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Remote Procedure Call (RPC) is a communication protocol to support client-server interactions among
services over a network. RPC is widely applied in industry for building large-scale distributed systems, such
as Microservices. Modern RPC frameworks include, for example, Thrift, gRPC, SOFARPC, and Dubbo. Testing
such systems using RPC communications is very challenging, due to the complexity of distributed systems
and various RPC frameworks the system could employ. To the best of our knowledge, there does not exist any
tool or solution that could enable automated testing of modern RPC-based services. To fill this gap, in this
article we propose the first approach in the literature, together with an open source tool, for fuzzing modern
RPC-based APIs. The approach is in the context of white-box testing with search-based techniques. To tackle
schema extraction of various RPC frameworks, we formulate a RPC schema specification along with a parser
that allows the extraction from source code of any JVM RPC-based APIs. Then, with the extracted schema
we employ a search to produce tests by maximizing white-box heuristics and newly defined heuristics spe-
cific to the RPC domain. We built our approach as an extension to an open source fuzzer (i.e., EvoMaster),
and the approach has been integrated into a real industrial pipeline that could be applied to a real industrial
development process for fuzzing RPC-based APIs. To assess our novel approach, we conducted an empirical
study with two artificial and four industrial web services selected by our industrial partner. In addition, to
further demonstrate its effectiveness and application in industrial settings, we report results of employing our
tool for fuzzing another 50 industrial APIs autonomously conducted by our industrial partner in their test-
ing processes. Results show that our novel approach is capable of enabling automated test case generation
for industrial RPC-based APIs (i.e., 2 artificial and 54 industrial). We also compared with a simple gray-box
technique and existing manually written tests. Our white-box solution achieves significant improvements
on code coverage. Regarding fault detection, by conducting a careful review with our industrial partner of
the tests generated by our novel approach in the selected four industrial APIs, a total of 41 real faults were
identified, which have now been fixed. Another 8,377 detected faults are currently under investigation.
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1 INTRODUCTION

It is a common practice in industry to develop large enterprise systems with microservice
architectures [59, 68, 79]. For example, Meituan is a large e-commerce enterprise with more than
630 millions customers in China, with microservice systems like Meituan Select comprising more
than 1,000 different web services. Testing this kind of systems is very complex, due to their dis-
tributed nature and access to external services such as databases. There is a dire need in industry
for automation for this kind of systems.

Although in recent years there has been an interest in the research community on fuzzing REST
web services [45] (e.g., with tools like Restler [29], RestTestGen [67], Restest [58], RestCT [69],
bBOXRT [51], and Schemathesis [47]), to the best of our knowledge there is no work in the litera-
ture on the testing of modern Remote Procedure Call (RPC) web services. There is a large body
of knowledge in the scientific literature on the topic of software testing automation, with several
successful stories in many different software testing domains [14, 35, 44]. Addressing an important
industrial testing problem for the first time does not start from scratch, especially when aiming at
providing useful results for engineers in industry. It rather builds on top of decades of scientific
research on the topic. On the one hand, some research challenges are similar to other domains
(e.g., how to deal with SQL databases when fuzzing a web service [24], regardless of whether it is
a REST, GraphQL, or RPC-based API). On the other hand, scientific research and empirical evalu-
ations are needed to address the specific peculiarities of each different software testing problem.
For example, to the best of our knowledge, none of the existing fuzzers in the scientific literature
can be directly applied on fuzzing RPC systems without major engineering and scientific effort, as,
for example, the API schemas and communication protocols are different.

As part of an industry-driven collaboration [18, 40–43], when we first tried to use our EvoMas-
ter fuzzer [17] for RESTful APIs on the web services developed at Meituan, we could not apply it
directly [74]. We had to manually write REST APIs as wrappers for the RPC systems (which use
Apache Thrift). Not only it is time-consuming, but also the generated tests are more difficult to use
for debugging any found fault. Two web services were used as a case study. Such study (with inter-
views and questionnaires among the developers at Meituan) pointed out few research challenges,
including the need for a native support for RPC systems for web service fuzzers. Such support not
only requires not trivial engineering effort (our extension to the existing fuzzer EvoMaster re-
quired more than 10,000 lines of code, not including test cases), but also there are several scientific
research challenges that need to be addressed to best handle RPC-based APIs (as we will discuss
in more detail later in the article).

In this article, we provide a novel approach1 to automatically fuzz RPC-based APIs, built on top
of EvoMaster. To adapt to various RPC frameworks, in this approach, a RPC schema is defined
to formulate the API specification that could document all necessary info to make a RPC call and
possible responses (e.g., throwing exception, failure). The schema of the RPC-based services can
be automatically extracted from the source code with our approach. This allows one to test the

1EvoMaster is open source, and it is available at www.evomaster.org. A replication package for this study is available at
https://github.com/anonymous-authorxyz/fuzzing-rpc. Accessed August 26, 2022.
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services developed with different RPC frameworks. With the extracted schema, a test for a
RPC-based API can be reformulated as an individual, i.e., a sequence of RPC calls under a
certain state of the API (e.g., database if it has). Thus, search-based techniques (such as the MIO
algorithm [19]) can be employed to evolve tests (e.g., seek various values of input parameters of
RPC calls in order to cover more code and find more faults). To better solve our testing problems
with search, we define new heuristics specific to the RPC domain. The approach was implemented
as an extension of EvoMaster and has been integrated into an industrial pipeline. To assess
the effectiveness of our novel approach and its application on industrial context, we empirically
compared it with a gray-box technique with two artificial and four industrial RPC-based APIs,
and further reported its performances on 50 industrial APIs in real industrial settings. The main
contributions of the article include:

(1) the first approach in the literature for fuzzing RPC-based APIs;
(2) an open source tool support (i.e., an extension to the existing fuzzer EvoMaster);
(3) an empirical study carried out in industrial settings that involves in total 54 industrial RPC-

based APIs comprising 1,489,959 lines of code (computed with JaCoCo) for business logic;
(4) an in-depth analysis on four selected industrial APIs with our industrial partner; and
(5) identifying lessons learned and research challenges that must be addressed before better

results can be obtained.

The article is organized as follows. Section 2 provides the needed background information to
better understand the rest of the article. Section 3 analyzes related work. The details of our novel
approach are presented in Section 4. Our empirical study is discussed in Section 5, followed by
lessons learned in Section 6. Threats to validity are discussed in Section 7. Finally, we conclude the
article in Section 8.

2 BACKGROUND

2.1 RPC

RPC enables one to call methods in other processes, possibly on a different machine, communicat-
ing over a network. This is a common practice in distributed systems, particularly in microservice
architectures [59]. There are different frameworks to develop RPC-based APIs, like, for example,
Apache Thrift [13] (originally from Facebook), Apache Dubbo [2] (originally from Alibaba),
gRPC [6] (from Google), and SOFARPC [10] (from Alibaba). All these popular frameworks were
developed to address the scale of large distributed systems. Compared to other types of web
services (e.g., RESTful APIs), RPC-based APIs aim at optimizing performance at the cost of
stronger coupling between client and server applications (there is no silver bullet). For example,
given a schema for the API (e.g., a .thrift file for Thrift or a .proto file for gRPC), a compiler
is used to create a server application (which then can be extended with the business logic of the
API) and a client library. A process that wants to communicate with the server API must include
this client library, and use these client stubs to remotely call the API in the server process. For
example (rpc1 in Figure 1), a client process (in the service A) would have a reference to a class-stub
B, and, every time that stubB.bcd() is called, then the client library will make a network call to
execute B.bcd() on the server API.

The actual communications between the client and the server depend on the framework imple-
mentation, e.g., typically HTTP/2 using Protobuf for gRPC, but it can be configured to use other
protocols. Both Thrift and gRPC support the generation of client/server code in different languages
(e.g., Java, C# and JavaScript), whereas SOFARPC and Dubbo support only Java.

Figures 2 and 3 represent examples of a schema specified with different frameworks (i.e., Thrift
and gRPC), and snippets of code of client-stub classes and server classes (e.g., interface/abstract
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Fig. 1. RPC-based APIs in microservices.

classes) to implement/extend that are automatically generated by the framework based on the
schema. As shown in Figure 2(a) for Thrift and Figure 3(a) for gRPC, the two schemas for NcsSer-
vice have the same function, i.e., bessj, that evaluates Bessel function by taking one integer and
one double numbers as inputs, then returning a Data Transfer Object (DTOs), which comprises
the same fields. Based on the schemas, the compiler could automatically generate source code of
client libraries, such as Client class at line 13 in Figure 2(b) and NcsServiceBlockingStub class
at line 22 in Figure 3(b). Then, with such client libraries, the functions of RPC-based API could
be accessed. For instance, snippet code shown in Figure 2(c) represents an example of a test for
the NcsService implemented with Thrift framework. Lines 4 and 6 in Figure 2(c) represent how
to instantiate a client to access the service, such as a URL with http:// localhost:8080/ncs and an
accepted protocol to perform communications between client and service as TBinaryProtocol.
Line 12 is to make a network call to bessj function with the instantiated client, then receive a
response, and lines 14 and 15 show assertions on the response.

Besides the client-stub classes, the compiler also generates the source code that users could ex-
tend for implementing business logic of the services. In this example, with Java language, Thrift
outputs Interface class, which comprises a list of methods to implement, and each method cor-
responds to a RPC function (see lines 7–9 in Figure 2(b)). For gRPC, it is similar that the gRPC
compiler outputs abstract class, which comprises a list of methods to extend (see lines 13–18
in Figure 3(b)). As the examples, such methods in the classes define specifications about how to
access the services. In addition, a schema specification (e.g., .thrift file) might not be always avail-
able for a RPC-based API, and the service could be initially defined with programming language,
such as SOFARPC2 and Dubbo3 with Java interface classes. To fuzz RPC-based APIs, extracting
specifications to access the API is a prerequisite. The various RPC frameworks allow abstraction

classes (i.e., Interface and abstract class in Java) to define RPC-based APIs (we refer to the
classes that define RPC-based APIs as RPCInterfaces in later sections). Thus, if we could enable an
extraction of the specification based on such RPCInterfaces, it would generalize the application of
the approach for fuzzing the APIs with different RPC frameworks (as we propose in this article).

2https://www.sofastack.tech/en/projects/sofa-rpc/getting-started-with-sofa-boot/. Accessed August 26, 2022.
3https://github.com/apache/dubbo. Accessed August 26, 2022.
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Fig. 2. An example of RPC schema, its automatically generated source code with Thrift framework and a

test for the RPC-based service.
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Fig. 3. An example of RPC schema and its automatically generated source code with gRPC framework.
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Moreover, in the context of microservice architectures, as shown in Figure 1, the microservices
comprise of a set of connected RPC-based APIs, and the API could have multiple stub-classes of
other direct interacted APIs (e.g., B has stub classes of the services C and D). Processing a request
from the user typically involves multiple APIs. With different inputs in the request, it could result
in various sequences of RPC calls with different APIs. For instance, assume that a user sends a
request that results in a function call to abc of the service A. In order to provide a response to the
user, it needs to involve multiple APIs (e.g., B, C, and D) that could trigger various sequences of RPC
communications, e.g., rpc1→ rpc2 → rpc3 or rpc1→ rpc4→ rpc5 as shown in Figure 1. Note that
this example illustrates communications among RPC-based services for processing one request.
To test one RPC-based API (e.g., B is the System Under Test (SUT)), C and D could be considered
as external services of B, and the test for the API B would consist of a sequence of network calls
to the SUT as the example shown in Figure 2(c).

2.2 Automated System Testing

In the scientific literature, there has been a lot of work on the automation of software testing [35].
Different techniques have been investigated, like search-based algorithms [14] and symbolic
execution [31].

System testing refers to the testing of applications as a whole, using the same input interfaces as
the actual users. The process of generating test cases to find errors in these systems (e.g., typically
a crash) is often referred to with the term fuzzing [44].

When dealing with the fuzzing of Web APIs, there are two main types of testing: black-box and
white-box testing. The difference is that in white-box testing there is access to the internal details
of the API, like its source code or bytecode. This information can be exploited to design heuristics
in order to improve the testing process, e.g., to increase metrics like code coverage. This can lead
to higher fault detection, as a fault cannot be triggered if its code is never executed. On the other
hand, in black-box testing, the API is treated as a black box, with no info on its internal details.

