
Renate Andersen
 Oslo Metropolitan University

DOI: https://doi.org/10.5617/adno.9169

Block-based programming and computational thinking in a
collaborative setting: A case study of integrating programming
into a maths subject

Abstract
Block-based programming and computational thinking (CT) have undergone a revival
in K–12 education, and the article addresses the following research question: In what
ways can block-based programming be integrated into a maths subject, and what are the
implications for CT? The empirical data presented in this article are derived from a
design-based research (DBR) project consisting of four interventions each year over a
duration of two years. The article reflects data from 43 pupils aged 12–16 years who
participated in the interventions and used MakeCode (a block-based programming
language) with micro:bit to create solutions for maths tasks assigned by the teachers.
The pupils met three hours per week for 16 weeks during two semesters each year. Data
were collected using video recordings of Zoom meetings. A thematic analysis was per-
formed in the first rounds of analysing the data to complete an overview of the entire
data set, screening for common topics. Subsequently, interaction analysis was used to
analyse select parts of the data in detail. The main findings in this article are as follows:
1) Integrating block-based programming into a maths subject enabled active and col-
laborative learning, 2) integrating programming into a maths subject enabled the de-
velopment of CT, and 3) using block-based programming facilitated learning of maths.

Keywords: block-based programming, computational thinking, computer-supported
collaborative learning, computational thinking in K–12 education

Blokkbasert programmering og algoritmisk tenkning i en
samarbeidslæringskontekst: En case-studie av
programmering integrert i et matematikkfag

Sammendrag
Blokkbasert programmering og algoritmisk tenkning har fått økt interesse i skolen.
Følgende forskningsspørsmål tas opp i artikkelen: På hvilke måter kan blokkbasert pro-
grammering integreres i et matematikkfag, og hva er implikasjonene for algoritmisk
tenkning? De empiriske dataene som presenteres i denne artikkelen er hentet fra et
designbasert forskningsprosjekt bestående av fire intervensjoner hvert år over en
varighet på to år. Denne artikkelen reflekterer data fra 43 elever i alderen 12–16 år som
deltok i intervensjonene og brukte MakeCode (et blokkbasert programmeringsspråk)
med micro:bit for å lage løsninger for matematikkoppgaver gitt av lærerne. Elevene

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 1/22

https://doi.org/10.5617/adno.9169

møttes tre timer per uke i 16 uker i løpet av to semestre hvert år. Data ble samlet inn ved
hjelp av videoopptak av Zoom-møter. En tematisk analyse ble utført i de første rundene
med å analysere dataene for å få en oversikt over hele datasettet. Deretter ble inter-
aksjonsanalyse brukt for å analysere utvalgte deler av dataene i detalj. Hovedfunnene i
artikkelen er som følger: 1) Integrering av blokkbasert programmering i et matematikk-
fag muliggjorde aktiv samarbeidslæring, 2) integrering av programmering i et matema-
tikkfag muliggjorde utviklingen av algoritmisk tenkning, og 3) bruk av blokkbasert
programmering la til rette for læring av matematikk.

Nøkkelord: blokkbasert programmering, algoritmisk tenkning, datastøttet
samarbeidslæring, algoritmisk tenkning i skolen

Introduction

Programming and computational thinking (CT) are regarded as fundamental skills
in the 21st century (Wing, 2006; Weintrop et al., 2016; Boccconi et al., 2016;
Yadav et al., 2017; Mohaghegh & McCauley, 2016; Zhang & Nouri, 2019).
Inculcating pupils with skills in CT and programming is important in order to
prepare them for future work and enable them to reflect on challenges and oppor-
tunities created by the technology we use. Due to our increasingly information-
based and technology-rich society it is important to ensure that students develop
CT at the K–12 education level. K–12 education refers to pupils in school grades
prior to college. It is necessary to provide teachers with knowledge about CT and
how to incorporate it into their teaching (Yadav et al., 2014), making it crucial to
conduct research that focuses on how to integrate CT and programming into K–
12 education. In the Nordic countries, it has been suggested that CT and pro-
gramming should be part of a more comprehensive 21st century skills approach
(Bocconi et al., 2016). 21st century skills are defined as encompassing creativity,
critical thinking, and problem solving, as well as other skills students should
develop to act as creators of knowledge rather than passive consumers in the
classroom (Gretter & Yadav, 2016).

CT was first coined by Papert (1980) as the relationship between programming
and thinking skills. Building on this, Wing (2006) defined CT as solving prob-
lems, designing systems, and understanding human behaviour, by drawing on the
concepts fundamental to computer science. However, there is not one agreed-
upon definition of CT. Shute et al. (2017) define CT as the conceptual ingredient
required to solve problems effectively and efficiently (i.e., algorithmically, with
or without the assistance of computers) with solutions that are applicable in
different contexts. In a school context, CT is viewed as extending computer
science principles to other disciplines to help break down the elements of any
problem, determine their relationship to each other, and devise algorithms to
arrive at an automated solution (Kafai & Burke, 2013). What all these definitions
have in common is that they perceive CT as transcending programming; it also

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 2/22

entails problem-solving processes. CT can be regarded as an investigative and
problem-solving method that utilises computer science concepts, tools, and
techniques in science, technology, engineering, and mathematics (STEM) (Lee et
al., 2020). This article adopts the view of CT as encompassing both a program-
ming perspective and a problem-solving perspective. The connection between
programming and CT is that through programming, pupils develop computational
thinking. Lye and Koh (2014) underscore that during the process of programming,
pupils are exposed to CT, which involves the use of computer concepts.

CT has been included in school curricula in many countries. In recent years,
the Nordic countries have all introduced CT into their curricula; however, differ-
ent countries have interpreted and implemented CT in different ways (Bocconi et
al., 2016; Heintz et al., 2016; Zhang & Nouri, 2019). Bocconi et al. (2016)
emphasise that CT and programming have been advocated by educational stake-
holders as skills that all people should learn, as fundamental as numeracy and
literacy. Although CT and related concepts (programming, coding, algorithmic
thinking) have received increasing attention in the educational field, there is a
dearth of research on the successful integration of CT in compulsory education,
and there are a plethora of unresolved issues and challenges (Bocconi et al., 2016).
Programming skills have become important core competencies for 21st century
skills, particularly in education; as a result, many countries have recognised that
programming needs to be integrated into school curricula to equip pupils with
these skills, such as problem-solving and logical thinking (Forsström & Kauf-
mann, 2018). In recent years there has been a new interest in reviving learning
and teaching programming at all K–12 levels (Kafai & Burke, 2013). The focus
in this article is on exploring CT as an integrated part of a school subject. In
autumn 2020, Norway implemented a new curriculum for K–12 education where-
in programming and CT were integrated into selected subjects: maths, natural
science, music, and arts and crafts. This warrants research into the implications of
introducing CT and programming into the new curriculum to uncover how it
works in practice.

