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ABSTRACT
Images have become an integral part of digital and on-
line media and they are used for creative expression and
dissemination of knowledge. To address image accessibility
challenges to the visually impaired community, adequate
textual image descriptions or captions are provided, which can
be read through screen readers. These descriptions could be
either human-authored or software-generated. It is found that
most of the image descriptions provided tend to be generic,
inadequate, and often unreliable making them inaccessible.
There are tools, methods, and metrics used to evaluate the
quality of the generated text, but almost all of them are
word-similarity-based and generic. There are standard guide-
lines such as NCAM image accessibility guidelines to help
write accessible image descriptions. However, web content
developers and authors do not seem to use them much,
possibly due to the lack of knowledge, undermining the
importance of accessibility coupled with complexity and
difficulty understanding the guidelines. To our knowledge,
none of the quality evaluation techniques take into account
accessibility aspects. To address this, a deep learning model
based on the transformer, a most recent and most effec-
tive architecture used in natural language processing, which
measures compliance of the given image description to ten
NCAM guidelines, is proposed. The experimental results
confirm the effectiveness of the proposed model. This work
could contribute to the growing research towards accessible
images not only on the web but also on all digital devices.
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1 INTRODUCTION
Images or photos are one of the most commonly used contents
in this digital era. They not only remind us of people, places,
feelings, and stories but also give an impression about them.
Because of that people frequently take pictures, and publish
them on the web or share them via social networks, thanks to
the proliferation of Internet technology, smartphones, camera
technology, and social media. Since an image can convey
many ideas and information, it is said that ‘a picture is worth
a thousand words’. A person with normal vision can acquire
this information by viewing the image. However, this is not
possible for people with visual impairment, posing serious
accessibility challenges [21]. In order to help make images
accessible to the visually impaired community, Web Content
Accessibility Guidelines (WCAG) version 2.11 recommends
providing image descriptions or captions as alternative text
(ALT text) so that they can be read for the user by assistive
technologies such as screen reader. Accessible images help in
ongoing efforts in bringing down the digital divide.

There are a massive number of images on the Internet
which do not provide ALT text. And, the majority of them
which has ALT text are either not accurate or not adequate to
convey proper information [4, 15–17]. The rate of availability
of ALT text in social media is even much lower [16]. On the
other hand, simply providing image descriptions may not
be valuable if those descriptions are not understandable or
confusing. These have negative consequences for the visually
impaired community as it creates obstacles for the users to
staying socially connected [21].

In order to help write accessible image descriptions, there
are standard guidelines such as WCAG 2.1 and NCAM
(National Center for Accessible Media) guidelines2. WCAG
2.1 includes a broad range of recommendations for making
web content more accessible to a wide range of people with
disabilities including low and no vision (blind). NCAM pro-
vides guidelines for accessible media including different types
of images such as maps, graphs, and general images. It also

1WCAG 2.1: https://www.w3.org/TR/WCAG21/
2NCAM Guidelines: http://diagramcenter.org/table-of-contents-
2.html
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provides a tool, called POET Training Tool 3 to learn and
create accessible image descriptions.

Images could either be described to provide information
about the image’s visual features, or captioned to relate the
image to the broader context. Detailed image descriptions
can better address accessibility challenges [18]. In this paper,
we use the terms caption and description interchangeably as
we intend both to be accessible.

Most often image descriptions are written manually by
web content developers or the owner of the images them-
selves. This could be a tedious and time-consuming process.
Moreover, the lack of knowledge about accessibility guidelines
could result in poor quality image descriptions in terms of
accessibility. Dahal and Shrestha [11] proposed a method
of writing accessible image descriptions based on NCAM
guidelines by providing sample example cues. The method
has shown to be useful for users who have no or minimal
knowledge about image accessibility guidelines. Recent ad-
vances in machine learning and deep learning have led to
an increasing number of models that generate text from
images [2, 7, 20]. There are methods and tools proposed
which can generate image descriptions automatically using
software, such as VizWiz [6] and queried image description
and free response image description [23]. However, image
descriptions generated with these models tend to be generic,
often unreliable, and inaccessible [7, 13].

Irrespective of the method used, generated image descrip-
tions should be evaluated to make sure they are of good
quality, i.e., accessible in the problem context here. This could
be done by image accessibility experts. However, the manual
method is tedious, time-consuming, error-prone, and may not
even be practicable when there is a huge number of images.
An alternative solution could be a software-based solution
that can do the evaluation automatically. To our knowledge,
only limited research has been done in this direction.

