Still, the RCWGAN architecture shows
etter results.
As for the auto-correlation functions (second column), we see

lso that again the Markov model performs better than any GAN
rchitecture. Here, the SigCWGAN seems to retrieve the best
esults, followed by RCWGAN. Such a fact can be explained by
he choice of the generator for these architectures, namely an
R-FNN, which is usually built with the stated aim to capture
uto-correlations [28]. Still, contrary to what one would expect,
ven though these two GAN architectures are relatively good
t estimating the (positively valued) auto-correlation function,
hey fail in simulating the large values of the velocity increment
istribution. We see in Fig. 4 that the AI models tested here fail to
orrectly model the larger values of the VAR increments’ distribu-
ions, even though their excess kurtosis is insignificant. This hap-
ens even when GANs can correctly replicate the auto-correlation
unction.

The distribution of the angle θ is also best grasped by the
arkov model. Again, SIGCWGAN comes close but significantly
orse than the Markov model, followed by the RCGAN architec-
ure. RCWGAN shows significant overestimation bias, while in the
ase of TimeGAN, the distribution of θ is concentrated on 45◦
7

nd 135◦. For the distribution of the angle ϕ, all algorithms work
relatively well. SigCWGAN and the Markov model work at the
same level, with Markov performing better, but the results for the
SigCWGAN lying within the margin of error. These results are in
line with the ones published in Ref. [28] on the same data, with
SigCWGAN performing slightly worse and the other GAN models
performing slightly better.

Notice that VAR(1) processes are Markov processes by con-
struction, so it is not surprising that a Markov process reproduces
so well this process. However, similar results are obtained for
VAR processes of higher dimension. In Appendix A we show the
results for VAR(p) processes with p = 2 and p = 3, and there
again one observes that Markov processes surpass all the set of
GANs architectures. Moreover, as will be discussed in the next
subsection, for the eye-gaze trajectories, the results do not differ
much from this.

4.2. Replicating empirical data

For empirical data, examples of empirical eye-gaze trajecto-
ries, as well as the respective modelled trajectories with the
different models, are shown in the first column of Fig. 5.

The distribution of the velocity increment (second column)
shows again no heavy tails. However, while the Markov model’s
distribution fits again considerably well with the empirical distri-
bution, the GAN model’s inability to capture the extreme values is
even stronger than for VAR processes. SigCWGAN works slightly
better than the other architectures.

As for the auto-correlation function, since we do not expect
gaze trajectories to obey the Markov condition, it is normal to
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Fig. 6. Results for reproducing the VAR(2) process with a Markov model and time-series GANs. For comparison with Fig. 4.
xpect a deviation between both functions. The SigCWGAN ar-
hitecture comes close to the Markov model in modelling the
uto-correlation function, while the other architectures are only
ble to partially capture the positive auto-correlations of the
rocess.
The distribution of angle θ is also well grasped by the Markov

odel. In particular, the Markov model is able to capture the pref-
rential directions around the 0◦, 90◦, 180◦, 270◦. It is however

unable to capture the finer details of this metric, smoothing some
of the other picks in the distribution. It is possible that larger
samples (trajectories) or a different choice of the kernel when
computing the numerical distribution would lead to a better
resolution. GANs, however, cannot capture this distribution at all.
They replicate some of the fluctuations, but with significant biases
and miss the preferential angles. For the distribution of the angle
ϕ, again, the Markov model works better than any GAN. However,
TimeGAN and RCWGAN are able to capture some distribution
around the 180◦ value. We see that even though SigCWGAN
somewhat replicates the auto-correlation function, it does not
capture the distribution of ϕ. Indeed, this time-series must be
one rare example that has an angle between two increments
around 180◦ but that, at the same time, has a positive auto-
correlation function. It is possible that not being able to replicate
the larger values of the distribution, in order to capture the
positive value auto-correlation function, this algorithm tends to
create trajectories in the same direction.

5. Discussion and conclusions

From the comparative analysis in the previous section, we
conclude the Markov model outperforms all GAN architectures
considered in this paper. Within the set of GAN architectures, it
8

is possible to see that the SigCWGAN outperforms the rest of the
GANS and that it performs at the level of a Markov implementa-
tion when it comes to the distribution of ϕ, but slightly worse for
the distribution of θ . The other GANs perform relatively worse
and do not come statistically close to the efficacy of a Markov
process, particularly when it comes to the distribution of θ .

The fact that one specific GAN architecture can reproduce
some of the statistics at the same level as a Markov process is
good news for the AI community since it opens the door to their
application to more complex processes. However, we provide
evidence that simple Markov models are significantly better at
modelling the distribution of the process and are themselves not
as complex (black-box-like) as an AI method. Indeed, GAN im-
plementations typically use a number of parameters two orders
of magnitude larger than Markov models. Moreover, by simply
computing a Markov transition matrix one might be able to assert
other important features of the natural process (trajectory), e.g. if
it is time-continuous or stationary [22].