The integration of CT into STEM subjects is relatively new, and CT is
regarded as having the potential to deepen STEM learning by enabling pupils to
act as young scientists through engagement in authentic STEM practices (Lee et
al., 2020). Consequently, there is a need for research on the implications hereof.
The research question addressed in this article is:

In what ways can block-based programming be integrated into a maths
subject, and what are the implications for computational thinking?

The focus of this article is K–12 education. A maths subject is the context for the
study, which explores the processes that emerge during block-based programming
and the implications for computational thinking.

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 3/22

Related literature

This section presents literature relevant to CT in K–12 education, block-based
programming and CT in K–12 education, and computer-supported collaborative
learning (CSCL) and CT.

Studies related to CT in K–12 education
Several researchers have elucidated what CT entails and suggested frameworks
for how to understand it (Weintrop et al., 2016; Heintz et al., 2016; Ioannidou et
al., 2011; Brennan & Resnick, 2012). Other studies have reported how CT can be
facilitated using block-based programming languages (Dwyer et al., 2015;
Moreno-León et al., 2016), and some studies have focused on the integration of
CT in STEM subjects (Lye & Koh, 2014; Lee et al., 2020). Scrutinising how CT
transcends programming and exploring how to redefine it as a thinking process is
an increasing development (Lodi & Martini, 2021; Lee et al., 2020). Several
reviews provide overviews of CT in K–12 education (Grover & Pea, 2013; Shute
et al., 2017; Heintz et al., 2016; Lye & Koh, 2014) and in K–9 education (Nouri
et al., 2020; Heintz & Mannila, 2018; Flórez et al., 2017). Several studies focus
on exploring how CT can be integrated in K–12 STEM education (Kong et al.,
2019; Lee et al., 2020), but there is a lack of empirical case studies exploring how
CT can be integrated into K–12 education and what the implications are.

Studies related to block-based programming and CT in K–12 education
Block-based programming is a visual programming language that takes the form
of dragging and dropping programming instructions together as it uses a
programming-primitive-as-a-puzzle-piece metaphor to provide visual cues to the
user as to how and where commands may be used (Weintrop, 2019). One of the
advances of block-based programming is that it reduces pupils’ challenges in
learning the language syntax when programming (compared to text-based
programming) and renders programming more accessible to novices (Sengupta et
al., 2013). Some studies have reported how CT can be facilitated through block-
based programming (Weintrop, 2019; Sengupta et al., 2013). In a study by
Weintrop et al. (2016), the researchers developed a taxonomy of CT practices for
maths and science consisting of data practices (collecting, creating, manipulating,
analysing, and visualising data), modelling and simulation practices, computa-
tional problem-solving practices, and systems thinking practices. Sengupta et al.
(2013) emphasise that arguments favouring the integration of CT and pro-
gramming into K–12 STEM curricula have been suggested; they present a critical
review of educational computing and propose a set of guidelines for designing
learning environments focusing on science topics that foster the development of
CT. The focus in this article is on block-based programming, since the data are
drawn from the social interactions and collaborations between pupils when using
the block-based programming language MakeCode.

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 4/22

Studies related to CSCL and CT
Computer-supported collaborative learning (CSCL) is an interdisciplinary re-
search field which focuses on studying how people together can learn with the
help of a computer; it emphasises the interplay between learning and technology
(Stahl et al., 2006). In CSCL, the group is the unit of analysis. The underlying
principle in CSCL is that collaboration is primarily conceptualised as a process of
shared meaning construction, and the meaning making processes do not merely
express mental representations of the individuals but also an interactional achieve-
ment (Stahl et al., 2006). CSCL studies are often divided between focusing on
physical co-located studies or distributed studies. The focus here is on distributed
CSCL, as the context for the empirical data derives from a distributed online
setting. In one empirical study, being in a distributed CSCL context, the term
“mutual development” was defined as a joint collaboration process wherein mul-
tiple stakeholders with different backgrounds co-created shared artifacts (Ander-
sen & Mørch, 2009). In another study, the focus was on mutual development and
the co-creation of artifacts at different levels of participation, as well as investi-
gating collaborative knowledge creation processes mediated by online technolo-
gies (Andersen, 2019). Kafai (2016) underlines that CT and programming are
social creative practices, and they offer a context involving making applications
for others wherein sharing and collaboration are the premise. This article follows
along these by framing CT and programming in a collaborative learning context,
emphasising the group as a unit of analysis.

There are few research studies that focus on CT, programming, and CSCL.
One study investigates how students are motivated to learn programming concepts
in a CSCL setting (Serrano-Cámara et al., 2014); another study investigates how
collaborative learning through pair programming can improve pupils’ computa-
tional thinking skills (Echeverría et al., 2019). The present article uses CSCL in
combination with CT and programming to explore and understand how pupils
interact and collaborate when using block-based programming as an integrated
part of learning maths when working in small groups. According to Stahl (2007),
there is a need for empirical analysis of how meaning is constructed in small-
group interactions. He underlines that meaning is created and shared through
processes of interaction, communication, and coordination.

In summary, this review demonstrates that there is substantial research that
defines, discusses, and presents frameworks for understanding CT in K–12 edu-
cation. However, there are few empirical studies exploring how CT and program-
ming are integrated into STEM subjects in K–12 education. Moreno-León et al.
(2016) underscored this when stating that there is a lack of empirical studies that
investigate how learning to program at an early age affects other school subjects.
There is a need for research regarding the implications of introducing CT into K–
12 education. This article addresses this gap by contributing with empirical
research concerning how pupils collaborate in small groups when solving tasks

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 5/22

using block-based programming as an integrated component of a maths subject;
it also examines the implications for CT.

Conceptual framework

The conceptual framework consists of two different research perspectives: CT and
computer-supported collaborative learning (CSCL). The CT perspective is used
to highlight the programming and CT elements, whereas CSCL is used to bring
the collaborative components in these settings to the foreground. These perspec-
tives are combined because, when used in combination, they provide a richer data
analysis. From the CT perspective, Brennan and Resnick’s (2012) CT framework
is used, comprising: computational concept, computational practice, and concept-
ual perspective. From the CSCL perspective (Stahl, 2007), the concepts
knowledge sharing, meaning making, and group cognition are presented. The
connection between these two perspectives is that they represent different
approaches to exploring the programming processes, and they are useful in
combination because they complement each other by gaining insights into both
the CT processes and the collaborative learning processes emerging in the
programming. This provides a group interaction perspective on the programming
processes and a group perspective on CT in K–12 education, which is novel. See
Table 1 for an overview of the conceptual framework. The analytical concepts
presented in the conceptual framework are used to analyse the empirical data.