Black-box testing is of more general application, as the API could be written in any program-
ming language and running on a remote machine. As white-box testing requires one to analyze the
source code, not only the API needs to be run locally, but also there are restrictions on the program-
ming language it is implemented with. Code analyses and white-box heuristics require complex
engineering effort, and supporting several programming languages in the same tool might not be
viable. This also complicates scientific comparisons. For example, it would not be viable to directly
compare a fuzzer for C++ with one for Java.

Even in the cases in which the API is treated as a black box, some general information is required
to be able to fuzz it. Typically, a specification (also known as schema) is used to determine the type
of inputs to send to the API. Sending random bytes over a TCP connection would unlikely result
in any meaningful message that the API will not discard immediately. The type of schema will
depend on the type of API, e.g., OpenAPI [9] for RESTful APIs. Alternatives are to use existing test
cases or replayable traffic messages as a starting point, and then do small modifications to them
to see how the API behaves.

Another common term used in the literature is gray-box testing. This usually refers to a mix
of black and white box testing, where only partial information on the internal details of the API
is available. At times, this term is also used to specify when only lightweight code instrumenta-
tions are applied to the tested API. A lightweight instrumentation could be just measuring code
coverage, for example to drive the fuzzer to focus on the least covered parts of the API. A light-
weight instrumentation is much easier to implement and start to experiment with compared to a
full-blown search-based or symbolic execution approach.
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Fig. 4. Architecture of EvoMaster.

2.3 EvoMaster

EvoMaster is an open source tool for fuzzing enterprise applications with search-based
techniques, in the context of both white-box and black-box testing [17, 21, 27]. To enable white-box
testing, the tool is composed of two components, i.e., driver and core, as shown in Figure 4. The
driver is responsible for collecting Search-Based Software Testing (SBST) heuristics with code
instrumentation (currently targeting JVM [19] and JavaScript [75]) and controlling the SUT (i.e.,
start/stop/reset). It is implemented as a library, so that it is easy to be applied by the SUT using,
for example, Maven and Gradle. The core encompasses the main functionality of generating test
cases with search-based techniques, e.g., various search algorithms and fitness function.

To generate more effective white-box tests for enterprise APIs, EvoMaster is equipped with
a set of novel techniques. For instance, Boolean flag is a common problem in handling white-box
testing with search, i.e., no gradients for search to solve a constraint that is either true or false.
To enable fitness gradients for such problems in the source code, EvoMaster is integrated with
testability transformations [25, 26]. This enables branch distance computations for such flag prob-
lems by transforming source code (e.g., via replacement methods) with code instrumentation. The
replacement methods also track inputs (referred to as taint analysis) for providing additional infor-
mation to the search for solving this kind of problem. In addition, enterprise APIs typically interact
with databases. A database with various data would represent various states of the SUT. To test the
APIs with various states, SQL handling [23, 24] was developed in EvoMaster that can extract SQL
queries and calculate heuristics for the queries at runtime. Then, with these heuristics, EvoMaster
can directly generate data into the database (with SQL commands such as INSERT). REST is one
of the popular architectural styles for building web services. To better support it, EvoMaster em-
ploys a set of techniques designed in particular for the REST domain, e.g., OpenAPI parser, smart
sampling, test reformulation for REST APIs [20], resource- and dependency-based strategies [72, 77].

Furthermore, EvoMaster is enhanced with adaptive hypermutation [71]. It is as an advanced
search mutator for handling long and structured chromosomes, like the tests for REST APIs that
comprise a set of INSERT commands and a sequence of HTTP requests with query parameters and
body payloads (e.g., JSON objects).

To serve as a SBST fuzzer, EvoMaster includes the implementation of different search algo-
rithms, i.e., MOSA [61], WTS [39, 63], and Random. MIO [15, 19] is a search algorithm that was
designed specifically for system test generation in the context of white-box testing. MIO has been
empirically studied by comparing with the other existing work (e.g., WTS, MOSA and Random),
using artificial and real case studies. Results showed that MIO achieved the overall best perfor-
mance [15, 19] when applied on the problem of fuzzing RESTful APIs.

3 RELATED WORK

To the best of our knowledge, there does not exist any technique for fuzzing modern RPC-based
APIs (e.g., using frameworks like Apache Thrift, gRPC, and SOFARPC). In addition, EvoMaster
seems the only open source tool that supports white-box testing for Web APIs, and it gives the
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overall best results in recent empirical studies comparing existing fuzzers for REST APIs [49, 73].
However, currently EvoMaster only supports fuzzing RESTful APIs [20] and GraphQL APIs [33].

In the literature, there has been work on the fuzzing of other kinds of web services. The oldest
approaches deal with black-box fuzzing of SOAP [36] web services, such as, for example, [30, 32,
46, 52, 53, 56, 60, 64, 65, 70]. SOAP is a type of RPC protocol. However, SOAP’s reliance on XML
format for schema definitions and message encoding has led this protocol to lose most of its market
share in industry (i.e., apart from maintaining legacy systems, it is not used so much anymore for
new projects).

In recent years, there has been a large interest from the research community in testing REST-
ful APIs [37, 45], which are arguably the most common type of web services. Several tools for
fuzzing RESTful APIs have been developed in the research community, such as, for example (in
alphabetic order), bBOXRT [51], EvoMaster [16], RESTest [57], RestCT [69], RESTler [29], and
RestTestGen [67]. Another recently introduced type of web services is GraphQL [5], which is
gaining momentum in industry. However, there is only little work in academia on the automated
testing of this kind of web services [33, 34, 48, 66].

The automated testing of different kinds of web services (e.g., modern-RPC, SOAP, REST, and
GraphQL), shares some common challenges (e.g., how to define white-box heuristics on the source
code of the SUT, and how to deal with databases and interactions with external services). However,
there are as well specific research challenges for each type of web service, as we will show later in
the article. A fuzzer for SOAP or REST APIs would not be directly applicable to a RPC web service,
and vice versa.

In the literature, there are many applications of scientific research on the automation of soft-
ware testing [14, 35, 44]. Popular examples are AFL [1] for parsers and Sapienz for mobile applica-
tions [54]. Albeit possible, extending these kinds of tools from other testing domains for fuzzing
RPC APIs would likely require major engineering and scientific effort. Other domains like fuzzing
network protocols (e.g., AFLNet [62]) and network devices (e.g., NDFuzz [78]) are closer to the
fuzzing of Web APIs. Still, a non-trivial amount of work would be needed to adapt them to white-
box fuzzing of RPC-based APIs. For example, this could also explain why, to the best of our knowl-
edge, none of these existing tools has been used so far to fuzz RESTful APIs, albeit their recent
popularity in academia.

Given a client library for a RPC-based API, a unit test generator could be used directly on it, such
as, for example, the popular EvoSuite [38] for Java classes. This might work if the SUT and the
client library are run in the same JVM. However, all the issues when dealing with system testing
of web services would still be there, e.g., how to deal with databases and what to use as test oracle.
Also, likely such unit testing tool would need some modifications (e.g., to collect coverage from all
the classes and not just the RPC-client one). Therefore, how a unit test generator could be adapted
and fare in such a system testing scenario is an open research question.

4 FUZZING RPC-BASED APIs

When addressing a new testing problem like the fuzzing of RPC-based APIs, several design deci-
sions need to be made, especially when using search-based techniques. There is the need to specify
the search space (Section 4.1), how to represent the genotype of an evolving individual (i.e., a test
case in this context) (Section 4.2), how to define the fitness function to guide its evolution (Sec-
tion 4.3), which search operators to employ to modify the evolving individuals (Section 4.4), and
how to output the final results to the user (Section 4.5).

Building a fuzzer that can scale and be used on tens of industrial systems requires major engi-
neering efforts, throughout a few years. To evaluate the novel techniques presented in this article,
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Fig. 5. Overview of the approach built with EvoMaster.

we did not start from scratch, but rather re-use and extend an existing open source fuzzer. In
particular, our novel approach is built on top of EvoMaster (recall Section 2.3).

Figure 5 represents an overview of our novel approach. In order to fuzz RPC-based APIs, we
propose RPC Schema specification, which formulates necessary info to allow the execution of RPC
function calls and the analysis of execution result. In addition, with the specification, as shown
in the figure, the approach is composed of six steps distributed between the driver and core of
EvoMaster, plus initial settings manually provided by the user, for enabling automated fuzzing
of RPC-based APIs with search techniques. We briefly summarize these steps, where their details
will be provided in the rest of this section.

To employ EvoMaster, a SUTdriver is required to be specified for implementing how to
start/stop/reset the SUT (recall Section 2.3). In the context of RPC-based API testing, in the
SUTdriver, we further need the user to specify (1) RPCInterfaces: what interfaces are defining the
API in the SUT with their class names and (2) RPC clients: the corresponding client instances used
to make RPC calls during test generation (Step 0). Then, with the specified interface info, RPC

Schema Parser will extract and identify the API schema based on proposed RPC Schema specifica-
tion, in order to access the RPC functions (Step 1). At the core side, the extracted schemas will be
further reformulated (Step 2) to be as components (i.e., RPC Actions and Genes) of the search for
producing tests (Step 3). In our approach, a generated test is evaluated by its execution on the SUT
(Step 4) performed on the driver side. Then, responses, SBST heuristics (e.g., code coverage with
code instrumentation), and identified potential faults resulted in the execution will be returned to
the Fitness Function (Step 5) for calculating the fitness value of the executed test. Producing and
evaluating tests are performed iteratively (i.e., Steps 3–5), within a given search budget. At the
end of the search, a set of the best (in terms of code coverage and fault detection) tests for the
RPC-based SUT will be outputted (Step 6) with a given format (e.g., JUnit 5).

4.1 Search Space

At a high level, a RPC-based API can be seen as a process that opens a TPC/UDP port on a
given host, and then replies to incoming messages formatted with a given application-layer
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protocol. Such protocol could vary among the different RPC implementations. Furthermore, the
API would reply only to requests for its defined methods, requiring the right number and type of
input parameters. This means that sending random bytes over the TCP/UDP connections would
unlikely result in any meaningful response from the API, and possibly no execution of the code
of its business logic.

To address this issue, it would be important for a fuzzer to send well-formatted messages for the
different remote APIs exposed by the web service. Given a schema that specifies which methods
can be called, a fuzzer can then generate calls with the right input parameters. Considering that
these methods can take as inputs complex data such as strings, objects, and arrays, the search space
of possible inputs is huge, even when using a schema to constrain what will be sent. Only with
some specific inputs, faults could be revealed and code coverage optimized. Furthermore, to test a
specific endpoint, there might be the need to call a previous one to set the state (e.g., a database) of
the API. This means that a test case would hence be a sequence of one or more remote calls toward
the API, which increases the search space even further. To complicate this even further, to achieve
higher code coverage the API might require setting up the environment in which it operates. For
example, advance fuzzers can also add data directly into SQL databases as part of an initialization
phase, based on what queries the API executes on the database. This further extends the search
space of possible test cases that the fuzzers need to explore.

Nowadays, there exist various RPC frameworks for building modern RPC-based APIs, e.g.,
Thrift [13], gRPC [6], Dubbo [2], and SOFARPC [10]. As discussed in Section 2.1, most of the
techniques would result in RPCInterfaces (e.g., implemented as interface or abstract class) in
their API implementations representing how the services can be accessed, together with a client
stub to make the actual RPC calls. Considering all the possible types of communication protocols
supported by the different RPC frameworks, calling a RPC API directly from a fuzzer would be
a major technical endeavor. Furthermore, it would require one to support the different schema
languages for each framework, such as, for example .thrift (see Figure 2(a)) and .proto (see
Figure 3(a)) formats, and there would be limitations when the schema file might not be available,
such as the APIs implemented with SOFARPC and Dubbo.

In order to enable automated testing of RPC-based APIs in a more generic way, in this article
we propose a schema specification specific to the RPC domain that formulates main concepts
for facilitating invocations of RPC function calls and result analysis. Such a specification can be
automatically extracted based on RPCInterfaces, regardless of which RPC framework is employed
by the API. This schema defines the search space for the fuzzing, as we will evolve test cases
complying with such schema. Then, we employ the actual client libraries of the APIs to make the
RPC calls.

4.1.1 RPC Schema Specification. Our RPC Schema is defined with a Data Transfer Object

(DTO), which can then be instantiated in different formats, such as, for example, JSON. Figure 6
shows our RPC schema specification with a UML class diagram.