Bigham [5] proposed a classifier to automatically measure
the quality of a given ALT text on a web page. The classifier
uses various features such as similarity of the alternative
text to the content of the page where it is used, alternative
text that is known to be good or bad, and features of the
image that it is describing. The major limitations of the
study were that the test was carried out on a small dataset
and it simply outputs the input ALT text as appropriate
or inappropriate, without taking into account any standard
accessibility guideline. Moreover, it is not intended to evaluate
image descriptions of independent images which are not on a
web page but are on digital devices or on social media.

Generated image descriptions are commonly evaluated
using rule-based metrics such as BLEU [24], METEOR [3],
ROUGE [19], or CIDEr [27]. Since these metrics mainly mea-
sure the word overlap between generated and reference text,
they fail to correlate well with human judgments. SPICE [1]
metric measures similarity of scene graphs constructed from
the candidate and reference texts, showing better correlation
with human judgments, but it fails to capture the syntactic

3POET Training Tool: https://poet.diagramcenter.org

structure of a sentence. To address those limitations, Cui et
al. [10] proposed a Generative Adversarial Networks (GAN)
based discriminative learning model, which was trained to
distinguish between human and machine-generated image
descriptions. However, none of these metrics take into account
any accessibility guideline.

We proposed a neural network based machine learning
model and framework for an automatic evaluation of accessi-
bility of image descriptions using NCAM guidelines [25]. The
model was based on a manual selection of features. Therefore,
model performance obviously depends on the selected features.
Thanks to deep learning, which mitigates manual selection
of features as it can extract features automatically during
training of the model. Because of this, deep learning has
gained tremendous popularity and use recently. In this paper,
a novel transformer [26] based deep learning model, which
can automatically evaluate the quality of a given image
description in terms of compliance to the 10 NCAM image
accessibility guidelines, is proposed. The transformer is the
most recent revolutionary deep learning architecture used
in natural language processing (NLP). Unlike traditional
recurrent neural network (RNN) and long-short-term memory
(LSTM), a transformer has extremely long-term memory and
enables parallel computation making it more efficient and
effective, thanks to its special design of positional encoding,
self-attention mechanism, and encoder-decoder architecture.
The results show that the proposed model works very well in
evaluating the accessibility of a given image description. We
believe that this work contributes to the growing research
towards accessible images.

The rest of the paper is organized a sfollows. Section 2
brifly describes the NCAM guidelines used. Section 3 presents
the proposed model. Section 4 describes the experimental
setup. The results are presented and discussed in Section 5.
Finally, Section 6 concludes the paper.

2 NCAM IMAGE ACCESSIBILITY
GUIDELINES

NCAM provides guidelines for the accessibility of almost all
types of images including maps, graphs, and natural images.
Among the fourteen guidelines listed in [11], ten guidelines
which include eight guidelines common to all types of images
and two guidelines specific to natural images are used in this
study. Guidelines for the map and graph images are excluded
because of the unavailability of the datasets with those types
of images. A summarized list of these ten guidelines is given
below.

1. The description should be succinct.
2. Colors should not be specified unless it is significant.
3. The new concept or terms should not be introduced.
4. The description should be started with a high-level context

and drilled down to details to enhance understanding.
5. The active verbs in the present tense should be used.
6. Spelling, grammar, and punctuation should be correct.
7. Symbols should be written out properly.
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8. The description vocabulary should be added which adds
meaning, for example, “map” instead of an image.

9. Physical appearance and actions should be explained
rather than emotions and possible intentions.

10. The material should not be interpreted or analyzed;
instead, the reader should be allowed to form their own
opinions.

3 PROPOSED MODEL
The proposed transformer-based deep learning model, which
classifies a given input image description as compliant or
non-compliant to an NCAM guideline, consists of an encoder
and a classifier as shown in Figure 1.

Figure 1: Architecture of the proposed model (Adapted from
[26]), and the hyperparameters used in different components
of the model.

The encoder is a transformer that maps an input image
description into an abstract continuous representation that
holds the learned information from the description. As in the
original transformer encoder [26], the encoder is made up of
input embedding, positional encoding, multi-head attention,
and feed-forward networks. The output of each multi-head
attention module and the feed-forward network is added to
the residual connection and then passed through a layer nor-
malization. Unlike in the original transformer encoder, which
has one dense layer in the feed-forward network, the proposed
model is made more generic to have more than one dense
layer. In addition to the dropout layers in the multihead and
dense layers in the feed-forward network, L1-regularization

is introduced to overcome overfitting and for stable training
of the models. Optimal values of the number of heads in
the multi-head attention, number of encoder layers, number
of units in these layers, and regularization parameters, are
determined through a hyperparameter optimization (HPO)
process.