Table 1. The conceptual framework of the article

Brennan and Resnick’s framework of categorising CT (2012) divides it into three
dimensions: a) the concepts designers engage with in programming, i.e., sequen-
ces, loops, parallelism, events, conditionals, operators, and data; b) the practices
designers develop as they engage with the concepts, i.e., being incremental and
iterative, testing and debugging, reusing and remixing, abstracting, and modular-
ising; and c) the perspectives designers form about the world around them and
about themselves, i.e., expressing, connecting, and questioning. This means that
the computational concepts are concepts the programmers use, the computational
practices are the problem-solving processes that emerge in the programming
process, and the computational perspective concerns how the programmers and

Analytical concepts from CT
(Brennan & Resnick, 2012)

Analytical concepts from CSCL
(Stahl, 2007)

Computational concepts (sequences, loops,
parallelism, events, conditionals, operators, and data)

Knowledge sharing (individual shares
information with group)

Computational practices (being incremental and
iterative, testing and debugging, reusing and remixing,
abstracting and modularising)

Meaning making (collaborative
construction of shared meaning)

Computational perspective (expressing, connecting,
questioning)

Group cognition (a gradually evolving
result of the group discourse)

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 6/22

learners perceive the world and themselves in it, including the technological
aspect. From the perspective of CSCL, the concepts knowledge sharing, meaning
making, and group cognition are presented. Knowledge sharing is when individu-
als communicate what they already know to the others and when the participants
offer alternative views related to the discussion (Stahl, 2007). Meaning making is
defined as shared meaning construction, in which shared group meaning is
collaboratively created by the entire group; it is interactively achieved in a dis-
course and may not originate from any particular individual (Stahl, 2007). Pro-
cesses of establishing shared meaning involve a process of group cognition of the
shared construction of a meaning; this emerges through the participants building
on each other’s utterances, in which the individual group members have to
interpret the meaning from their own personal perspectives, display their under-
standing of the meaning, and affirm that meaning as shared (Stahl, 2007).

Methods

Research design
The empirical data in this article originate from an ongoing research project where
the applied overall research design is design-based research (DBR). DBR is a
research methodology used in an educational context that seeks to increase the
impact, transfer, and translation of educational research into improved practice –
also underlining the need for theory building and the development of design
principles that guide and inform the practice (Barab & Squire, 2004). In DBR,
teachers, researchers, and other participants design and create educational inter-
ventions through collaboration. DBR is also often referred to as “educational
design research” which focuses on the iterative development of solutions to
practical and complex educational problems in addition to offering the context for
empirical investigation, which also may produce theoretical knowledge that can
inform others (McKenney & Reeves, 2018). The research project focuses on
creating and testing a series of eight learning designs that were used as inter-
ventions in classes consisting of gifted pupils. They focus on learning block-based
programming as an integrated part of their course subject (maths). In total, four
iterations each year were conducted over a two-year period. In each semester, two
interventions are tested; they are evaluated based on feedback, and as such, the
research design and the interventions are iteratively evolving. This means that the
learning designs were modified and revised after each intervention as a result of
feedback from the teachers and pupils. In sum, the interventions (learning designs)
gradually evolved. The pupils met three hours per week for 16 weeks during two
semesters each year. This reflects two interventions each semester (two semesters
per year) which lasted for 8 weeks over a 2 year period. We followed the same
pupils for one year at a time, which means we have two sets of different pupils in
the dataset. The data used in this article are from the same year and therefore the

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 7/22

same set of pupils. In total, up to 200 gifted pupils between 12 and 16 years old
participated in the project. They are divided into classes with around 20
participants in each class. This article reflects data from 43 of these pupils. The
competence goals which are used as a premise for designing the learning designs
in the intervention are 3 to 5 years above the pupils’ age. Each class is taught by
a high school teacher, and there are six participating high school teachers in the
research project. Each of the interventions is organised to consume around three
hours per week, with a duration of 8 weeks. The data presented in this article are
derived from the second intervention, in which the topic of the learning design
was probability. The interventions were structured as follows: First, the teacher
introduced the topic for the intervention, and the teacher then divided the class
into groups consisting of 3 to 4 pupils in different breakout rooms in Zoom1. The
pupils used MakeCode as a block-based programming language and the subse-
quent micro:bit (a block-based programming language with similar syntax and
structure as Scratch, see Figure 1) to solve the maths tasks they were assigned. In
order to facilitate collaboration among the pupils, the teachers encouraged the
pupils to share their screen in Zoom so that the others in the group could see their
partial solution. This gave the students a common ground for further discussion
regarding how to solve the task assigned by the teacher. As a result, the group was
the unit of analysis.

Figure 1. A screenshot of the micro:bit the pupils use when solving the tasks in assignments

Selection of participants
Gifted pupils were selected as participants in the research project due to their need
for differentiated learning in school. After receiving nominations from teachers
and parents, the participants applied for participation in the research project.

Methods for collecting the data
Data were collected through video recordings of the pupils’ screens using Zoom.
As a result, a virtual ethnography approach was used, which included participant

1 Due to the pandemic Covid 19 in 2020–2021. Zoom is a video communications app that allows participants to
set up video conferencing (Zoom, 2021).

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 8/22

observation. Virtual ethnography is a method used for analysing social inter-
actions in online contexts, and a technique for collecting data is to engage in the
social interactions when collecting data (Hine, 2000). Participant observation
implies that the pupils were sometimes asked to elaborate upon what they were
doing during their group work. In total, there are 70 hours of screen recordings of
interaction data between different pupils. All of the participants in the article have
been anonymised, meaning that their names are fictive. The research project was
reported to and approved by the National Center for Data services in Norway in
order to reassure that the research project follows ethical guidelines and data
protection laws.

Methods for analysing the data
A combination of thematic analysis (Braun & Clarke, 2006) and interaction
analysis (Jordan & Henderson, 1995) was applied for analysing the empirical data
to ensure a richer analysis, from an overview and from a more detailed exami-
nation of the data, respectively. Thematic analysis is defined as a qualitative
method for systematically identifying and organising patterns of meanings across
a data set. This enables the researcher to see and make sense of collective or shared
meaning and experiences (Braun & Clarke, 2006). Examples of the thematic
codes that emerged when screening the data are as follows: knowledge sharing,
programming, computational concepts, and collaboration. Interaction analysis is
defined as a method for the empirical investigation of interactions between human
beings and the objects in their environments, including speech, non-verbal
actions, and the use of artifacts (Jordan & Henderson, 1995). Consequently, the
data were analysed using a two-step approach: 1) Thematic analysis provided an
overview of the data set when screening the whole data set, looking for thematic
codes and emerging patterns. 2) Interaction analysis was employed when zooming
in on specific data and analysing it in detail.