To extract info for enabling invocations of RPC function calls, there exist five main concepts to
define RPCInterfaces (denoted as classes with white background in Figure 6):

— RPCInterfaceSchemaDto: it represents the RPCInterface, such as the Interface with Thrift
(see Figure 2(b)) and abstract classwith gRPC (see Figure 3(b)). A RPCInterfaceSchemaDto

comprises one or more RPCActionDto (see 1..* functions), a set of functions for authentica-
tion handling (see * authFunctions) and a set of specifications of data types (see * types). For
instance, NcsService.Iface interface has a bessj function and employs Dto data struc-
ture (as shown in Figure 2(b)). Note that a RPC-based API might have multiple interfaces as
industrial APIs, which we studied in this article.
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Fig. 6. Data Transfer Objects defined in our RPC schema specification.

— RPCActionDto: it captures information to make a RPC function call, i.e., input parameters
if they exist (see * requestParams) and additional authentication setup (see 0..1 authSetup).
Each RPCActionDto also has interfaceId, clientInfo, and actionName properties to identify the
RPC function to call. In addition, we identify a property isAuthorized representing whether
the RPCActionDto is restricted with authentications in its implementation.

— ParamDto: it is used to describe values of input parameters and return. A ParamDto links to
an explicit datatype (see type) and might be composed of a set of ParamDtos for representing
complex data types, such as object, collection, and map (see * innerContent). The ParamDto

might be specified with a default value (see 0..1 default), e.g., a field in a DTO can be assigned
with a default value. In addition, we define stringValue to assign a value for the input param-
eter or represent the actual value of the return. Note that stringValue is applicable only if
there are no any internal elements. To construct constraints of the input parameters if they
exist, we define a set of properties in ParamDto as follows:

— isNullable represents whether the parameter is nullable to make the call.
— isMutable indicates whether the parameter is mutable. A value of the property is derived

based on whether the parameter is assigned with a fixed value. For instance, a parameter
must be true if it is specified with @AssertTrue, thus the parameter is considered as
immutable.

— minSize and maxSize represent boundaries in size if specified. The constraint could be
applicable to data types, i.e., collection, map, array, and char sequence (e.g., string).

— minValue and minInclusive are used to represent a minimum value, and a value of the
parameter must be higher than or equal to the minimum.

— maxValue and maxInclusive are used to represent a maximum value, and a value of the
parameter must be lower than or equal to the maximum.

— precision and scale capture constraints for numeric values regarding its precision and scale
(e.g., number of digits in their decimal part).

— pattern represents a regular expression that a string value must match.
Such captured constraints could contribute to test data generation for fuzzing Web APIs, by
sampling values within the boundaries of these constraints. Values of all of the constraint
properties could be derived automatically based on the PRCInterface, which is explained in
the RPC Schema extraction (see Section 4.1.2).
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— TypeDto and RPCSupportedDataType identify the data type info of the ParamDto. A list of
data types we support is defined as an enumeration RPCSupportedDataType that covers the
most commonly used data types, i.e., array, byte buffer, date, enumeration, list, map, set, string,
integer, Boolean, double, float, long, character, byte, short, big integer, big decimal, and any
customized DTO object, for enabling the fuzzing of RPC-based APIs. In TypeDto, it can be
specified with an example (see 0..1 example) for representing a generic type of collection,
array, and map. Note that this list of supported data types is not meant to be complete for
all RPC frameworks. But, if needed, it can be extended.

4.1.2 RPC Schema Extraction and Execution Support. As a white-box fuzzer, besides the source
code of SUT, a SUTdriver is the only input that EvoMaster needs a user to specify (recall Sec-
tion 2.3). Then, the SUTdriver is employed at the driver side for, e.g., starting/stopping/resetting
the SUT. In the context of RPC-based API fuzzing, we further need the user to provide info of
RPCInterfaces and corresponding client instances for extracting the API schema and accessing the
SUT. As shown in Figure 5, in the driver, with the provided SUTdriver (Step 0), we developed a
RPC Schema Parser, by directly extracting the interface definitions (which do represent the API
schema) from the source code using a reflection technique, such as Java Reflection.4 Thus, with
any RPC framework, if the available RPC functions are defined as an interface/abstract class
(which is usually the case), our approach could be applicable. The extracted information is further
formulated as a generic RPC Schema (see Section 4.1), i.e., a RPCInterface will be formulated as
a RPCInterfaceSchemaDto that contains specifications to invoke RPC function calls (i.e., RPCAc-

tionDto (Step 1→ Step 2)). In addition, we developed RPC Test Client, which allows one to make a
RPC function call against the SUT with RPCActionDto, then return ActionResponseDto (Step 5↔
Step 4) using specified RPC client instances. The driver is implemented as a service using REST API,
and the two components (i.e., RPC Schema Parser and RPC Test Client) are exposed as two HTTP
endpoints, i.e., /infoSUT for extracting RPC API schema and /newAction for executing RPC func-
tion calls. Thus, with a provided SUTdriver, our driver employed with proposed RPC Schema would
allow a unique interface of our tool to support invocations of RPC functions and result analysis.
This is an essential prerequisite for fuzzing RPC-based API.

Note that instead of enabling RPC function execution at the driver side, an alternative approach
would have been to include the two components and RPC API client library directly into the core

process, which might be more efficient (as calls from the core do not need to go through the driver

with HTTP requests). But that would introduce a lot of usability issues to configure it up (e.g.,
how to dynamically load a library at runtime, and how to deal with different JVM versions and
different programming languages). When introducing a novel approach, it is important to take
into account how complex it is to set it up by practitioners. For this, industry collaborations, where
actual engineers use these techniques on their systems (as we do for this article), are paramount.

4.1.3 SUTdriver Implementation. Figure 7 represents an example of a SUTdriver for manipu-
lating the SUT and specifying the info of a RPC-based API. For instance, a startSut method at
lines 9–24 represents how to start a RPC-based SUT, which is implemented with the Thrift frame-
work and SpringBoot. The method also instantiates needed clients to access the SUT after it starts
(see lines 18–20). To provide info specific to the RPC problem, lines 29–31 specify the RPCInterface

(i.e., NcsService.Iface; see Figure 2(b)) and corresponding client instance. Note that the info
is specified with a map since an API might have multiple RPCInterfaces as we observed in our
industrial case studies.

4https://www.oracle.com/technical-resources/articles/java/javareflection.html. Accessed August 26, 2022.
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Fig. 7. Snippet code of a driver for NcsService (see Figure 2).

In addition, each framework or each company might define their own rules to represent results.
For instance, we found that, in our industrial case study, in most cases a failed function call would
not result in any exception thrown to avoid propagation of exceptions in the distributed system,
since the services are connected with each other. Thus, inside the response, our industrial partner
has its own customized specification to reflect the results of RPC function calls that are linked to
their business logic. Without a thrown exception, a response representing an error might be falsely
identified as a success if no further info is provided. To address this concrete issue in industrial
APIs, in our approach, we provide an extensible method (i.e., getCustomizedValueInRequests
at line 35) to enable customized categorization of responses with the three levels as Customized-

CallResultCode defined in our RPC Schema (Section 4.1). By extending the method, the user could
directly link their own rules into our testing context. Note that such setup can be easily reused by
multiple SUTs if they use same customized specification (as it was for all web services developed
by our industrial partner).
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As an enterprise system, authentication is typically required to be handled. However, there are
many different ways to implement an authentication system in a RPC API, as it is usually not sup-
ported natively (at least not in Thrift). For this article, we are mainly supporting the authentication
systems used by our industrial partner. Authentication tokens need to be sent as a field in payloads
of the messages (similarly as HTTP authentication headers in RESTful APIs). An authentication to-
ken can be either static (i.e., pre-fixed) or dynamic. The latter requires one to get the token from an
endpoint (e.g., a login RPC endpoint where valid username/password info must be provided), and
then add it to all following RPC calls. In our implementation, we support both approaches, which
needs to be configured in the driver, i.e., by extending the method getInfoForAuthentication
at line 38 and getCustomizedValueInRequests at line 41 as shown in Figure 7. To serve a more
fine-tuned setup for authentication, we enable options to specify (1) if either the authentication
is applied for all API functions; or (2) specific only to some functions in that SUT, that could be
filtered by names or by special annotations applied on these functions. More details about how to
configure the option could be found in two DTOs, i.e., JsonAuthRPCEndpointDto and Customize-
dRequestValueDto, in our implementation.1

4.1.4 RPC Schema Parser. Regarding the extraction of RPC interface definitions, currently, we
target JVM RPC-based APIs using Java Reflection. As for the examples shown in Figures 2 and 3,
a client-stub RPCInterface is composed of a set of available RPC functions to be extracted. Each
operation in the interface depicts a RPC function to be called in this service. Then, with reflection,
for each interface, we identify all such public methods, and then further extract info on their input
parameters, return type, and declared exception types.

Regarding datatype, as currently targeting JVM projects, we have supported the most com-
monly used data types, i.e., Array, ByteBuffer, Date, Enum, List, Map, Set, String, Integer, int,
Boolean, bool, Double, double, Float, float, Long, long Character, char Byte, byte, Short,
short, BigInteger, BigDecimal, and any customized DTO object. For the handling of generics,
we support their instantiations for any of these common data types. Note that all of the datatype
could be mapped to an item defined in RPCSupportedDataType.

Regarding the parameter, besides its datatype, we also need to extract info, such as accessibility
and constraints if they exist. Extracting accessibility is needed for the parameter typed with DTO,
then its fields might be publicly accessible or not, i.e., declared as public or not in Java. If the
field is not publicly accessible, there is a need to further extract its existing getter and setter that
would be used in assertion generation (with getter) and parameter construction (with setter) in
our context. Note that the accessibility info for each parameter is maintained inside the RPC Test

Client that does not expose in DTO, since the user does not need to care about how to construct
the data instance for the parameter and assertion generation. More details about how the info is
constructed can be found in the class AccessibleSchema.1

Regarding the constraints, a parameter might be specified with constraints in its implementa-
tion. For example, an integer representing the day of the month could be constrained between the
values 1 and 31. To make RPC function calls that do not fail due to input validation, we need to han-
dle such constraints when generating input data for the call. Therefore, for each parameter, with
the proposed schema, we define possible constraints as properties of ParamDto (see Section 4.1.1
and Figure 6). With the extraction, we further identify the properties based on the data types.
For instance, all parameters are defined with a property named isNullable representing whether
a parameter object can be null (the value of this property for all primitive types is always false).
Parameters with numeric data types are defined with min and max properties. For parameters
representing collections (e.g., maps and lists) and string types, properties for constraining their
size/length are defined, i.e., minSize and maxSize. For strings, we define pattern for supporting a
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constraint specified with regular expressions. If a string has to represent a numeric value, we use
minValue and maxValue for supporting a possible range constraint for it.

To identify constraints defined in the interface definitions (typically with annotations), we en-
able constraint extraction on javax.validation.contraints [8], which is the standard library
for defining built-in constraints for Java objects. We support 16 commonly used constraints, i.e.,
AssertFalse, AssertTrue, DecimalMax, DecimalMin, Digits, Max, Min, Negative, Negative-
OrZero, NotBlank, NotEmpty, NotNull, Pattern, Positive, PositiveOrZero, and Size. Besides
standard javax annotations, constraints could be defined in other ways as well. For instance, in
Thrift, whether a field is required is represented by a requirementType property of the Field-
MetaData class. Thus, in order to deal with constraints in the Thrift framework, we further extract
and analyze the metaDataMap object in the interface for obtaining such constraints.

In addition, since there is no general standard to restrict such interface implementations (as long
as it compiles), the method and the data type might use Java Generics (as we found in our indus-
trial case study). Therefore, we further handle such generic types when processing RPC function
extraction, e.g., analyze getParameterizedType for each parameter.

With the RPC Schema Parser, it is capable of formulating each RPCInterface as RPCInter-

faceSchemaDto shown in Figure 6.

4.2 Genotype Representation

Given an extracted RPCSchemaDto schema, we need to define how to represent the genotype of
the evolving test cases. In our context, a test could be reformulated as an individual which is
composed of a sequence of RPC function calls. Each function call is formulated as RPCCallAction,
which comprises the method name, input parameters (if any), optional authentication info, and a
response (if declared).