Such drawbacks of GANs seem to be present in processes with
a negligible excess kurtosis, such as VAR(p) processes, as well
as 200 Hz free-viewing eye-gaze trajectory, which have typically
a very large excess kurtosis. Thus, while we do not claim that
non-parametric Markov models always outperform AI algorithms,
we show that, when non-parametric models are needed, the
implicit assumption of the universal preference of AI methods
is not justified. This is done by showing that old-fashion math-
ematical models outperform their AI counterparts both in a very
simple synthetic time-series and in a highly complex empirical
one. We thus recommend caution when employing AI to predict
time-series without comparing them with simpler methods that
humans can easily explain.
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Fig. 7. Results for reproducing the VAR(3) process with a Markov model and time-series GANs. For comparison with Figs. 4 and 6.
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The evidence uncovered in this paper can be now extended in
ifferent ways. On one hand, while the GAN models considered
ere are some of the most used in AI approaches and the pro-
esses consider cover both Gaussian and non-Gaussian features,
ther GAN architectures and datasets could be considered. In
articular, emphasis should be given to architectures aimed at
apturing the extreme values of a distribution, as has been the
ase of SigCWGAN and TimeGAN. Datasets covering other types
f processes could also help to a systematic approach to exploring
he limits of our findings, namely including jump-diffusion [35]
oise and intermittent processes [36].
On the other hand, extensions of the Markov model used

ere could be investigated, namely models with a Markov length
onger than one time lag. Finally, a hybrid approach could be
o use a GAN to model the residuals of a Markov process or
rain GANs to generate Markov matrices (eventually in more
imensions).
We have compared our training with that of previous works

n the same data [28] and, in most cases, found very similar
raining statistics and outcomes when training on the same data.

The GANs tested here are conditional GANs, meaning that they
se the previous points to calculate the following points. Thus,
he number of points used in calculating the next set of points
typically represented a ‘‘p’’ in the literature). A systematic search
f the optimal value of this parameter was performed and the
alue of p = 3 was chosen. Other aspects, such as the size of the
etwork and the batch size were also optimised after comparing
he outcomes of several trials.

All in all, despite the claims of GAN’s ability to capture the
verall time-evolution of a stochastic process this is not verified
n complex time-series. Even in algorithms which, according to
he authors, were able to capture extreme values of the data,
9

his limitation is quite significant, with the GAN architectures not
eing able to capture the full spectrum of the auto-correlation
unction. At face value, the inability of AI methods to outper-
orm a conceptually simple mathematical process is surprising.
hen these methods are presented, their successes are high-

ighted and further applications of these methods focus only
n the case where they are successful. Nonetheless, they are
onstrained by the central limit theorem: the typical distribution
f the GAN-generated data is the normal distribution. One possi-
ility to overcome this would be to re-design the standard GAN
rchitectures, enabling them to include noise inputs distributed
ccording to α-stable distributions.
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ppendix A. Results for replicating VAR(2) and VAR(3) pro-
esses

While gaze trajectories have a non-Markov behaviour it is also
nteresting to apply our methodology to synthetic processes that,
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ontrarily to the VAR(1) process, are also, by definition, non-
arkov. These are the VAR(p = 2) processes and the VAR(p =

) processes as defined in Eq. (4).
In the VAR(2) process we have used φ1 = 0.5 and φ2 = 0.4

nd in the VAR(3) process we have used φ1 = 0.3, φ2 = 0.3 and
3 = 0.3. The correlation coefficient the two spacial dimensions
as kept at 0.8 and, just like before, for each case we have created
5 thousand points time-series with a sampling time ∆t = 1.

Results can be observer in Table 3 and in Figs. 6 and 7.
In this case, we observed that some GAN-generated time-

series diverged to infinity. This was the case for the RCWGAN in
the VAR(2) case and for the RCWGAN and TimeGAN in the VAR(3)
process. We found a similar behaviour with other choices of φ

with RCGAN diverging at times too. SigCWGAN was not observed
to diverge for convergent time-series. Changing the number of
epochs in training or the learning rate did not seem to signifi-
cantly affect some GANs, producing divergent series. Indeed, we
observe that SigCWGAN typically replicates the auto-correlation
function of the VAR(2) and VAR(3) at an accuracy similar to the
case of VAR(1). As expected, this is not the case for a Markov
process.