Validity
A typical validity issue is anecdotilism, meaning that the researcher only presents
a few well-chosen examples (Silverman, 2005). To overcome the issue of anec-
dotilism, a focus was placed on ensuring that the selected thematic codes were
representative for at least 3 to 5 data excerpts to underscore that the thematic code
represents a common issue in the data set and not merely a deviant case or a one-
time issue.

Empirical data and analysis

Two data extracts representing different aspects of the social interactions
emerging when pupils use block-based programming to solve maths tasks are
presented: 1) programming the micro:bit to calculate probability, and 2) discus-
sing how to fix a code that is not working via collaborative debugging.

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 9/22

Extract 1: Programming the micro:bit to calculate probability
Contextualising the extract
In the extract below, the pupils are assigned the task to program the micro:bit to
create a dice and calculate the probability of getting the number “6” on the dice
after rolling the dice a given number of times (for example, 10,000 dice rolls).
The extract is derived from an intervention focusing on maths and consists of
three pupils who collaborate on creating the code. The extract stems from the start
of the group session, immediately after they have started discussing how to create
the code.

Table 2. Data extract 1 (translated into English by the author)

Turn Actor Utterance Analytical concept
1 Lucas Now I will show you and try to explain what I did. When

“Button A” is pressed we create a variable which we define
as “denominator” – agree? Yes, then, we declare the
variable “denominator” to 0 because then we have a
starting point for that variable. Next, we create a loop which
is repeated 10,000 times, and in connection to this we
create another variable which we define as “the dice roll”
and then we also declare it to 0. Next, we use a maths
operator block which chooses a random number between
1–6. Did you also do it like this?

Knowledge sharing,
computational
concepts
(loop and variable)

2 James Yes, I guess we have the same code
3 Noah What result did you get as the probability? Meaning-making

(turns 3–10)
4 James Wait a minute
5 Lucas 0.16 or 0.17
6 Noah If the roll of the dice becomes 6, then I get the probability to

be 1.05 percent.

7 Lucas Then it just is very unlikely (that the dice will roll and
becomes 6). How many times did you program it to be
repeated (that the dice would roll)?

Computational
perspective, com-
putational concept

8 Noah 1,500 times
9 Lucas Oh yes, ok.
10 Lucas Then, we go to the logics blocks and we take this block (if-

else block) if the dice is rolled 1,500 times, then we increase
the variable “denominator” with 1, like this. Have you also
done it like this? And then “show number” (block) divided by
the number of repetitions, which is 10,000, like this. Is this
how you have done it?

Knowledge sharing,
Computational
concepts
(conditionals,
operators)

11 James Yes, just that I have not programmed the last part yet. I have
not calculated the probability in percent yet since I thought I
did not know how to do it. Now, I will try to program the
percent calculations as well, so maybe it will turn out to be
correct.

Group cognition

12 Lucas Shall we see, here we get (running the code in micro:bit)
0.17 – Yes!

Knowledge sharing,
see Figures 2 and 3

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 10/22

Analysing the extract
The extract starts with Lucas in turn 1, explaining to the group how he pro-
grammed the code that calculates the probability of rolling the number “6” on the
dice after 10,000 repetitions. This utterance has similarities to knowledge sharing
(Stahl, 2007). Knowledge sharing is defined by Stahl (2007) as when individuals
communicate what they already know to the others. In turn 1, we can also see
instances of what Brennan and Resnick (2012) refer to as computational concepts.
Examples of the computational concepts are “variable” and “loop.” In turn 2,
James responds that he has programmed the same code as Lucas in turn 1. How-
ever, Noah interrupts in turn 3 and wants to know the answer to the task (what is
the probability?). This question triggers a discussion with similarities to a
meaning-making process, wherein the different utterances by the pupils build on
each other and forge a shared meaning construction (Stahl, 2007). In turns 3
through 10, the pupils discuss and build on each other’s utterances, and a common
understanding of how to program the code emerges. In processes of meaning-
making, there is an uptake of the other pupils’ utterances by posting a subsequent
one, and through this continuation, the interactions and collaboration processes
advance forward (Stahl, 2007). As a result, in turn 5, Lucas states his result when
he runs the code and tests out how the micro:bit can be used as a calculator. Lucas
gets a probability of 0.16 or 0.17, which is correct. However, in turn 6, Noah gets
another result that is too low. In turn 10, there are several instances of compu-
tational concepts, such as conditionals (when talking about the “if-else block”)
and operators, and the pupils discuss the computational concepts. Conditionality
is a key computational concept defined as the ability to make decisions based on
certain conditions, which supports the expression of multiple outcomes (Brennan
& Resnick, 2012). Additionally, when saying “show number” (block) divided by
the number of repetitions, 10 is an example of using the operator as a compu-
tational concept. “Operator” is also a computational concept defined as providing
support for mathematical, logical, and string expressions, enabling the program-
mer to perform numeric and string manipulations (Brennan & Resnick, 2012). In
turn 11, James states that he has learned a new method of programming the
percent calculations. Together, the students have discussed and formed a new
solution, which they have created in collaboration during the social interaction;
this is an indication of group cognition. Group cognition is defined by Stahl
(2007) as learning that is constituted of the interactions between the participants.
Finally, in turn 12, Lucas happily exclaims “yes!”, stating that he has created a
code that is working and shares knowledge of this.

Figure 2 is a screenshot of the program code they created (as referred to in turn
12). It depicts how the micro:bit can calculate the probability of getting the
number “6” on the dice roll when rolling the dice 10,000 times. Figure 3 is a
screenshot of the micro:bit when it runs the code in Figure 2. Figure 3 illustrates
how the number “0.17” is visualised and printed on the micro:bit screen when
running the code.

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 11/22

Figure 2. Screenshot of the programmed code in extract 1 (turn 12)

Figure 3. Screenshot of the micro:bit and the result of running the code in Figure 2

Extract 2: Discussing how to fix a code that is not working – collaborative
debugging
Contextualising the extract
This extract stems from the same discussion as extract 1 above and presents the
final part of the discussion. The focus is on three pupils who collaborate on how
to help James find a solution for how to fix his code, which is not working.

Table 3. Data extract 2 (translated into English by the author)

Turn Actor Utterance Analytical concept
1 James Oh! It is not working Lucas!
2 Lucas What?! Did the code turn out to be the same as this?

(pointing to his screen)

3 Noah Yes, I have the same (code) as that
4 Lucas Is it working?
5 Noah Yes, it is working.
6 James I must have overlooked a small detail. I will set all my

variables to the exact same (parameters) as you have.
Computational concept
(parameter, variable),
computational practice
(debugging and testing)

7 Lucas Yes, but do not set so high numbers here then
(because if the number of repetitions is high it takes
longer time to test the code) – set it to only 10,000
(repetitions in the loop) (instead of 100,000)

Computational concept
(repetition, parameter,
loop)

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 12/22

8 James Yes, that is what I am trying to do. Okey, then I am
changing the variable “denominator”

9 Lucas Have you tried to change the number down here
(pointing at the maths block in MakeCode) to divide –
so that it divides here?