For each input parameter, we define a gene with a specific type to represent the parameter. A
gene is an instance for the specific type, with constraints on how it can be mutated (i.e., modified
by the search operators) during the search. For example, a numerical parameter could be internally
represented as an integer, initialized with a random value, where the search operators could add or
move a delta from such value during its evolution. Textual parameters could be represented with
a string, where search operators can either modify its characters, and add or delete some of them
(and so changing the length of the string). For more complex types, genes can be hierarchically
combined in a tree structure. For example, an object is represented with a gene that has one child
gene for each field of the object (and so on recursively, if any of these child fields is an object itself).

There are many types of possible parameters to handle. To achieve a full support to be able to
handle RPC-based APIs, we re-use (and extended where needed) the gene system already present
in our EvoMaster fuzzer. Regarding the input parameters, we could re-use existing Gene objects
already defined in EvoMaster for supporting REST API testing, such as, for example:

— Straightforward mapping: ArrayGene for Array, Set and List; BooleanGene for Boolean and
bool; DoubleGene for Double and double; LongGene for Long and long; FloatGene for Float
and float; EnumGene for Enum; DateGene, DateTimeGene and TimeGene for DateTime;

— MapGene for Map. Note that the original version of MapGene only supports keys with string
type. However, other types such as enum and integer are quite common in RPC-based APIs.
Therefore, we further extended MapGene for enabling key to be specified with IntegerGene,
StringGene, LongGene, and EnumGene.

— IntegerGene for Integer, int, Short, short, Byte, and byte (various types here are distin-
guished by min value and max value, e.g., max value is configured as 127 for Byte by default
if it is not constrained);
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— StringGene for Character, char, String, and ByteBuffer (various types are distinguished
by min and max length, e.g., max length is configured as 1 for char by default if it is not
constrained);

— RegexGene for a pattern specified in String parameter;
— ObjectGene for representing customized class object;
— CycleObjectGene for a field in the customized class object that leads to a cycle;
— Optional is for handling any parameter whose isNullable property is true.

In addition, we also purpose new genes, such as BigDecimalGene and BigIntegerGene for BigDec-
imal and BigInteger, respectively. In the original implementation of Genes in EvoMaster, con-
straints for all types are not fully supported. Therefore, to fully support testing the RPC APIs in
our case study, we extended genes by enabling all constraints we defined in RPC Schema, such as
handling precision and scale for numeric genes, and min and max size constraints for ArrayGene,
MapGene, and StringGene. This means that, when these genes are either sampled at random, or
modified throughout the search via mutation operators, all (linear) constraints are kept satisfied
(e.g., a mutation operator would not try to increase a numeric value if it is already at its maximum
as defined in its gene constraints).

To test a RPC-based API, the input parameters could be either automatically generated or man-
ually configured by the user (e.g., unlike header in HTTP request, in RPC function call, authenti-
cation info could be specified as parts of input DTOs). The former one would be handled by search
techniques in our approach. The way to enable authentication as part of the input parameters
can be identified as the latter option, i.e., manually defined inputs. To allow further combinational
handling with both automatic and manual solutions, we decided to extend the test reformulation
with a new gene, i.e., SeededGene, for handling manual inputs in a more generic way. A Seeded-

Gene, representing a gene that has a set of candidates, is constructed with the following: (1) gene

is the original genotype of the parameter that could be mutated with the search; (2) seeded is an
EnumGene with the same type as gene presenting enumerated candidates; and (3) employSeeded

is a Boolean to indicate whether the original gene or the seeded gene is used for the phenotype
of SeededGene. Besides handling authentication info, this kind of gene also allows further seeding
with existing data (if any) that would be useful, in particular, in solving industrial problems.

To be able to efficiently fuzz real-world APIs, currently EvoMaster has more than 80 different
types of genes in its search-based fuzzer engine [28]. A full description of each of them is not viable
here. For low-level technical details, the interested reader can check out our implementation [28],
in particular, the code under the org.evomaster.core.search package.

4.3 Fitness Function

To evaluate the fitness of a test case, we need to be able to make calls toward the API, with the
right inputs, in the right format. The fitness itself will be based on two different kinds of metrics:
white-box heuristics based on the execution in the source code (which requires the API to be
instrumented with probes), and black-box heuristics based on the responses returned from each
RPC call.

To make calls on the API, we use the client library provided by the API itself (recall Section 4.1.2).
Most RPC frameworks (e.g., Thrift and gRPC) provide ways to automatically generate client li-
braries (recall Section 2.1). However, there would be several technical issues in dynamically load-
ing such library inside the core process of EvoMaster. Our solution is to let the user specify (and
link) such client libraries in the driver classes that need to be written to run the white-box mode
of EvoMaster (recall Section 2.3). This means that, when a test case needs to be evaluated, the
core process sends a representation (in JSON format) of such a test case to the driver, and then
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the driver executes the actual RPC call and collects its response. Plus, the driver also collects any
white-box heuristics from the instrumented API. Then, all this information is sent back to core,
where the fitness value for the test is computed.

This architecture to support fuzzing of RPC APIs introduces some latency, as the EvoMaster
core does not communicate directly with the API. However, it has major benefits, as it is much
easier to set up and implement (e.g., there is no need to parse any .thrift or .proto file), as well
as enabling supporting all different kinds of RPC frameworks with little effort.

4.3.1 RPC Execution Result Analysis. By using client to invoke RPC function call, a result
received at the client side could be a return value as defined or an exception thrown from the
API. To enable the result analysis, we proposed five main concepts denoted as classes with gray
background in Figure 6, i.e., ActionResponseDto, RPCExceptionInfoDto, RPCExceptionCategory,
RPCExceptionType, and CustomizedCallResultCode. ActionResponseDto is a DTO that captures all
info returned from a RPC function call, i.e., throw an exception (see 0..1 exceptionInfoDto) or
return a value as specified (see 0..1 response).

Regarding exception, handling the exception info for RPC functions is crucial for testing pur-
poses, e.g., to be able to use automated oracles to identify faults in the SUT. To analyze an exception,
in our proposed schema, we define RPCExceptionInfoDto, which captures exceptionName, exception-

Message, type, and exceptionDto, which is an optional DTO representing possible additional info
for customized exceptions (e.g., the exceptions declared with the keyword throws in Java). In ad-
dition, when invoking RPC function calls with clients that could be proxy clients, an exception
caught at the client side might be wrapped, such as UndeclaredThrowableException5 in Java. To
get the exact exception info, we further extract and analyze the actual exception (e.g., with cause
of UndeclaredThrowableException) as RPCExceptionInfoDto. We also perform further exception
analysis on UndeclaredThrowableException, as was needed for our industrial case study, and the
property isCasueOfUndeclaredThrowableException represents whether such a wrapped exception
is thrown from the SUT. Note that the actual exception analysis could be extended in the future
when needed.

Besides exceptionName and exceptionMessage, to better identify exceptions in the context of
RPC-based APIs, based on domain knowledge, we classify exceptions into four categories as
RPCExceptionCategory: APPLICATION (e.g., internal server errors), TRANSPORT (e.g., connection
timeouts), USER (e.g., sending invalid data), and UNCLASSIFIED. Different RPC frameworks can
define their own exceptions for handling various situations for RPC (e.g., type of TApplicationEx-
ception [12] defined in TException for Thrift, status [11] defined in StatusException and Sta-
tusRuntimeException for gRPC). To cover such knowledge captured in various RPC frameworks,
we define RPCExceptionType, and each of the types should belong to a category in RPCException-

Category. The RPCExceptionType now provides full support for analyzing exceptions in the Thrift
framework, which covers the complete 24 exception types from TApplicationException (refer
to APPLICATION category), TProtocolException (refer to USER category), and TTransportEx-
ception (refer to TRANSPORT category). In addition, we define two generic exception types, i.e.,
CUSTOMIZED_EXCEPTION representing a declared exception (e.g., throws keyword in Java), and
UNEXPECTED_EXCEPTION representing an exception that is not declared in the function and does
not belong to any other identified types (e.g., RuntimeException in Java). The generic exception
types link to the UNCLASSIFIED category that covers the cases whereby the exception type is un-
specified or its identification is not supported yet for linking it to a specific RPC exception (like
Thrift).

5https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/InvocationHandler.html. Accessed August 26, 2022.
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With ActionResponseDto, considering how a RPC call is handled by the SUT and if there is any
exception, we classified it into seven kinds of execution results that would contribute to define
search heuristics for optimizing generated tests:

— (ER1) internal error : an exception that represents an internal error is thrown, e.g., TAppli-
catinException with INTERNAL_ERROR type in Thrift.

— (ER2) user error : if an exception was thrown that can be traced to a failed input validation,
based on Thrift’s protocol errors.

— (ER3) transport error : an exception that represents transport errors is thrown.
— (ER4) other exception: other exception (e.g., other types of TApplication except internal

error) is thrown.
— (ER5) declared exception: an exception declared in the function is thrown.
— (ER6) unexpected exception: any other exception that is not declared in the function is thrown.
— (ER7) handled: a value is returned as declared without any exception thrown. If users specify

their result categorization, this label is further refined as one of success, service error, and other

error.

With HTTP, a result for a request could be identified based on status code in its response, e.g., 2xx
indicates a success, 4xx indicates a client error, and 5xx indicates a server error. Such a standard is
useful in developing automated testing approaches, e.g., reward requests with 500 status code (for
finding potential faults in the SUT) and 2xx status code (for covering a successful request). How-
ever, in the context of RPC, there does not exist such standard, and a result (e.g., success or failure)
of the call cannot be directly determined based on the return value if there is no exception thrown.
Therefore, we propose CustomizedCallResultCode, which defines three categories (i.e., SUCCESS,
SERVICE_ERROR, and OTHER_ERROR) to better identify a return value of a RPC function call.
Identifying the return value could vary from SUTs to SUTs, and from companies to companies. So,
we expose an interface to allow a customization of the identification (see Section 4.1.2).

Thus, with our RPC result analysis specification as shown in Figure 6, each result by a RPC
function call would be constructed as an instance of ActionResponseDto. If there is an exception
thrown, RPCExceptionInfoDto could be instantiated to describe info of exception in detail, such as
exception class, message, type, and category. If a value is returned as defined, the value could be
represented as a JSON object (if could) and an instance of ParamDto, and the result could be further
identified with CustomizedCallResultCode.

4.3.2 RPC Test Client. This component mainly enables invocation of RPC function call with
RPCActionDto, analysis of the response or exception after the invocation, then outputting Action-

ResponseDto. With the RPCActionDto, we could know what interface the action belongs to and
what parameters are needed to construct, then the invocation is made based on the provided RPC
client instance. Result analysis is performed based on concepts we discussed in Section 4.3.1. For
instance, now we support extract name and message info from all exceptions that inherit from
java.lang.Exception. Its explicit type could be identified if it belongs to the Thrift framework,
i.e., org.apache.thrift.TException can be found in the client library, the class of the thrown
exception inherits from TException, then extract its super classes to recognize the exception cat-
egory (e.g., APPLICATION ) under RPCExceptionCategory and its type property to identify a type
(e.g., APP_INTERNAL_ERROR) under RPCExceptionType. If the exception is not from the Thrift
framework, its explicit class would be extracted, then set it with CUSTOMIZED_EXCEPTION and
UNEXPECTED_EXCEPTION based on whether the exception is a part of the throw clause declared
in the RPC function. Note that the result analysis needs to be extended if one wants to support
other RPC frameworks, such as gRPC. However, exceptions in the context of the RPC domain have
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Table 1. RPC Testing Targets with Heuristics

# Execution Results Handled Error isFault

1 ER1: internal error 0.5 1 Yes
2 ER2: user error 0.1 0.1 -
3 ER4: other exception 0.5 1 -
4 ER5-6: unexpected/declared 0.5 1 Yes
5 ER7: handled 1 0.5 -

Success Fail isFault

6 success 1 0.5 -
7 server error 0.5 1 Yes
8 other error 0.1 0.1 -

NotNull Null

9 a null response is returned 0.5 1 -
10 a non-null response is returned 1 0.5 -

NotEmpty Empty

11 an empty collection is returned 0.5 1 -
12 a non-empty collection is returned 1 0.5 -

been formulated in our schema. The additional work would be only technical details that we need
to cope with, e.g., add additional types if they are not covered yet, then extract the specific info to
identify the type.