However, given that the ANN that is used in the SigCWGAN
(the AR-FNN) is explicitly built with the purpose of mimicking the
auto-correlation function of the data and that this architecture
fails to capture the distribution of ϕ, it is reasonable to assume
that the algorithm is unable to replicate many significant aspects
of the temporal dynamics of the process.

When it comes to the distribution of the increments of a
process, we see that, similarly to VAR(1) processes and gaze
trajectories, GANs underestimate its moments, specially in the
standard deviation. We also see that GANs fail in reproducing the
distribution of θ showing that they do not accurately represent
the relationship between the two spacial dimensions.

In conclusion, for the case of VAR(2) and VAR(3) we see
that one aspect of the temporal dynamics of the process (the
auto-correlation function) is better replicated by one GAN, the
SigCWGAN, while the other (the distribution of ϕ) is still far from
the results produced by the Markov model. Moreover, GANs still
fail to replicate the distribution of the increments and to capture
correctly the relationship between the two spacial dimensions
of the problem, which can be evaluated by the distribution of
θ . Thus, even in the case of a simple synthetic data where the
Markov hypothesis is not present, the advantages of GANs are still
limited.

Appendix B. About the training of GANs

Training GANs is a challenging task since this is often not
a stable process, where each epoch is better than the previous
one, and where some pitfalls exist [8]. Two problems are usual,
namely the vanishing gradients and the mode collapse. In the first
one, the discriminator becomes so successful that neither the
discriminator nor the generator is able to have any learning with
successive epochs. In mode collapse the generator is able to fool
the discriminator with just small different modes ignoring all the
others, thus producing time-series that are all very similar among
themselves. To solve this, one is typically advised to choose
carefully the learning rate of both networks.

In our implementation, we have indeed found that training a
GAN for a longer period did not necessarily lead to better results.
Moreover, we experienced some instances of mode collapse when
trying to model real-time series and had to carefully calibrate
learning rates. We found that training the GANs for around 200
epochs would decrease the train and testing error while also
avoiding the pitfall of mode collapse. The weights of the ANNs
were updated using the Adam optimiser [37].
10
Appendix C. Implementation of the Markov-chain model

In a Markov model, we can generate a time-series by comput-
ing Pr(Xt=n+1 = xn+1 | Xt=n = xn). We estimate this quantity
empirically with the help of a Gaussian estimation kernel K as
follows:

Pr(Xt=n+1 = xn+1 | Xt=n = xn) =

Pr(Xt=n+1 = xn+1, Xt=n = xn)
Pr(Xt=n = xn)

, (C.1)

with

Pr(Xt=n+1 = xn+1, Xt=n = xn) =

1

(N̂ − 1)2h2

N̂−1∑
i=1

K
(
xn+1 − x̂i+1

h

)
K
(
xn − x̂i

h

)
, (C.2)

Pr(Xt=n = xn) =

1

h(N̂ − 1)

N̂−1∑
i=1

K
(
xn − x̂i

h

)
, (C.3)

where

K
(
xn − x̂i

h

)
=

1
√
2π

exp

(
−

1
2

(
xn − x̂i

h

)2
)

, (C.4)

and h represents the bandwidth of the Gaussian estimation kernel
and it is calculated following Silverman’s rule [38]:

=

(
4σ̂ 5

3N̂ − 3

) 1
5

≈ 1.06 σ̂ (N̂ − 1)−1/5 , (C.5)

where σ̂ is the standard deviation of x̂1 . . . x̂n and N̂ the number
of data points in our sample.

When analysing empirical data, Pr(Xt=n+1 | Xt=n) can be
represented as a matrix T of dimension Ns×Ns with entries given
by

Ti,j = Pr
(
Xt=n+1 ⊂ [ki, ki+1) | Xt=n ⊂ [kj, kj+1)

)
, (C.6)

with i, j ∈ N, i, j ⊂ [0,Ns] and km > kn ⇔ m > n. Thus,
if we observer the state Xt=n ⊂ [kj, kj+1) we can calculate the
probability of observing Xt=n+1 ⊂ [ki, ki+1). When generating a
new time-series, if it is found that Xt=n+1 ⊂ [ki, ki+1), we assign
a value to Xt=n+1 from the uniform distribution in the interval
[ki, ki+1).

The accuracy of this method depends on three major factors:
Firstly, on the validity of the Markov condition (3); Secondly, on
the number of states Ns, which is constrained by computational
time (scaling approximately with N4

s for a two-dimensional pro-
cess); Thirdly, accuracy is also affected by the amount of data
in our sample N̂ , which impacts the bandwidth calculus h: the
larger N̂ is, the smaller is the resulting value of h thus increasing
the spatial resolution of the model. An implementation of this
algorithm using python and numpy can be found in Github [39].
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