Computational concept
(testing and debugging),
knowledge sharing

10 James Eh, yes. (clicking on the computer) now I have! Hehe
but it still does not work now either

11 Noah James, have you made sure to set the parameter in
your if-loop so that it says “if-dice roll-then” and not
“if denominator-then”?

Meaning-making (turns
11–23), computational
concept (loop,
conditionals)

12 James Yes. I must have made some small mistake
13 Lucas You must not change the variable set “denominator”,

you must not write "change dice roll" you must write
"set dice roll to" on where you have the purple
(block), no, not down there, a little further up, you
need to change it

Meaning making,
computational concept
(variable)

14 James Ahh! (frustrated)
15 Lucas Yes, is it (the code) working now? 0.003… I do not

know if it is completely correct ...
Meaning-making

16 James Have I done everything right now?
17 Lucas Now it actually looks pretty good, does it not?
18 James Yeah ... 0.0 ... no! Now it showed something else

(visualised on the micro:bit screen)

19 Lucas 0.00 but that is a completely wrong number!
20 Lucas Do you have too many zeros? Shall we see—one-two-

three

21 James Do I have too many zeros?
22 Lucas No, it is the right number of zeros
23 James Can you see what is wrong?
24 Noah James, I told you it is because you have… Group cognition
25 Lucas =he has the right variables in the right places (In the

code) – eh no!
Group cognition,
computational concept
(variable)

26 Noah =no! “denominator”! so it should not be the
denominator – change it (the variable) to “dice roll”
where it says “denominator” – it is the second highest
variable – the purple (block)

Group cognition,
computational concept
(variable)

27 James =the variable second from the top (referring to a drop-
down button) – the purple (block)

28 Noah Yes! There it should say “roll the dice”
29 Lucas Oh, that's what I messed with earlier when I switched

(the variable block)

30 James Try now! Yey! (clapping)
31 Lucas Yey!
32 Noah Yey!

Analysing the extract
In turn 1, James exclaims that his code is not working, and Lucas (in turn 2) asks
James if he has created the same code as him. Noah replies, in turn 3, that he has

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 13/22

a similar code as Lucas. Next, Lucas asks Noah (in turn 4) if his code is working
and he responds it does (turn 5). In turn 6, James underlines that his code is still
not working and that he will attempt to set all parameters as the same as the other
codes in the group. Also in turn 6, James uses the computational concepts “para-
meter” and “variable” when suggesting a strategy for how to debug and figure out
how to make the code to work. When stating that he will set all his variables to
the exact same as his peers, he suggests a debugging strategy as part of a
computational practice (Brennan & Resnick, 2012). Computational practice is
defined as the processes wherein one is moving beyond what they are learning to
how they are learning. In these processes, several practices were identified, such
as being incremental and iterative, testing and debugging, reusing and remixing,
and abstracting and modularising (Brennan & Resnick, 2012).

In turn 7, Lucas follows up James’ debugging approach (setting the same
parameters as the others in the group) but emphasises that he should not set
excessively high parameters on the repetitions of the loop since it takes a longer
time to the test the code the higher the parameters are set. This is an example of a
debugging strategy which is in line with Brennan & Resnick (2012), underlining
that when programming code, it rarely works just as imagined; it is therefore
necessary to develop strategies for dealing with and anticipating problems.
Testing and debugging are components of computational practices when
programming code. In turn 8, James confirms that he will follow the advice from
his peers. In turn 9, Lucas suggests changing the variable, which is an example of
how the pupils use computational concepts (Brennan & Resnick, 2012) as part of
their discussion and social interactions. Turn 9 also contains a component of
knowledge sharing (Stahl, 2007) when Lucas provides information about
changing the variable. Nevertheless, the code is still not working. This triggers a
meaning-making process in turns 11 through 23 when Lucas and Noah suggest
different ideas for how to fix the code and make it work. The pupils build on each
other’s statements, such as in turn 11: “James, have you made sure to set the
parameter in your if-loop …” Lucas responds in turn 13, saying “you must not
change the variable”. Meaning-making is a social and collaborative activity in
which there emerges a collaborative construction of new problem-solving knowl-
edge wherein individuals negotiate and share meanings relevant to the problem-
solving task at hand (Stahl, 2007, referring to Roschelle & Teasly, 1995). In turns
11 through 23, several computational concepts are mentioned by the pupils: In
turn 11, Noah talks about loops and if-then conditionals. Lucas, in turn 12, also
discusses how to program the variable and strives to understand how the
conditionals should be defined. In turns 11 through 14, different suggestions for
how to fix the code are proposed which contain similarities to a meaning-making
process (Stahl, 2007). The pupils are collaborating in creating solutions for how
James can fix the code and make it work again, which can be interpreted as an
example of collaborative debugging. Collaborative debugging can be identified
as a process wherein different pupils interact and collaborate in trying to fix a

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 14/22

program code that is not working. In turn 15, Lucas says, “the code is working
now,” and he continues to read aloud the result of the code (“0.003”) and carefully
says that the code still does not work. From this, one can infer that part of the
collaborative debugging process is to read each line of the code aloud, to prompt
discussion of the code, invite new suggestions, and build on the existing suggested
code ideas. The pupils adapt, refine, run, and test the code to assess whether it
works (as in turns 15 and 17) and continue the process in iterations. In turn 24,
Noah proposes an idea for how to fix the code but is interrupted by Lucas. In turn
25, Lucas goes through the code once more and suggests another idea for how to
fix the code, but in turn 26, Noah strongly disagrees and builds on Lucas’
utterance by stating that he has found the solution for how to fix the code. In
response, James eagerly exclaims that he has found the solution and elaborates on
it, building on previous utterances by Noah. These utterances have similarities
with a group cognition process (Stahl, 2007) in that they are collaborating on
creating a common solution to the problem by presenting different ideas for how
to fix the code; they build on each other’s ideas and ultimately reach a common
ground and solution. Group cognition, as defined by Stahl (2007), is a gradually
evolving result of group discourse. Finally, in turns 30 through 32, they exclaim
“yey,” which is a confirmation that the code is working.

Based on analysing the empirical data in this extract, collaborative debugging
is defined as a strategy that involves a gradual development of an emerging shared
understanding of how to fix the code, in which the participants collaborate in
creating by building on each other’s statements. Collaborative debugging is an
emerging social phenomenon that evolves from using block-based programming
as a method for learning a subject (maths) in a collaborative context. Extract 1
describes how the pupils collaborate on programming the micro:bit to calculate
probability. In extract 2, it becomes clear that James has not managed to program
the code (which they agreed upon in extract 1), and the other pupils help him find
a strategy to make the code work.