More technical details on this implementation (e.g., how the parameters could be constructed
for each data type, how to automatically recognize input parameters with customized info, and
how to extract data and type from a Java object) can be found in our open source repository.1

4.3.3 Test Execution. With our RPC handling support in the driver, we enable tests to be exe-
cuted during the search. Then, with the JVM instrumentation provided by EvoMaster, various
SBST heuristics (e.g., code coverage, branch distance, and SQL queries heuristics) can be returned
after the test is executed (see JVM Instrumentation → Fitness Function in Figure 5), additionally
to the RPC function call execution results (i.e., ActionResponseDto). Regarding the authentication
handling, dynamic tokens acquired via a login endpoint can be regarded as an additional action
that needs to be invoked before the other RPC functions can be called. This has been enabled
automatically in our implementation.

For white-box heuristics, we rely on the current state-of-the-art in white-box fuzzing of Web
APIs given by EvoMaster [50, 73]. This includes adaptation of traditional SBST heuristics like the
branch distance [20], as well as advanced testability transformations [26] and SQL handling [24].

In the context of testing RPC-based APIs, besides using SBST heuristics at code coverage level,
we propose additional novel testing targets (with their heuristics) on the responses of the RPC calls
for guiding the test case generation, as shown in Table 1. Note that, with MIO, each testing target
has a fitness value between 0.0 and 1.0, where a higher value is better. A value with 1.0 means that
the target is covered, and any value more than 0.0 but less than 1.0 indicates that a testing target
is reached but not covered.

For each RPC function, we create two testing targets Handled and Error, representing that the call
is handled or in error, respectively, by the SUT. Based on the execution results we reformulated in
Section 4.2, we set a fitness value of Handled and Error testing targets as #1–#5 in Table 1, after the
call is executed. For instance, if the execution result is identified as handled, fitness values are set
as 1.0 for Handled and 0.5 for Error (0.5 here represents the target is reached but not covered, which

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 122. Publication date: July 2023.



White-Box Fuzzing RPC-Based APIs with EvoMaster: An Industrial Case Study 122:21

is heuristically better than not calling the method at all). If any unexpected or declared exception
is thrown, the fitness values are set as 0.5 for Handled and 1.0 for Error. Since the exception type
for the unexpected/declared exceptions is unclear, the execution would be further rewarded with
a testing target for potential fault finding. If the exception type could be further identified, the
fitness values of Handled and Error would be handled as #1–#3. Note that, for these three types of
categorized exceptions, only internal error is rewarded for potential fault finding. Considering that
the protocol error typically refers to user errors, compared with other exceptions, it would be less
important; then it is set with lower fitness values (i.e., 0.1) for both Handled and Error. As transport

error (ER3) is usually due to issues in the testing environment (e.g., timeouts), we do not reward
such exception with any fitness values.

In addition, if the handled results could be further categorized by the user in terms of their
business logic, we propose two additional testing targets Success and Fail, representing whether
the request succeeds or fails to be performed on the SUT. Heuristics for handling the two targets
regarding execution results are defined in #6–#8. The strategy to decide the fitness values is similar
with Handled and Error (e.g., server error is rewarded with potential finding and other error is
recognized as less important) that aims at covering both Success and Fail of the RPC function
actions in terms of business logic. Moreover, to maximize response coverage, we also propose
another four testing targets by considering whether any null or non-null value is ever returned (i.e.,
#9 and #10), and whether any empty or non-empty value is ever returned for collection datatypes
(i.e., #11 and #12). Note that, although some of these fitness values do not provide much gradient
for the search (e.g., only two values such as 0.5 and 1), they are still useful. Test cases for reached
but not covered targets (e.g., 0.5) are kept in the archive of MIO, and will still be sampled and
mutated throughout the search.

4.4 Search Operators

Our test reformulation enables its use in various search algorithms for supporting RPC-based API
fuzzing. In this work, we use MIO because it is the default in EvoMaster, as it achieved the overall
best results in an empirical study conducted by comparing it with various other algorithms [15]
on the fuzzing of RESTful APIs (recall Section 2.3). However, other search algorithms might be
better on the problem of fuzzing RPC APIs. But, without further empirical analyses, this is not
something that can assessed for sure. Due to the high cost of running this type of comparison
experiments, a comparison of different search algorithms for fuzzing RPC-based APIs is not in
the scope of this article.

MIO is an evolutionary algorithm inspired by (1+1) EA that uses two search operators, for sam-
pling and mutation, respectively. We employ the same strategies as EvoMaster for RESTful API
testing. The sampling is implemented to produce a valid test by selecting a sequence of one or
more available actions at random. Values of Genes in these tests are initialized at random, within
the constraints, if any (e.g., a ArrayGene will have n randomly generated elements based on its min
and max length). Authentication info, if any, is enabled with a given probability, i.e., 95%, which is
the default one used in EvoMaster. In addition, at the beginning of the sampling, we also prepare
a set of ad hoc tests that cover all available RPC function calls and all authentication combinations,
i.e., each test has an action configured with and without authentication. In other words, the struc-
ture of the first k tests are not sampled at random, where k = a × n, with n being the number of
functions in the RPC API and a being the different authentication settings.

Regarding the mutation operator, actions in a test can be added or removed for manipulating
the structure of the test, given a certain probability. To mutate the values of Genes inside the
tests, we employ the default value mutation in EvoMaster, which has been integrated with taint
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analysis [26] and adaptive hypermutation [71]. How each gene is mutated depends on its type and
constraints (if any), as previously discussed in Section 4.2.

Given a typical evolutionary algorithm with an individual representation having n bits, then
on average each gene would be mutated with probability 1/n. However, the genes defined in
EvoMaster can have massive differences in terms of their genetic information. For example, a
Boolean gene would represent only two possible values (for true and false), whereas an object
gene for a complex DTO could have hundreds of internal fields. The search engine of EvoMaster
can deal with genes of different weight, and mutate the ones with more weight more often. Fur-
thermore, adaptive hypermutation [71] enables having a higher mutation rate, and automatically
detects which genes have less (or no) impact on fitness, and automatically mutates them less often.

If the SUT interacts with a SQL database, genes to represent INSERTION operations will be au-
tomatically added to the tests, in the same way as done in EvoMaster for RESTful APIs [24].

4.5 Test Suite Output

In the same context of API testing, we could re-use parts of EvoMaster test writer to generate
the SUT test scaffolding. For example, we use the same initClass for setting up the necessary
testing environment (e.g., start SUT), tearDown for performing a cleanup after all tests are executed
(e.g., shutdown SUT), and initTest for resetting the state of the SUT for making test executions
independent from each other. To enable a more efficient test execution and fit industrial-scale API
testing, we extended initTest with our smart database clean procedure, by considering the union
of all accessed tables, and their linked tables, for all tests that are generated.

Regarding handling of action execution and assertion generation, with EvoMaster, tests are
generated with RestAssured to make HTTP calls toward the tested REST API. This is not applicable
in the context of RPC testing. Then, to support RPC-based API testing, we develop a Test Writer

that could handle instantiation of input parameters, RPC function call invocation (based on the
RPC client library), and assertions on response objects with JUnit. An example of generated tests
can be found at this link.6

In our industrial case study, we found that some responses contain info such as timestamps and
random tokens, and they could change over time. In order to avoid test failing due to such flakiness,
we defined some general keywords (e.g., date, token, time) to highlight those cases. If any keyword
appears in either datatype, field name, or value with string type, the assertion would be commented
out to avoid the test becoming flaky. We comment them out instead of removing them completely
since it would still be interesting, for the users, to show what the response was originally.

In addition, there might exist quite large responses in some API endpoints, especially when
dealing with collections of data. For example, in one SUT in our case study, a response contained
470 elements, and each element further contains data with list type, and 7,579 assertions were
generated for this response. As such a large number of assertions would reduce the readability of
the tests, we then developed a strategy to randomly select only n (e.g., n = 2) elements from the
returned collections to generate assertions on in the tests. More details on the writer can be found
in our open source repository.1

Generating this kind of tests has two main advantages. First, as the generated tests are self-

contained (because they are able to start and stop the API directly without manual intervention),
they can be used for regression testing. Second, they help debugging any found fault, as each gen-
erated test can be run independently, because they take care of initializing and reset the state of

6https://github.com/anonymous-authorxyz/fuzzing-rpc/blob/main/example/src/em/EM_RPC_1_Test_others.java. Ac-
cessed August 26, 2022.
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Table 2. Descriptive Statistics of Case Studies

#Interfaces #Functions #Services (#U , #D) #Classes #LoCf (#LoC j ) #Tables

thrift-ncs 1 6 0 7 506 (254) 0
thrift-scs 1 11 0 12 695 (260) 0
CS1 3 24 7 (6, 1) 101 12,559 (4,019) 6
CS2 5 20 11 (7, 4) 144 18,987 (1,821) 17
CS3 8 51 18 (14, 4) 339 45,987 (18,800) 156
CS4 8 55 36 (27, 9) 868 116,340 (20,760) 50
Total 26 167 72 (54, 18) 1,471 195,072 (45,914) 229

#Interfaces represents the number of RPCInterfaces, #Functions represents the number of available RPC
functions, #Services represents the number of direct interacted external services (divided between #U of
upstream and #D downstream services), #Classes is the number of Java class files, #LoCf is the number of
lines of code in Files (#LoC j is the number of lines of code reported by JaCoCo), and #Tables is the number of
SQL tables.

the API (e.g., SQL databases). This feature was critical when analyzing the faults found during our
empirical study.

5 EMPIRICAL STUDY

5.1 Research Questions

In this article, we conduct an empirical study to answer the following research questions:

RQ1: How does our white-box fuzzing perform compared with a baseline gray-box technique?
RQ2: How does our novel approach perform in terms of code coverage?
RQ3: Does our novel approach find real faults in industrial settings?

5.2 Experiment Setup

To evaluate our approach (denoted as RPC-EVO), we carried out an empirical study with two
artificial and four industrial RPC-based APIs selected by our industrial partner. The industrial
case studies are from a large-scale e-commerce platform (comprising hundreds of web services
referred to as microservices) developed by Meituan. Descriptive statistics of the case studies are
summarized in Table 2. thrift-ncs and thrift-scs are re-implemented by us with Thrift, based on
existing artificial RESTful APIs that have been used to assess the effectiveness of solving numeric

and string problems [20, 21, 26, 71]. CS1–CS4 are from our industrial partner. Each one of them
is a part of a large microservice architecture, where each API interacts with other services and a
database. #Services (in Table 2) shows the amount of external services that a SUT directly interacts
with (see an example in Figure 1), where #U is the amount of its upstream services that the SUT
depends on, and #D is the amount of its downstream services that call the SUT. The lines of code
(#LoC) numbers include everything, such as comments, empty lines, and import statements. The
actual lines with code (which results in LINENUMBER instructions in the compiled .class files) are
calculated with the coverage tool JaCoCo (i.e., #LoC j ).

Ideally, experiments should be carried out on real industrial systems. However, we also em-
ployed two artificial case studies (which we open sourced) to make at least parts of our experiments
replicable,1 as of course we cannot share the code of the industrial systems. In addition, to further
demonstrate its adoption and performance in industrial settings, we also report preliminary results
on 50 further industrial APIs. Note that the testing of those 50 APIs was autonomously performed
by our industrial partner (e.g., prepare EvoMaster drivers, without any researcher involved), as
part of an internal evaluation to see whether/how to integrate EvoMaster in their CI pipelines.

For the choice of baselines for comparisons, regarding other tools in the literature, to the best
of our knowledge, there does not exist any other automated testing solution for RPC-based APIs
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that could be applied as a baseline in this study, as discussed in more detail in Section 3. Therefore,
we adapted our approach to be used by the Random Search Algorithm in EvoMaster, which can
be regarded as a gray-box technique (testing targets such as code coverage are still employed
to evaluate tests to produce a final test suite as output at the end of the search). This random
search serves as a baseline to evaluate our approach in the context of white-box testing. To be
comparable, the same search budget (i.e., 100,000 RPC function calls) are applied for all settings
with these techniques. In addition, to further evaluate the performance of our generated tests, we
also compare them with existing tests in the industrial case studies.