The classifier uses the output from the encoder to classify
the given input description as compliant or non-compliant
to an NCAM image accessibility guideline. The output from
the encoder is globally averaged and then passed through a
feed-forward network, which finally outputs the prediction
result from the model. Just like in the encoder, the output
from each dense layer in the feed-forward network is passed
through a dropout layer and subject to regularization. The
optimal number of dense layers, the number of units in these
layers, and regularization parameter values are determined
through the HPO process.

In both the encoder and the classifier, outputs from the
dense layers are batch normalized. Exponential Linear Unit
(ELU) [9] is used as an activation function as it fixes some
of the problems with Rectified Linear Unit (ReLU) such as
dead ReLU. ELU helps the network nudge weights and biases
in the right directions by producing small negative values
instead of zero values.

Altogether there were fifteen hyperparameters defined in
the model. Eight of them, number of encoder layers (𝑁e),
number of heads in the multi-head attention in the encoder
(𝑁head), number of layers (𝐿e), number of units in each layer
(𝑁ue) and regularization parameter (𝜆e) in the feedforward
network of the encoder, number of layers (𝐿c), number of
units in each layer (𝑁uc) and regularization parameter (𝜆c)
in the feed-forward network of the classifier were optimized
through HPO process. Fixed values for encoder model dimen-
sion of 64, max positional encoding of 100, dropout rates of
0.1 (in multihead and dense layers in both the encoder and
the classifier), a batch size of 32, and Adam optimizer with
default learning rate are used as they produced good results
in most cases.

A classifier model corresponding to each of the 10 NCAM
guidelines is created by optimizing the hyperparameters
through the HPO process. The optimal hyperparameters
values used are given below in Table 1, Section 5.

4 EXPERIMENTAL SETUP
Ten models created for the 10 NCAM guidelines were trained,
validated, tested, and evaluated. Experiments were conducted
by implementing the models in Python 3 using Tensorflow 2
and running the code in Google Colab. HPO was performed
in RayTune4 using Baysian optimization technique with
maximum validation F1 metric. For efficient training and
also to address potential overfitting, early stopping was
incorporated while training so that the training iteration
stops when there is no more improvement after the last four
iterations/epochs.

4Ray Tune: https://docs.ray.io/en/master/tune/index.html

https://docs.ray.io/en/master/tune/index.html


ICMLC ’22, February 18–21, 2022, Guangzhou, China Raju Shrestha

The dataset and evaluation metrics used in the experiments
are described next.

Dataset: The labeled dataset from [14], which were created
from the popular Flickr8K dataset5 containing 8K images,
each image paired with 5 sets of image descriptions, is used.
One set of image descriptions are manually labeled with
their percentage compliance to the 10 NCAM guidelines by
experts with a good knowledge of image accessibility and the
guidelines. In this work, the percentage compliance values
were converted to binary labels or classes, considering all
above 50% compliance values as compliant (1) and equal or
below 50% compliance values as non-compliant (0). Figure 2
shows six sample example images from the dataset along
with their descriptions and compliance labels.

Figure 2: Sample example images from Flickr8K dataset with
their image descriptions and compliance labels for the 10
NCAM guidelines.

The dataset was randomly split into training, validation,
and test sets in the ratio of 70:15:15. As the dataset was
not balanced, data splitting was done such that each class is
distributed to the 3 sets in the same ratios.

Evaluation metrics: Since dataset is unbalanced, accuracy
metric may not reflect a true performance of a model. There-
fore, Precision and Recall metrics are used to evaluate the
performance of the models as they are effective in the case
of unbalanced datasets. Here, Precision can be defined as
a fraction of correctly predicted compliant instances out of
predicted compliant instances. Recall can be defined as a
fraction of correctly predicted compliant instances out of
actual compliant instances.
5Flickr8KDataset:https://www.kaggle.com/adityajn105/flickr8k

F1 score, which conveys the balance between the preci-
sion and the recall in a single metric value is also used. A
scale-invariant and classification-threshold-invariant metric,
area under the precision-recall curve (AUC-PR) is also used
to evaluate model performance. An AUC measures the dis-
criminating capability of a classifier to distinguish between
compliant and non-compliant descriptions [22].

5 RESULTS AND DISCUSSION
The optimal hyperparameter values obtained from the HPO
processes for the 10 models are given in Table 1. As antic-
ipated, different optimal hyperparameter values are picked
for the different models/classifiers. Training of the models
showed good convergence of all the 10 models by 15 epochs.

Table 1: Optmimal hyperparameter values used in the 10
models.