Discussion: Implications of integrating block-based programming into
the maths subject

Integrating block-based programming into the maths subject enabled active
and collaborative learning
In extracts 1 and 2, I have shown instances of a gradually evolving meaning-
making process (Stahl, 2007) emerging as a result of turn-taking and social inter-
actions between the pupils when discussing how to use block-based programming
to solve the maths task. Stahl (2007) states that in these processes, the meaning
depends upon indexical references to the shared situation, elliptical references to
previous utterances, and projective preferences for future utterances. This article
expands the view of CT to also account for collaborative learning. In extracts 1

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 15/22

and 2, several examples of social interactions which entailed knowledge-sharing,
meaning-making, and group cognition were revealed. In processes of meaning-
making, collaboration is conceptualised as a shared meaning construction, in
which meaning-making processes are an interactional achievement (Stahl, 2007).

Integrating block-based programming into the maths subject proved to be an
engaging means to learn maths, and it sparked active discussions around the maths
concepts that were the subject of the learning process. For example, in extract 1,
the pupils eagerly discussed the nuances regarding the implications of a high or
low probability and how this could be transferred to the block-based programming
code they were creating (Extract 1, turn 7). Thus, one implication for CT when
integrating block-based programming in the maths subject is that it triggers
discussion, social interaction, and active learning connected to the topic being
learned. Combining aspects from both CT and collaborative learning in the con-
ceptual framework provided a richer data analysis and enabled us to identify
collaborative debugging as a computational practice. Collaborative debugging is
identified in extract 2 as when pupils collaborate through a trial-and-error strategy
for fixing each other’s codes.

Collaborative debugging emerges from using block-based programming as a
method for learning a subject in a collaborative context. It follows the same line
of thought as Kafai (2016), who seeks to reframe computational thinking as com-
putational participation. This implies viewing CT as social and creative practices
emerging when sharing and collaborating with others. As a result, a contribution
of this article is defining collaborative debugging as a social and collaborative
process that arises from CT and computational practices when learning block-
based programming as an integrated part of a subject. This aligns with Ludvigsen
and Steier (2019), who asserted that joint attention, or meaning-making, is neces-
sary when solving complex tasks, and that joint attention emerges when partici-
pants are involved in solving problems together via coupling between represent-
ational artifacts, practices, and the social systems in which humans participate.

Integrating programming into a maths subject enabled the development of
CT
From a CT perspective, it is evident that computational concepts such as “loops”
and “variables” are significant elements of the dialogue. The computational
concepts the pupils engage with are common concepts in several programming
languages (Brennan & Resnick, 2012). When pupils are solving maths tasks using
block-based programming, the social interactions and collaborations contain
central computational concepts. Brennan and Resnick (2012) are interested in how
CT can be interpreted as materialising learning and development that takes place
with Scratch (a block-based programming language). This article follows along
the same lines when exploring how micro:bit is used as an integrated part when
solving maths tasks. This article presents a context and set of opportunities for

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 16/22

enabling conversations about CT. This indicates that using block-based program-
ming as a method for learning a subject-specific topic has the potential to facilitate
active collaborations and social interactions empowering pupils to develop
aspects of CT. One implication of this integrated approach to block-based pro-
gramming is that it triggers CT processes. This is consistent with Shute et al.
(2017), who posited that CT skills appear to be improved via computational tools,
such as Scratch. A contribution from this article is expanding the perspective of
Brennan and Resnick (2012) by taking the collaborative learning aspects into
consideration when exploring CT. In extracts 1 and 2, there is an intertwined use
of both CT and collaborative learning aspects.

Block-based programming as a method for learning maths
This article is an empirical study serving as an example of how block-based
programming can be used as a method for learning a specific subject, in this case
maths. In extracts 1 and 2, the students are programming the micro:bit to calculate
probability. In these social interactions, the discussion is dynamically switching
between discussing subject-specific skills, such as maths, and the more generic
skills (such as CT and collaborative learning). This supports previous work where
there is a mutual dependency between the subject specific and the more generic
skills when using Minecraft as a digital learning resource in social science (Ander-
sen et al., 2021). When block-based programming is used as a method for solving
maths tasks in extracts 1 and 2, the pupils use computational concepts as part of
their collaborative learning processes. This has similarities to the study by Lee et
al. (2020) which contended that pupils who learn to develop computational solu-
tions and to employ computational tools and methods will advance their under-
standing of subject-area content and CT skills. However, the present article differs
from the study by Weintrop et al. (2016) because it is an empirical study exploring
how CT is integrated into a STEM subject, whereas Weintrop et al. delineate a
taxonomy for understanding CT in practice for maths and science (Weintrop et
al., 2016). The present article also differs from Sengupta et al. (2013) because it
is an empirical study as opposed to a review. This article provides an empirical
study of block-based programming and CT in K–12. Barr and Stephenson (2011)
clearly state that pupils must begin to work with algorithmic problem-solving and
computational methods in K–12 education to manage their work lives and to live
in a world heavily influenced by technology.

Conclusion and directions for further research

The research question addressed in this article is as follows: “In what ways can
block-based programming be integrated into a maths subject, and what are the
implications for computational thinking?” This has been addressed and discussed
in previous sections. In summary, the main findings of this article are as follows:

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 17/22

1) Integrating block-based programming in a maths subject enabled active and
collaborative learning.

2) Integrating programming in a maths subject enabled the development of
CT.

3) Using block-based programming facilitated learning of maths.

This article has discussed the implications of introducing CT into K–12 education.
The analysis indicates that integrating block-based programming into a STEM
subject proved to be useful because it afforded the development of CT for pupils.
The findings in this article have parallels to those of Weintrop et al. (2016) as they
focused on block-based programming and how it can enable the development of
CT skills. However, this article extends the work of Weintrop et al. (2016)
because it is an empirical case study exploring the processes emerging between
the pupils when using block-based programming in a maths class. In addition, the
present article adds to current research on CT and block-based programming by
extending the work of Sengupta et al. (2013), who presented a theoretical investi-
gation of key issues that need to be considered for integrating CT into K–12
science classes.