Regarding the applied evaluation metrics, in these comparisons we used three main metrics: line

coverage, target coverage, and fault detection. Line coverage is measured with the code instrumenta-
tion of EvoMaster, and it is based on the LINENUMBER bytecode instructions in the business logic
of the tested APIs (i.e., no third-party library). Fault detection is based on the oracles defined in
Section 4.2, i.e., it counts the number of unique thrown exceptions related to server errors. They
are differentiated not only based on the entry point of the API (i.e., the actual method that is called
remotely), but also on the last executed statement in the business logic of the API (as each endpoint
can fail for different reasons, while executing different lines of the code). The target coverage is
an aggregated metric in EvoMaster that considers all its code coverage metrics (e.g., besides cov-
ered lines, it also considers, for example, the number of loaded classes, covered branches in jump
instructions, methods called without throwing exceptions, and Boolean methods returning true
and false at least once), as well as the number of found faults, and black-box metrics on the API
responses (recall Table 1).

Considering the stochastic nature of the search algorithms, all experiments on each of the six
main APIs were repeated 30 times, by following common guidelines in the literature [22]. thrift-ncs

and thrift-scs were executed on an HP Z6 G4 Workstation with Intel(R) Xeon(R) Gold 6240R CPU
@2.40 GHz, 2.39 GHz processor, 192 G RAM, and 64-bit Windows 10. The four industrial APIs
were executed on the actual hardware pipelines of our industrial partner. With these pipelines, all
external services of the SUTs are up and running. In an industrial testing environment, databases
can be pre-loaded with lots of data (e.g., replicas of the production database), for covering their
specific business logic. The amount of such data can be quite large, e.g., 256,024 data entries in CS3.
In an automated testing process, it is difficult to maintain such large data cost-effectively (e.g., clean
and re-insert them back after each test execution) for ensuring that each test is executed with the
same state of the SUT. Therefore, we decided to use empty databases to conduct our experiments
with the industrial APIs.

To get a better insight into the applicability of our novel techniques in real industrial contexts,
we also report on the use of EvoMaster on the current testing pipelines at Meituan. This included
50 APIs, in which no researcher was involved in the running of these fuzzing sessions. No com-
parison with the gray-box technique was made here. The preliminary results on these 50 APIs are
based only on one run, each one where EvoMaster was run for 10 hours.

5.3 RQ1: Comparison with Gray-Box Technique

To answer RQ1, we applied our approach and the random search strategy on all of the six case
studies with the same search budget, i.e., 100,000 RPC calls. The computation cost of two settings
with at least 30 repetitions is 30.64 hours for the two artificial APIs, and 129.12 days for the four
industrial APIs (maximum 18.27 hours and minimum 9.41 hours per run on the industrial APIs).
Note that the 30 repetitions are only applied in this empirical study for evaluating the approach.
When used by practitioners on their systems, the approach can be run just once.

Table 3 reports the results of target and line coverage, with comparison results on the two met-
rics using statistical analysis, as recommended in [22]. In particular, for pair comparisons we use
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Table 3. Pair Comparisons between Our Approach (RPC-EVO) and Random

with #Targets and %Lines on All SUTs

SUT Metrics RPC-EVO Random Â12 p value Relative
thrift-ncs #Targets 542.2 376.3 1.00 ≤0.001 +44.07%

%Linese 88.2% 60.0% 1.00 ≤0.001 +47.00%

thrift-scs #Targets 658.4 549.4 1.00 ≤0.001 +19.85%

%Linese 71.9% 59.6% 1.00 ≤0.001 +20.59%

CS1 #Targets 1,953.3 1,773.1 0.97 ≤0.001 +10.16%

%Linese 25.6% 23.1% 0.99 ≤0.001 +11.15%

CS2 #Targets 3,434.1 3,099.1 0.96 ≤0.001 +10.81%

%Linese 27.2% 24.7% 0.94 ≤0.001 +10.18%

CS3 #Targets 4,453.4 4,067.2 0.96 ≤0.001 +9.50%

%Linese 15.4% 14.0% 0.99 ≤0.001 +9.78%

CS4 #Targets 6,229.7 6,046.8 0.80 ≤0.001 +3.02%

%Linese 6.5% 6.3% 0.91 ≤0.001 +4.46%

the Mann-Whitney-Wilcoxon U-test (see p values) and Vargha-Delaney standardized effect size
(Â12). The U-test is used with the standard α = 0.05 level (i.e., we claim statistical difference if a p
value is lower than 0.05). In this context, the Â12 effect size provides a probability estimate that an
algorithm produces better results than the other compared one. If two algorithms are equivalent,
then Â12 = 0.5. A value like Â12 = 1 means that, in every single run, the first algorithm always
gave better results. Note that the Â12 effect size only computes how often an algorithm gives better
results, but not by how much.

Given these results, our approach demonstrates significantly better results than the baseline
technique, with a low p value (i.e., ≤ 0.001) and a high effect size (i.e., Â12 > 0.80) on all of the six
case studies with the two metrics.

In addition, Figure 8 plots the average covered targets over time (i.e., at every 5% of the used
budget) for two techniques on each case study. Based on these line plots, our approach clearly
outperforms Random by a large margin throughout the whole process of the search, and the results
are consistent on all of the case studies. This further demonstrates the effectiveness of our white-
box techniques in both artificial and industrial settings.

RQ1: Based on the target and line coverage results, our approach significantly outperforms random

search on all of the six case studies. The relative improvements are up to 47% on the artificial case

studies and 11.15% on the industrial case studies.

5.4 RQ2: Results of Code Coverage

5.4.1 Artificial APIs. Based on coverage (i.e., %Linese ) reported in Table 1, on the two artificial
case studies representing numeric and string testing problems, our approach achieves high line
coverage (i.e., 88.2% on thrift-scs and 71.9% on thrift-scs) when using 100k calls as budget. This
high code coverage could demonstrate that RPC-EVO effectively enables the white-box fuzzing
for RPC-based APIs, i.e., based on the white-box heuristics, effectively optimize the inputs of ex-
tracted/reformulated RPC function calls.

RQ2.1: Our approach achieves high line coverage on the two artificial case studies, demonstrating

its effectiveness in enabling white-box fuzzing of RPC APIs.

5.4.2 Industrial APIs. Regarding the four industrial case studies, as a fully automated solution,
our approach achieved useful (for our industrial partner) coverage on CS1 and CS2 (more than 25%),
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Fig. 8. At every 5% of the used budget (x-axis), average covered targets (y-axis) achieved by RPC-EVO and

Random.

but limited coverage on CS3 and CS4 (especially CS4). The results are also related to the complexity
of these SUTs (as shown in Table 2), given the same limited search budget. For example, based on
#LoC values, CS3 and CS4 are much larger (and likely more difficult to fully cover) than CS1 and
CS2, where CS4 has more than 2.5 times #LoC than CS3. In addition, based on the line plots in
Figure 8, the slope of the lines in CS1–CS4 is greater than thrift-ncs and thrift-scs, especially for
CS3 and CS4. This indicates that more targets would likely be covered if more budget is used, i.e.,
if the fuzzers were run for longer, like 24 or 48 hours. However, without actual experiments, it is
not possible to be completely sure.

Comparison with existing tests. To study the performance on code coverage in industrial
settings, we compare our generated tests with existing tests. The analysis was conducted with
three groups of tests:

— W : a test suite generated by RPC-EVO that achieves the worst result out of the 30 repetitions;
— B: a test suite generated by RPC-EVO that achieves the best result; and
— E: a set of existing tests.

The code coverage was collected by executing the generated tests and existing tests on the SUTs
with Intellij [7].

In Table 4, we report the numbers of tests in these groups for each of CS1–CS4. Regarding the
existing tests in the industrial setting of our partner, those are the actual tests currently used
at Meituan to find regression faults in these APIs. These tests were prepared by engineers and
testers at Meituan, completely independently from our experiments. There exist two types of these
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Table 4. Numbers of Generated Test Cases in the Worst Run

(RPC-EVOw ) and the Best Run (RPC-EVOb ) of Our Approach

Out of the 30 Repetitions, Compared to the Number of Existing

Tests in the Industrial APIs

SUT RPC-EVOw RPC-EVOb Existing (Manual, Replay)
CS1 80 75 12 (0, 12)
CS2 89 71 5 (5, 0)
CS3 186 156 27 (1, 26)
CS4 236 232 46 (12, 34)

Table 5. Results of Line Coverage Achieved by the Worst Run and the

Best Run of our Approach (Denoted asW and B Respectively) and

Existing Tests (Denoted as E)

RPC-EVO (%) Existing (%) Total (%) Uncovered (%)
SUT [W , B] E [W ∪ E, B ∪ E] [E \W , E \ B]
CS1 [22.50, 26.81] 14.29 [22.95, 27.85] [0.45, 1.04]
CS2 [25.46, 26.02] 16.28 [25.46, 26.40] [0.00, 0.37]
CS3 [13.37, 15.89] 5.29 [13.46, 15.92] [0.09, 0.03]
CS4 [ 8.31, 9.15] 8.31 [10.22, 10.90] [1.91, 1.75]
Avg. [17.41, 19.47] 11.04 [18.02, 20.27] [0.61, 0.80]

“Total”represents the union coverage achieved by RPC-EVO and existing tests,
and “Uncovered” represents the coverage achieved by the existing tests but not
by our approach.

tests. One type is manually written automated tests (e.g., JUnit), and the other is with a replay of
manual testing (using a custom testing tool). The manual testing would be driven from the user
side, as for the example shown in Figure 1. For instance, a tester at Meituan would perform a real
business scenario as a user, by directly interacting with an app on their mobile phone. Then, with
the requests from the user, it would result in various RPC communications among the services.
Those communications are recorded (such as what calls are invoked) along with the states of the
connected external services. With an industrial testing tool, such records are performed as a replay
(such as re-execute the calls) on the SUTs for conducting manual regression testing. In order to
collect code coverage for the record for the comparisons in this article, we converted the records
as JUnit tests by extracting the calls and their inputs (but a setup of the states of external services
with the replay tool cannot be transferred into the JUnit tests).

The results of line coverage reported with Intellij achieved by the three groups for CS1–CS4

are reported in Table 5. Note that the line coverage might be slightly different with the results in
Table 3 that are reported with EvoMaster bytecode instrumentation. However, the comparison is
always performed with the results obtained from the same coverage runner.

In this table, we also provide a union of code coverage achieved by RPC-EVO and existing tests
(see Total%), and a code coverage achieved by the existing tests but not RPC-EVO (see Uncovered%).
Then we observed the following:

— First, by checking Total% with existing tests E in industrial APIs, on all SUTs, RPC-EVO (i.e.,
both the worst and the best test suites) can attribute to additional code coverage compared
with the existing ones.

— By comparing RPC-EVO with E, on all of the four industrial case studies, the code coverage
by RPC-EVO (i.e., the worst and the best) are clearly greater than the existing ones, except
CS4, which achieves the equivalent results (i.e., 8.31%).
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— Regarding Uncovered, the percentage is minor (i.e., the max is 1.91%). This indicates that
RPC-EVO is capable of covering most of the code achieved by the existing tests, i.e., above
77.02% (=1 − 1.91/8.31), up to 100% of the code covered by E.

— One interesting observation here is that the selected worst run perform better in covering
lines achieved by existing tests on CS1 and CS2 than the best run. This might further reveal
various promising regions of search space in industrial problems.

Based on the observation, we can conclude the following:

RQ2.2: Compared with existing tests, RPC-EVO is capable of contributing additional code coverage

and demonstrates clear better results. In addition, RPC-EVO could cover above 77.02% line coverage

achieved by the existing tests.

In-depth analysis of the coverage reports. To further study why higher coverage was not
achieved, we performed a manual analysis on the code coverage reports generated by the best test
suite (i.e., B) and the source code of these APIs. For CS4, we found that 10 RPC functions out of
the 55 functions are not accessible with the given client library. By checking with our industrial
partner, they think these problems are due to some issues in their testing environment (e.g., which
uses a service discovery mechanism and load balancers) that were found as well in executing
existing tests. These problems are currently under investigation. This might be a reason for the
least line coverage achieved by our approach on CS4.

Based on the coverage reports on the four APIs, we found that our approach achieved limited
code coverage on the code that is related to database handling and communications with external
services. Regarding the database handling code, most of it is automatically generated with an in-
house framework for facilitating various manipulations on the database, e.g., to perform a query
with various conditions. As discussed with our industrial partner, usually, not all of the generated
manipulation code would be used in implementing their business logic. However, they are still
generating and keep such code in case of future use. Therefore, a lot of this code is infeasible to be
covered with any system test.