1 2 3 4 5 6 7 8 9 10

N e 2 1 2 2 2 1 1 4 1 2

N head 32 4 8 8 4 8 32 8 8 1

L e 1 2 8 2 1 4 8 2 2 4

N ue 32 8 32 16 8 32 8 8 16 16

e 0.001 0.073 0.002 0.05 0.018 0.007 0.003 0.008 0.018 0.006

Lc 16 2 2 1 1 1 4 1 4 2

N uc 16 32 16 8 8 16 16 512 32 16

λc 0.001 0.019 0.058 0.015 0.001 0.021 0.041 0.001 0.027 0.053

Hyper-

parameter

Model #

λ

Performance metric values resulting from the tests of the
models using the test data set are given in Table 2. Results
were obtained with the prediction using the default threshold
value of 0.5 (i.e., predicting probabilities higher than 0.5 as
compliant and lower and equal to 0.5 as non-compliant). The
results show that on average all the metric (precision, recall,
and F1-score) values are around 0.97, which is very good.
Looking at the individual models, the metric values are above
the average values in almost all the models, indicating that
the models were able to predict very well. Models #1 and
#4 performed relatively poorer with precision, recall, and F1-
score of around 0.9. The lower metric values in those models
could be because the corresponding guidelines are relatively
vague and difficult to interpret, therefore, compliance scores
could become more subjective as human judgment could
vary and become inconsistent. However, precision, recall, and
F1-score of 0.9 could still be considered very well.

Results are also given in the form of precision-recall curves
in Figure 3. We see that the average AUC is 0.99. This means
that there is more than 99% chances that the models will
be able to distinguish between compliant and non-compliant
descriptions, which is outstanding [22].

Flickr8K Dataset: https://www.kaggle.com/adityajn105/flickr8k
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Table 2: Test results of the models in terms of the four
performance evaluation metrics.

1 2 3 4 5 6 7 8 9 10

Precision 0.90 0.99 1.00 0.90 0.95 0.97 0.98 1.00 0.98 0.99 0.97

Recall 0.96 1.00 1.00 0.89 0.97 0.99 0.99 1.00 0.98 1.00 0.98

F1-Score 0.93 0.99 1.00 0.90 0.96 0.98 0.99 1.00 0.98 1.00 0.97

AUC-PR 0.96 1.00 1.00 0.96 0.98 0.99 0.99 1.00 0.99 1.00 0.99

Metric
Model #

Average

Figure 3: Precision-Recall curves. AUC values are shown along
with the legends.

The experimental results thus show that the proposed
model works very well in evaluating image descriptions in
terms of compliance with the NCAM guidelines.

To our knowledge, this is the first and novel work on an
automatic evaluation of accessibility of image descriptions
based on compliance to NCAM guidelines. Before, this we
proposed a neural network based model and framework
which use manually selected features and predicts percentage
ompliance level [25]. However, it used error and accuracy
metrics instead of prediction, recall, F1-score and AUC
metrics.

There are some shortcomings and challenges involved. First,
the accessibility evaluation is purely based on the given image
descriptions. It doesn’t take into account the image and the
context there but is not covered by the description. But it is
assumed that this is the task of the author or generator of
the image descriptions. Second, manually labeling percentage
compliance of a large number of image descriptions is a
tedious process and subject to individual judgment. Therefore,
a relatively smaller Flickr8k dataset was used. Moreover,
this dataset has mostly short, partial, and generic image
descriptions. This study could be extended further with
a larger dataset with detailed descriptions. One potential
dataset could be a Wikipedia-based corpus proposed by
Kreiss et al. [18], called Concadia, which consists of 96,918
images with descriptions, captions, and surrounding context
and distinguishes between image descriptions and captions.
This dataset could be used to further study in the future to

analyze the quality of the captions and descriptions in terms
of image accessibility.

It is worth mentioning here that a similar approach and
process was used to test models based on RNN and LSTM
as well but the results were significantly worse in most of
the cases. This confirms the superiority of the transformer
architecture over the traditional RNN and LSTM architec-
tures [26, 28] in the context of the problem of interest in this
work as well.

Based on the Transformer model, innovative, powerful, and
scalable architectures such as BERT (Bidirectional Encoder
Representations from Transformers [12]) and GPT (Genera-
tive Pre-trained Transformer, GPT-3 [8] is the most recent
version) have been built, which are pre-trained on a wide
range of data, in billions. These models are fine-tuned and
used in NLP applications. In this work, we came up with
transformer-based custom models trained from scratch for
optimal size and performance. As a future work, it’d be inter-
esting to see those pre-trained models for their performance
and scalability.

6 CONCLUSION
The proposed transformer-based deep learning model, trained
and tested with the Flickr8k dataset, has shown to perform
excellently in evaluating accessibility of image descriptions in
terms of their compliance to the 10 NCAM image accessibility
guidelines. The model could be helpful to the web content
developers and even general users to get an instant report of
accessibility of the image descriptions they entered. This in
turn will help towards more accessible images in the digital
world.

In the future, the model could be extended with larger
datasets containing more detailed image descriptions.
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