One contribution from this article is elucidating how the different aspects of
CT (computational concepts, computational practices, and computational per-
spectives) emerge and are addressed in discussions when collaborating on how to
solve maths tasks using programming solutions in a block-based programming
language. This follows the same strand of thought as Lye and Koh (2014), who
emphasised that CT is more than programming, as it also encompasses problem-
solving processes in which programming helps foster CT. However, this article
extends this approach by presenting an empirical case study of the implications of
integrating CT in a maths subject when using block-based programming as a
method for learning maths. When discussing how to program the code, the pupils
used computational concepts as part of their dialogue, which may trigger further
development of CT. Reflections connected to computational perspectives were
not prominently in the foreground of the data, but collaborative debugging was
identified as a computational practice that evolved during the discussions. As a
result, this article contains parallels to the notion of computational participation,
because it regards collaborative learning as part of the CT process. Therefore, this
article brings new knowledge to the field of block-based programming and CT in
K–12 education. Kafai and Burke (2013) state that there has been a transition from
a predominantly individualistic view of technology to one that incorporates a
greater focus on sociological and cultural dimensions when learning program-
ming and reconceptualising computational thinking as computational participa-
tion. However, this article extends Kafai and Burke’s (2013) research by ex-
tending the current research in CT with an empirical case study exploring how CT
is integrated into a subject in a collaborative setting and what the implications are.
DiSessa (2018) emphasises that computers might fundamentally change learning,

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 18/22

with an emphasis on maths (and more generally STEM), and underscores that
computation is viewed as a new form of literacy. Facilitating pupils to participate
in collaborative learning processes by using technology is one of the essential 21st
century skills that pupils are expected to have in the future (Voogt & Roblin,
2012). One novelty of this article is identifying how pupils develop CT skills
while using block-based programming as a method for learning a subject in
school, in a collaborative learning context. The findings in this article have impli-
cations for how teachers can design future learning, including how to integrate
block-based programming in schools.

More research that explores the perspective of how block-based programming
can facilitate and trigger collaborative discussions which help develop CT is
needed. An area for further work could be to explore other subjects other than
maths and to determine the implications for CT. It would be interesting to explore
how block-based programming can be integrated into the social sciences and
explore the implications for computational thinking.

Acknowledgement

This research is part of the research project “Programming in school” (ProSkap)
funded by Oslo Regional Research Fund in Norway. Thank you to Ellen Egeland
Flø for helping in organisation of the educational activities presented here.

About the author

Renate Andersen is an Associate Professor in technology enhanced learning at
Oslo Metropolitan University. Her research interests are ICT and learning, com-
puter supported collaborative learning, programming in school, and compu-
tational thinking in education.
Institutional affiliation: Section for digital competence, Faculty of teacher edu-
cation and international studies, Oslo Metropolitan University, Pilestredet 52,
0167 Oslo, Norway.
Email: renate.andersen@oslomet.no

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 19/22

mailto:renate.andersen@oslomet.no

References

Andersen, R. (2019). Mutual development in online collaborative processes. Three case

studies of artifact co-creation at different levels of participation. Doctoral dissertation,
Faculty of Educational Sciences, University of Oslo.
https://www.duo.uio.no/bitstream/handle/10852/70696/PhD-Andersen-
2018.pdf?sequence=1

Andersen, R., & Mørch, A. I. (2009). Mutual development: A case study in customer-initiated
software product development. In V. Pipek, M. B. Rosson, B. de Ruyter, & V. Wulf
(Eds.), End-User Development. IS-EUD 2009. Lecture Notes in Computer Science (Vol.
5435, pp. 31–49). Springer, Berlin, Heidelberg.

Andersen, R., Mørch, A. I., & Litherland, K. T. (2021). Learning Domain Knowledge Using
Block-Based Programming: Design-Based Collaborative Learning. In D. Fogli, D.
Tetteroo, B. R. Barricelli, P. Markopoulos, & G. A. Papadopoulos (Eds.), End-User
Development. 8th International Symposium, IS-EUD 2021 (pp. 119–135). Springer.
https://doi.org/10.1007/978-3-030-79840-6_8

Barab, S., & Squire, K. (2004). Design-Based Research: Putting a Stake in the Ground.
Journal of the learning sciences, 13(1), 1–14.
https://doi.org/10.1207/s15327809jls1301_1

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is
involved and what is the role of the computer science education community? ACM
Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing
computational thinking in compulsory education: Implications for policy and practice.
Joint Research Centre Report, EUR 28295 EN. Luxembourg: Publications Office of the
European Union. https://data.europa.eu/doi/10.2791/792158

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research
in psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting of the
American educational research association (Vol. 1, p. 1–25). Vancouver, Canada.
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

diSessa, A .A. (2018). Computational Literacy and “The Big Picture” Concerning Computers
in Mathematics Education. Mathematical Thinking and Learning, 20(1), 3–31.
https://doi.org/10.1080/10986065.2018.1403544

Dwyer, H., Hill, C., Hansen, A., Iveland, A., Franklin, D., & Harlow, D. (2015). Fourth grade
students reading block-based programs: predictions, visual cues, and affordances. In
Proceedings of the eleventh annual international conference on international computing
education research (pp. 111–119). https://doi.org/10.1145/2787622.2787729

Echeverría, L., Cobos, R., & Morales, M. (2019). Improving the students computational
thinking skills with collaborative learning techniques. IEEE Revista Iberoamericana de
Tecnologias del Aprendizaje, 14(4), 196–206.
https://doi.org/10.1109/RITA.2019.2952299

Flórez, F. B., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017).
Changing a Generation’s Way of Thinking: Teaching Computational Thinking Through
Programming. Review of Educational Research, 87(4), 834–860.
https://doi.org/10.3102/0034654317710096

Forsström, S. E., & Kaufmann, O. T. (2018). A literature review exploring the use of
programming in mathematics education. International Journal of Learning, Teaching and
Educational Research, 17(12), 18–32. http://hdl.handle.net/11250/2599710

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 20/22

https://www.duo.uio.no/bitstream/handle/10852/70696/PhD-Andersen-2018.pdf?sequence=1
https://www.duo.uio.no/bitstream/handle/10852/70696/PhD-Andersen-2018.pdf?sequence=1
https://doi.org/10.1007/978-3-030-79840-6_8
https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.1145/1929887.1929905
https://data.europa.eu/doi/10.2791/792158
https://doi.org/10.1191/1478088706qp063oa
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1080/10986065.2018.1403544
https://doi.org/10.1145/2787622.2787729
https://doi.org/10.1109/RITA.2019.2952299
https://doi.org/10.3102/0034654317710096
http://hdl.handle.net/11250/2599710

Gretter, S., & Yadav, A. (2016). Computational thinking and media & information literacy:
An integrated approach to teaching twenty-first century skills. TechTrends, 60(5), 510–
516. https://doi.org/10.1007/s11528-016-0098-4

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the
field. Educational researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Heintz, F., & Mannila, L. (2018). Computational thinking for all: an experience report on
scaling up teaching computational thinking to all students in a major city in Sweden. ACM
Inroads, 9(2), 65–71. https://doi.org/10.1145/3210553

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of models for introducing
computational thinking, computer science and computing in K–12 education. In 2016
IEEE Frontiers in Education Conference (FIE) (pp. 1–9).
https://doi.org/10.1109/FIE.2016.7757410

Hine, C. (2000). Virtual Ethnography. Sage Publications, London.
Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011).