Regarding the code related to the communications with the external services, all these services
were up and running in the test environment of our industrial partner. Since these external services
are not mocked nor is their code instrumented with our SBST heuristics, i.e., not being part of our
testing process, then we mostly fail to get different responses with our automatically generated
inputs that maximize the code coverage in the SUT (e.g., all the code used to read and act upon the
responses given by these external services). How to deal with external services is a major research
challenge that applies to all kinds of web services.

Another main issue that we found is related to input validation. In our approach, we have han-
dled all the constraints specified as parts of interface definitions, but there also exist further re-
stricted checks on the inputs. The inputs could be restricted in the internal business logic of the
SUT, e.g., an input parameter x could be validated with an external service regarding whether it
exists: then, if it exists, it could further query another service for the related data with x. With our
current heuristics, such valid inputs could be rarely generated. Moreover, the needed inputs are
often complex. For instance, we noticed that, in a generated test, there are 2,024 lines for instanc-
ing a single input DTO. As we checked, the length for all lists in that instance is less than 5. Then,
we further checked the implementation of the DTO, which contains 25 fields, and the fields could
be other DTOs or lists of DTOs. Such very large DTO would lead to additional difficulty to gener-
ate valid inputs, e.g., if any element (e.g., in a collection) violates any constraint, then the whole
DTO would be considered as invalid, and fail the input validation.
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Table 6. Results of Line Coverage of 50 Industrial APIs Achieved by RPC-EVO with 1 Run

Using 10 Hours Budget

# #LoC j #Targets %Lines #Faults # #LoC j #Targets %Lines #Faults

#01 19,867 26,439 15.44 59 #02 54,457 34,141 15.02 90
#03 39,308 11,459 14.53 82 #04 31,663 27,485 34.65 129
#05 34,872 23,363 28.44 71 #06 27,859 14,071 19.38 172
#07 38,179 15,960 17.96 168 #08 39,075 25,665 27.41 295
#09 58,232 81,279 17.15 292 #10 28,814 14,556 21.93 146
#11 63,108 81,200 9.37 371 #12 30,556 40,379 16.03 265
#13 30,954 29,830 6.11 252 #14 40,644 16,720 14.1 179
#15 7,314 11,280 15.72 66 #16 34,369 48,320 16.51 315
#17 80,929 72,592 11.95 354 #18 38,914 22,582 15.83 160
#19 16,880 13,726 21.59 56 #20 6,597 11,284 16.65 141
#21 6,882 2,294 4.3 4 #22 2,019 5,478 20.97 16
#23 53,565 35,282 11.49 99 #24 28,604 102,260 10.42 2,250

#25 15,047 27,929 9.44 82 #26 58,578 54,496 15.01 164
#27 52,878 13,921 12.64 127 #28 8,548 4,735 19.85 35
#29 89,303 18,350 12.64 233 #30 9,782 1,442 8.17 19
#31 10,054 5,273 22.3 67 #32 23,864 5,445 9.11 83
#33 21,055 10,625 27.48 109 #34 19,191 4,709 12.25 41
#35 6,602 6,161 27.72 40 #36 10,676 6,059 15.29 85
#37 16,534 24,051 9.02 95 #38 23,349 11,695 24.84 57
#39 7,006 6,574 17.8 14 #40 8,096 2,478 8.95 16
#41 12,081 3,840 14.41 35 #42 20,769 7,744 15.03 55
#43 41,450 13,774 12.72 74 #44 2,217 8,533 15.99 32
#45 58,439 20,297 19.3 148 #46 10,230 6,059 10.5 13
#47 56,242 20,230 17.69 235 #48 9,691 33,559 23.97 74
#49 3,301 4,594 59.16 63 #50 35,401 19,609 30.4 349
#LoCj Sum: 1,444,045; Avg: 28,880.90; Max: 89,303; Min: 2,019
%Lines Avg: 17.49; Max: 59.16; Min: 4.3

60∼50%: 1; 50∼40%: 0; 30∼40%: 2; 20∼30%: 10; 10∼20%: 29; 4∼10%: 8
#Faults Sum: 8377; Avg: 167.54; Max: 2250; Min: 4

# is an index of industrial SUTs; #LoC j is the number of lines of code reported by JaCoCo; #Targets is
the number of targets covered by our approach that is composed of lines, branches, and potential
faults; %Lines is the line coverage achieved by our approach; #Faults is the number of potential faults
identified by our approach.

Note that there could be more issues at play here that could explain these results. These could
include the complexity of the source code, and/or possible side effects of existing search algorithms
such as MIO on this problem domain. Without further in-depth analyses, it is currently not possible
to pinpoint the main culprit for this low coverage. Regardless, the identified issues will need to
be addressed, paving the road ahead for further research on improving the fuzzing of RPC APIs.
Once fixed, re-running these experiments will be needed to identify whether there are still any
major issues impacting the achieved code coverage.

RQ2.3: Our approach achieves useful coverage (26.81% and 26.02%) on two out of the four industrial

case studies, and limited coverage (15.89% and 9.15%) on the other two larger industrial case

studies. Based on a manual analysis on code coverage and the source code, we found that the main

issues are related to the communications with external services and to generate inputs for complex

DTO with various constraints.
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Table 7. Results of the Potential Distinct Faults

Automatically Reported by Our Approach with

30 Runs for Each Industrial SUT

Potential Faults Real Faults
SUT Avg. [Min, Max] L1 L2 L3 Total

CS1 40.2 [40, 41] 17 0 5 22
CS2 21.8 [21, 26] 3 1 15 19
CS3 51.6 [51, 55] 1 0 29 30
CS4 91.8 [74, 111] 3 16 36 55
Total 24 17 85 126

We report as well the number of real faults manually
identified and confirmed with the industrial partner.
L1: faults that will be fixed; L2: faults that are needed to
be fixed but less important; L3: faults that are tolerable,
and likely no need to fix.

Additional analysis with code coverage collected by our industrial partner. In Table 6, we
report the preliminary results of target coverage and line coverage in 50 industrial APIs achieved
by RPC-EVO with 1 run using 10 hours search budget. Note that all these 50 industrial APIs
plus CS1–CS4 are parts of one single microservice architecture, with hundreds of web APIs. The
10-hour budget was decided by our industrial partner by considering their application context and
time cost per run in this experiment.

Based on the results, on 50 industrial APIs with 1,444,045 lines of code (#LoC j ) in total and
28,880.90 lines of code on average (ranging from 2,019 to 89,303), RPC-EVO achieves 30%–60% line
coverage on 3 SUTs, 20%–30% line coverage on 10 SUTs, 10%–20% line coverage on 29 SUTs, and
4%–10% line coverage on 8 SUTs. These code coverage results are consistent with those reported
in Table 3 for the other 4 APIs we analyzed in more detail.

RQ2.4: RPC-EVO has been successfully applied in white-box fuzzing 50 industrial RPC-based APIs

in practice by our industrial partner. With a 10-hour search budget, results show that our approach

is capable of achieving on average 17.49% (up to 59.16%) line coverage.

5.5 RQ3: Results of Fault Detection

To assess the fault detection capabilities of our novel approach, we performed a detailed analysis on
the identified faults with our industrial partner, as researchers and industrial practitioners might
have different views on the severity and importance of the found faults. The manual analysis is
based on the test suites that achieved the best code coverage (out of the 30 runs) for each of the
four industrial APIs we analyzed in detail. We applied such selection due to the time constraints
of manually checking all the generated test suites in all the 30 repetitions. With this selection, the
amount of tests to be reviewed is 534 as RPC-EVOb shown in Table 4. With these tests, faults are
identified based on (1) any exception thrown in the calls; (2) service error represented by assertions
on the responses; (3) failed tests when executing them on the SUT (mainly due to flaky assertions);
and (4) whether responses are expected based on the given inputs. The review was first conducted
by the first author, then an employee of our industrial partner (a QA Manager who has 8 years of
testing experience in industry) performed the same kind of analysis on these tests. At the end, a
meeting was held to discuss and confirm the final results reported in Table 7.

As shown in Table 7, in total 126 real unique faults were found with the selected test suites on
the four industrial APIs. The faults could be further classified into three levels, i.e., L1, L2, and L3,
based on the willingness of our industrial partner to fix these faults. L1 represents the number of
faults that are serious enough that they should be fixed. These faults are related to mistakes in the
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code implementation, errors in handling databases, errors in transaction processing, and potential
risky errors in returning a misleading response. At the time of writing this article, the identified
faults have all been confirmed and fixed. L2 is the number of faults that should be fixed but are less
critical. Most of the faults at L2 are related to the implementation of input validation and external
service response handling when exceptions are thrown. In their context, it is better to properly
handle exceptions within the SUT, as such thrown exceptions might lead to further problems in the
services that depend on the tested application. L3 is the number of minor faults that are tolerable,
and most likely our industrial partner will not fix them. These faults are mainly due to input
validation throwing exceptions such as NullPointerException, IndexOutOfBoundsException,
and java.text.ParseException. However, if the exceptions are caught and handled within the
SUT, they consider that such faults are tolerable.

In Table 7, we also report the number of potential faults automatically reported by our approach.
As expected, the number of real faults we manually identified is less than the potential ones. This
is mainly due to (1) problems in the test environment (e.g., some external services might not have
been up and running when the experiments were carried out); (2) data preparation in databases
(e.g., an empty database might lead to some problems that would never happen in production);
(3) communications over the network (e.g., connection timeouts); (4) client problems (e.g., some
remote functions fail for some configuration issues when we ran the experiments for CS4). How-
ever, with the generated tests, our employed automated oracles could identify most of the real
faults, except the errors related to returning a misleading/unexpected response (as this requires
the users to manually check the content of these responses, as no formal specification is available).

Regarding the further experiments with 1 run on a further 50 APIs, RPC-EVO identified in total
8,377 and on average 167.54 potential faults in these 50 industrial APIs as shown in Table 6. For
the industrial API #24, the number of detected faults is significantly higher than for the other APIs
(i.e., 2,250 faults). By performing a further investigation on this API, we found that the API is for
handling authentication, and its functions are invoked by many other services in the microservices.
Thus, a request to this API requires one to link with a valid account and be specified with valid data,
i.e., the account should have an access to the data, and the data should be accessible and satisfy
corresponding business features for the account. Any request volatilizing such constraints would
throw exceptions under the current implementation. With a 10-hour search budget, tests generated
by our approach led to such unexpected exceptions thrown from 2,091 different locations in the
code. This might explain why such a high number of potential faults were detected in this API.

At this point in time, we do not know yet how many of these detected 8,377 faults are critical, and
must be fixed as soon as possible. This is currently under evaluation by the engineers and testers
at Meituan. Going through and debugging thousands of potential faults is a time-consuming task.

RQ3: With an in-depth analysis of the generated tests with our industrial partner, we confirm that

our approach was capable of finding 41 actual real faults that have now been fixed. Another 8,377

potential faults are currently under investigation.

6 LESSONS LEARNED

Automated testing requires a reset of the SUT; however, it is challenging to reset the

state of a real industrial API. To enable the generated tests to be used for regression testing,
and to properly evaluate the fitness of each test case in isolation, it is needed to execute every
test with the same state of SUT (i.e., test case executions should be independent from each other).
Thus, it requires one to perform a state reset of the SUT before a test is executed on it, e.g., clear
all data in the database or reset databases to a specific state. With open source case studies, it
is trivial, e.g., clean data in database. For instance, EvoMaster provides a utility DbClearner for
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facilitating the cleaning of data for various types of SQL databases, e.g., Postgres and MySQL.
Such a clean on the database does work fine for small-scale applications. However, in large-scale
industrial settings, cleaning all data in the database is quite expensive, even when the database
is empty. For instance, in one of the industrial APIs used in this article, it takes 5.3 seconds to
clean an empty database, and it takes more time if there exist data. Thus, within 1 hour as the
search budget, a fuzzer can execute at most 680 RPC function calls. This would significantly limit
the fuzzer in terms of cost-effectiveness. To better enable our approach in industrial settings, by
taking advantage of existing SQL handling in EvoMaster, we developed an automated smart clean

on the database, by considering only what tables are actually modified during the search. With the
smart clean, after a test is executed, data only in the accessed tables and linked tables (e.g., with
foreign key) will be removed. In addition, we also allow SQL commands/scripts to initialize data
into the database (e.g., for username/password authentication info). If a table that has initial data is
cleaned, a post action will be performed to add the initial data for the table again. With such smart
database clean, we could effectively reduce time spent by more than 90%, e.g., from 5.3 seconds to
285 milliseconds. This is because there can be tens/hundreds of tables in an industrial API, but only
few of them are actually accessed during the executing of a single test. However, how to reset the
state of the databases with a large amount of existing data still needs to be addressed. Besides the
database, the states of direct connected external services also need to be reset. Currently, fuzzing
by our approach is performed on the industrial test environment where all services are up and
running. With such an environment, the states of external services might be varied over time (e.g.,
failed tests as discussed in Section 5.5). Mocking technique could be a potential solution to address
this, e.g., set up specific states of the external services before test execution. However, mocking
RPC-based services in microservices is also challenging, e.g., due to network communications and
environment setup in industrial settings. It could be considered as important future work.

Real industrial APIs have more complex inputs and apply stricter constraints on input

validations with considerations of various aspects. By checking code coverage and fault de-
tection, we found that most codes and faults are related to the parts of implementation for input
validation. One reason could be due to the complexity of the input with cycle objects and collec-
tions in DTOs. For instance, we found that a DTO is initialized with more than 2k lines, and gener-
ating a valid input for such a huge DTO would not be trivial. In enterprise applications, often there
exist several constraints on the inputs when processing their business logic. This can lead to major
challenges for automated testing approaches to generate such inputs. The input validation is per-
formed at two levels, i.e., in the schema and business logic. The schema level would perform simple
checks (e.g., null, format, and range) and checks on constraints related to multiple fields in inputs.
Although we have supported the handling of all these constraints defined with javax annotations,
it is clear that it is not enough in industrial settings. Because not all constraints are fully speci-
fied in the interface definitions, e.g., with javax.validation.constraints, the validation could
be implemented as a utility or with libraries, e.g., com.google.common.base.Preconditions, di-
rectly in the code of the business logic. To address this, further white-box handling is required to
provide more effective gradient to cover the code.

Regarding the validation in terms of business logic, it could perform a check with database and
external services. Data preparation in database and mocking external services would be

vital in the testing of industrial RPC-based APIs, not only for input validation. For databases,
currently our approach employs the SQL handling in EvoMaster [24] for facilitating data prepa-
ration in the database. However, as identified in this study, there might exist some limitations in
handling industrial settings cost-effectively, e.g., currently EvoMaster lacks support for compos-
ite primary keys. This does limit the performance on code coverage. For instance, we found that a
query action with no input parameters is always failing with an exception thrown. In this case, we
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could do nothing by manipulating the input parameters. Then, with a manual check on the source
code, we found that the query is required to have data in the database, but the data fails to be gener-
ated due to some unsupported SQL features. In addition, with only SQL query heuristics, it might
not be cost-effective to build meaningful links between RPC function calls and inserted data into
the database. Smart strategies would be required here to handle industrial RPC-based APIs, such as
the enhanced SQL handling strategies for REST APIs [72]. For external services, if we could mock
such external services, then the problem might be solved by directly manipulating their responses.
Automating such manipulation as parts of the search would be another important challenge.

Another possibility to improve code coverage would be to develop advanced search operators
for the RPC domain. For instance, we found that, in the generated tests, function calls in a test
may not be related to each other for testing a meaningful scenario. In order to better generate
tests with related function calls, we could have strategies to sample function calls by considering
dependency among functions (e.g., [76]) in the context of RPC testing, e.g., based on which SQL
tables they do access.

An industrial RPC-based API is often a part of large-scale microservices that closely

interacts with multiple APIs. Such interaction would result in a huge search space. To
test a single API or an API in a small-scale microservice system, testing targets (such as lines of
code) could be feasible to reach with an empty database (with/without a small amount of data ini-
tialized by SQL script) by manipulating input parameters and data into the database (e.g., INSERT).
However, testing an industrial API in microservices is not like this case. As the example shown in
Figure 1, the states of other services and databases often have a strong impact in process-

ing business logic that would result in code coverage. Therefore, all such possible states are
considered as a part of search. In this article, we provide descriptive statistics for 54 industrial APIs
with #LoC j (in total 1,489,959). All of the APIs are parts of one microservice architecture, and there
exist hundreds of other APIs that were not used in these experiments. To cope with such a huge
complexity of the state, an empty database (as we employed) might limit performance. In addition,
as discussed with our industrial partner, they think that it is important to involve their real his-

torical data (collected in production) in the automated testing. Likely it would improve the
chances to cover more of their business scenarios in the generated tests. Furthermore, such tests
would be more valuable for them, e.g., they would consider that all faults identified by these tests
would have higher priority to be addressed. However, such data is complex and possibly huge, and
how to effectively and efficiently utilize this data with search would be another research challenge
that we will address in the future.

Enabling fuzzers on CI would promote their adoption in industrial settings. Our ap-
proach is now integrated into one of the industrial development pipelines (same as for the experi-
ments we ran in this article), as a trial to check its applicability into the daily testing activities of
our industrial partner. Since all services are developed with the same framework, by studying one
of the EvoMaster driver configurations for our approach, our industrial partner has implemented
an automated solution to automatically generate such drivers for their services to be tested (e.g.,
identify all available interfaces and instantiate corresponding clients). For instance, the drivers of
the 50 industrial APIs in Table 6 were automatically generated with this automated solution. Re-
garding the application context, as discussed with our industrial partner, our approach is planned
to be employed on the services for generating white-box system tests when the implementation
for a requirement of the services is considered as done, as a kind of extra check before putting these
new features into production. In addition, the generated tests would be kept for further usage in
(1) regression testing of the services and (2) industrial test environment validation as scheduled
tasks (e.g., to see whether all services on the pipeline are up and running correctly before QA
engineers start manual test sessions).
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Flakiness and readability are required to be considered in test generation in industrial

APIs. As we found in the industrial APIs, responses could contain information such as timestamps
and random tokens, and they could change over time. In order to avoid test failing due to such flak-
iness, we defined some strategies with general keywords (e.g., date, token, time) observed in the
industrial APIs to comment out assertions with such sources. How to systematically identify possi-
ble sources of flakiness existing in the industrial APIs (e.g., timestamps, results of SQL queries) and
properly handle it during the automation and in the test generation would be another important
problem that researchers should address. During the process of reviewing the generated tests with
an industrial partner, we found that test readability requires improvement. This is mainly due to
very large blocks of code for input instantiations and large numbers of tests in the test suites. As
identified in the review, our industrial partner found that the tests that lead to exception thrown
are more interesting for them. Therefore, to improve test readability, we now provide a simple
strategy to split such tests into different files (the implementation is straightforward, but it is quite
useful for our partner). Further possible improvements could be achieved by better organizing
the code for large input instantiations, and sorting/splitting tests based on various considerations,
e.g., fault classification [55].

7 THREATS TO VALIDITY

Conclusion validity. Our study is in the context of SBST, and our experiments were conducted by
following common guidelines in the literature to assess randomized techniques [22]. For instance,
with a consideration for the stochastic nature of the employed search algorithms, we collected
results for all settings with at least 30 repetitions. The results were interpreted with statistical
analysis, such as Mann-Whitney-Wilcoxon U-tests (p value) and Vargha-Delaney effect sizes (Â12)
for pair comparisons. Regarding fault detection capability, a number of real faults were identi-
fied, and those were reviewed together with our industrial partner. Regarding the choice of search
budget, since the time cost of executing RPC calls might vary depending on the operating environ-
ments (e.g., hardware and OS), we employed a fixed number of RPC calls as the search budget (i.e.,
100,000), in order to make our experiment replicable. Studying different settings of search budgets
(such as 1 million RPC calls, 1 hour, 24 hours, or 48 hours) might provide us more insights and more
concrete evidence for drawing conclusions relating to the choice of the search budget (e.g., more
budget might result in better performance on CS3 and CS4, as discussed in Section 5.4.2). However,
it is expensive to conduct such an empirical experiment with industrial APIs, as these APIs are
typically large-scaled and complex. For instance, with one search budget setting (i.e., 100,000 RPC
calls), the computational cost of two settings with 30 repetitions is 129.12 days for the four APIs.
Therefore, we consider the experiments with various search budgets as possible future work.

Construct validity. To avoid bias in the results among different settings and techniques, all results
to be compared were executed on the same physical environment, e.g., experiments on artificial
case studies were deployed on a local machine, and experiments on industrial case studies were
deployed on the pipeline of our industrial partners.

Internal validity, Our implementation was tested with various unit tests and end-to-end tests, but
we cannot guarantee no fault in our implementation. However, our tool and artificial case studies
are open source. This enables further verification on our implementation and replication of our
experiments on the artificial case studies by other researchers. Note that, due to the confidential
info of the employed industrial case studies, detailed results of these industrial APIs cannot be
made publicly available.

External validity. In this study, our approach was assessed with artificial case studies using
Thrift and 54 industrial case studies (from one company) using their own RPC framework that
is initially built based on Thrift. There might exist a threat to generalize our results to other RPC
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frameworks or other companies. Experiments on real-world industrial APIs show the usefulness
and scalability of our novel techniques in practice. However, these results cannot be replicated
by other researchers, as such industrial APIs are not publicly available. Collecting and preparing
a corpus of non-trivial open source RPC-based APIs for experimentation (e.g., like EMB [4] for
RESTful APIs) will be important for future research work.

8 CONCLUSION

RPC is widely applied in industry for developing large-scale distributed systems, such as microser-
vices. However, automated testing of such systems is very challenging. To the best of our knowl-
edge, there does not exist any tool or solution in the research literature that could enable automated
testing of such systems. Therefore, having such a solution with tool support could bring significant
benefits to industrial practice.

In this article, we propose the first approach for automatically white-box fuzzing RPC-based
APIs, using search-based techniques. To access the RPC-based APIs, the approach is developed by
extracting available RPC functions with RPCInterfaces from the source code. This can enable its
adoption to most RPC frameworks in the context of white-box testing. To enable search techniques
(e.g., MIO) in the RPC domain, we reformulate the problem and propose additional handling and
heuristics specialized for RPC.

The approach is implemented as an open source tool built on top of our EvoMaster [3] fuzzer.
A detailed empirical study of our novel approach was conducted with two artificial and four indus-
trial APIs, plus a preliminary (e.g., no fault analysis) study on a further 50 APIs. In total, more than a
million lines of business code (excluding third-party libraries) were used in this study. When third-
party libraries are considered as well (e.g., for carrying out taint analysis [26]), several millions of
lines of code were analyzed and executed in these experiments.

Results demonstrate the successful applicability of our novel approach in industrial settings. Our
tool extension presented in this article is already in daily use in the Continuous Integration systems
of Meituan, a large e-commerce enterprise with hundreds of millions of customers. In addition, to
evaluate the effectiveness of our approach in the context of white-box search-based testing, we
compared our approach with a gray-box technique. The results show that our approach achieves
significant improvements on code coverage. To further evaluate the capability of fault detection,
we carried out an in-depth manual review with one employee of our industrial partner on the tests
generated by our novel approach. A total of 41 real faults were identified that have now been fixed.
Another 8,377 detected faults are currently under investigation.

Considering how widely used RPC frameworks such as Apache Thrift, Apache Dubbo, gRPC,
and SOFARPC have been in industry in the last decade, it can be surprising to see how such an
important software engineering topic has been practically ignored by the research community so
far. One possible explanation is the lack of easy access to case studies for researchers, as these
kinds of systems are used to build enterprise applications. Therefore, these systems are seldom
available on open source repositories, or online on the internet (i.e., general access web services
are usually developed as REST APIs). To be able to empirically evaluate our novel techniques,
industry collaborations (e.g., with Meituan) were a strong requirement.

Although our tool extension is already of use for practitioners in industry, more needs to be done
to achieve better results. Future work will focus on improving white-box heuristics to increase
the achieved code coverage, and how to handle and analyze the interactions with external web
services.

Our tool extension of EvoMaster is freely available online on GitHub [3] and Zenodo (e.g.,
EvoMaster version 1.5.0 [28]), and the replication package for this study can be found at the
following link.1
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