Computational thinking patterns. Paper presented at the annual meeting of the American
educational research association. New Orleans, LA.
https://files.eric.ed.gov/fulltext/ED520742.pdf

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal
of the learning sciences, 4(1), 39–103. https://doi.org/10.1207/s15327809jls0401_2

Kafai, Y. B. (2016). From computational thinking to computational participation in K–12
education. Communications of the ACM, 59(8), 26–27. http://dx.doi.org/10.1145/2955114

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta
Kappan, 95(1), 61–65. https://doi.org/10.1177/003172171309500111

Kong, S. C., Abelson, H., & Lai, M. (2019). Introduction to computational thinking
education. In S.-C. Kong & H. Abelson (Eds.), Computational thinking education (pp. 1–
10). Springer, Singapore.

Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking
from a disciplinary perspective: Integrating computational thinking in K–12 science,
technology, engineering, and mathematics education. Journal of Science Education and
Technology, 29(1), 1–8. https://doi.org/10.1007/s10956-019-09803-w

Lodi, M., & Martini, S. (2021). Computational thinking, between Papert and Wing. Science &
Education, 30, 883–908. https://doi.org/10.1007/s11191-021-00202-5

Ludvigsen, S., & Steier, R. (2019). Reflections and looking ahead for CSCL: Digital
infrastructures, digital tools, and collaborative learning. International Journal of
Computer-Supported Collaborative Learning, 14(4), 415–423.
https://doi.org/10.1007/s11412-019-09312-3

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human Behavior,
41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012

McKenney, S., & Reeves, T. C. (2018). Conducting educational design research. Routledge.
Mohaghegh, M., & McCauley, M. (2016). Computational Thinking: The Skill Set of the 21st

Century. International Journal of Computer Science and Information Technologies, 7(3),
1524–1530. https://hdl.handle.net/10652/3422

Moreno-León, J., Robles, G., & Román-González, M. (2016). Code to learn: Where does it
belong in the K-12 curriculum? Journal of Information Technology Education: Research,
15, 283–303. https://doi.org/10.28945/3521

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational
thinking, digital competence and 21st century skills when learning programming in K-9.
Education Inquiry, 11(1), 1–17. https://doi.org/10.1080/20004508.2019.1627844

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 21/22

https://doi.org/10.1007/s11528-016-0098-4
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1145/3210553
https://doi.org/10.1109/FIE.2016.7757410
https://files.eric.ed.gov/fulltext/ED520742.pdf
https://doi.org/10.1207/s15327809jls0401_2
http://dx.doi.org/10.1145/2955114
https://doi.org/10.1177/003172171309500111
https://doi.org/10.1007/s10956-019-09803-w
https://doi.org/10.1007/s11191-021-00202-5
https://doi.org/10.1007/s11412-019-09312-3
https://doi.org/10.1016/j.chb.2014.09.012
https://hdl.handle.net/10652/3422
https://doi.org/10.28945/3521
https://doi.org/10.1080/20004508.2019.1627844

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic
Books, Inc.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
computational thinking with K-12 science education using agent-based computation: A
theoretical framework. Education and Information Technologies, 18(2), 351–380.
https://doi.org/10.1007/s10639-012-9240-x

Serrano-Cámara, L. M., Paredes-Velasco, M., Alcover, C. M., & Velazquez-Iturbide, J. Á.
(2014). An evaluation of students’ motivation in computer-supported collaborative
learning of programming concepts. Computers in human behavior, 31, 499–508.
https://doi.org/10.1016/j.chb.2013.04.030

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Silverman, D. (2005). Doing Qualitative Research. London: Sage.
Stahl, G. (2007). Meaning making in CSCL: Conditions and preconditions for cognitive

processes by groups. In C. A. Chinn, G. Erkens, & S. Puntambekar (Eds.), The Computer
Supported Collaborative Learning (CSCL) Conference 2007 (Volume 8, Part 2, pp. 651–
660). New Brunswick, NJ, USA: International Society of the Learning Sciences.
https://repository.isls.org//handle/1/3424

Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning:
An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning
sciences (pp. 409–426). Cambridge, UK: Cambridge University Press.

Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for
21st century competences: Implications for national curriculum policies. Journal of
Curriculum Studies, 44(3), 299–321. https://doi.org/10.1080/00220272.2012.668938

Weintrop, D. (2019). Block-based programming in computer science education.
Communications of the ACM, 62(8), 22–25. http://dx.doi.org/10.1145/3341221

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science classrooms. Journal
of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-
015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.
https://dl.acm.org/doi/fullHtml/10.1145/1118178.1118215?casa_token=7LWW0vnmNjw
AAAAA:QnoLWqIQR_eYKc8HxdCK1EsOs3dkqv6mqbGKv8RQMYm2aWhs1e1dPVZ
dRJFCL_et0YjEBhTNLeUqXHg

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Computational thinking in teacher
education. In P. Rich & C. Hodges (Eds.), Emerging research, practice, and policy on
computational thinking (pp. 205–220). Springer, Cham. https://doi.org/10.1007/978-3-
319-52691-1_13

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational
thinking in elementary and secondary teacher education. ACM Transactions on
Computing Education, 14(1), Art. 5. https://doi.org/10.1145/2576872

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking
through Scratch in K-9. Computers & Education, 141, 103607.
https://doi.org/10.1016/j.compedu.2019.103607

Zoom (2021). Zoom. Retrieved 4 October 2021 from https://zoom.us/

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 22/22

https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1016/j.chb.2013.04.030
https://doi.org/10.1016/j.edurev.2017.09.003
https://repository.isls.org/handle/1/3424
https://doi.org/10.1080/00220272.2012.668938
http://dx.doi.org/10.1145/3341221
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://dl.acm.org/doi/fullHtml/10.1145/1118178.1118215?casa_token=7LWW0vnmNjwAAAAA:QnoLWqIQR_eYKc8HxdCK1EsOs3dkqv6mqbGKv8RQMYm2aWhs1e1dPVZdRJFCL_et0YjEBhTNLeUqXHg
https://dl.acm.org/doi/fullHtml/10.1145/1118178.1118215?casa_token=7LWW0vnmNjwAAAAA:QnoLWqIQR_eYKc8HxdCK1EsOs3dkqv6mqbGKv8RQMYm2aWhs1e1dPVZdRJFCL_et0YjEBhTNLeUqXHg
https://dl.acm.org/doi/fullHtml/10.1145/1118178.1118215?casa_token=7LWW0vnmNjwAAAAA:QnoLWqIQR_eYKc8HxdCK1EsOs3dkqv6mqbGKv8RQMYm2aWhs1e1dPVZdRJFCL_et0YjEBhTNLeUqXHg
https://doi.org/10.1007/978-3-319-52691-1_13
https://doi.org/10.1007/978-3-319-52691-1_13
https://doi.org/10.1145/2576872
https://doi.org/10.1016/j.compedu.2019.103607
https://zoom.us/

