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Abstract 
Block-based programming and computational thinking (CT) have undergone a revival 
in K–12 education, and the article addresses the following research question: In what 
ways can block-based programming be integrated into a maths subject, and what are the 
implications for CT? The empirical data presented in this article are derived from a 
design-based research (DBR) project consisting of four interventions each year over a 
duration of two years. The article reflects data from 43 pupils aged 12–16 years who 
participated in the interventions and used MakeCode (a block-based programming 
language) with micro:bit to create solutions for maths tasks assigned by the teachers. 
The pupils met three hours per week for 16 weeks during two semesters each year. Data 
were collected using video recordings of Zoom meetings. A thematic analysis was per-
formed in the first rounds of analysing the data to complete an overview of the entire 
data set, screening for common topics. Subsequently, interaction analysis was used to 
analyse select parts of the data in detail. The main findings in this article are as follows: 
1) Integrating block-based programming into a maths subject enabled active and col-
laborative learning, 2) integrating programming into a maths subject enabled the de-
velopment of CT, and 3) using block-based programming facilitated learning of maths. 
 
Keywords: block-based programming, computational thinking, computer-supported 
collaborative learning, computational thinking in K–12 education 

 
 
Blokkbasert programmering og algoritmisk tenkning i en 
samarbeidslæringskontekst: En case-studie av 
programmering integrert i et matematikkfag 
 

Sammendrag 
Blokkbasert programmering og algoritmisk tenkning har fått økt interesse i skolen. 
Følgende forskningsspørsmål tas opp i artikkelen: På hvilke måter kan blokkbasert pro-
grammering integreres i et matematikkfag, og hva er implikasjonene for algoritmisk 
tenkning? De empiriske dataene som presenteres i denne artikkelen er hentet fra et 
designbasert forskningsprosjekt bestående av fire intervensjoner hvert år over en 
varighet på to år. Denne artikkelen reflekterer data fra 43 elever i alderen 12–16 år som 
deltok i intervensjonene og brukte MakeCode (et blokkbasert programmeringsspråk) 
med micro:bit for å lage løsninger for matematikkoppgaver gitt av lærerne. Elevene 
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møttes tre timer per uke i 16 uker i løpet av to semestre hvert år. Data ble samlet inn ved 
hjelp av videoopptak av Zoom-møter. En tematisk analyse ble utført i de første rundene 
med å analysere dataene for å få en oversikt over hele datasettet. Deretter ble inter-
aksjonsanalyse brukt for å analysere utvalgte deler av dataene i detalj. Hovedfunnene i 
artikkelen er som følger: 1) Integrering av blokkbasert programmering i et matematikk-
fag muliggjorde aktiv samarbeidslæring, 2) integrering av programmering i et matema-
tikkfag muliggjorde utviklingen av algoritmisk tenkning, og 3) bruk av blokkbasert 
programmering la til rette for læring av matematikk. 
 
Nøkkelord: blokkbasert programmering, algoritmisk tenkning, datastøttet 
samarbeidslæring, algoritmisk tenkning i skolen 

 
 
Introduction 
 
Programming and computational thinking (CT) are regarded as fundamental skills 
in the 21st century (Wing, 2006; Weintrop et al., 2016; Boccconi et al., 2016; 
Yadav et al., 2017; Mohaghegh & McCauley, 2016; Zhang & Nouri, 2019). 
Inculcating pupils with skills in CT and programming is important in order to 
prepare them for future work and enable them to reflect on challenges and oppor-
tunities created by the technology we use. Due to our increasingly information-
based and technology-rich society it is important to ensure that students develop 
CT at the K–12 education level. K–12 education refers to pupils in school grades 
prior to college. It is necessary to provide teachers with knowledge about CT and 
how to incorporate it into their teaching (Yadav et al., 2014), making it crucial to 
conduct research that focuses on how to integrate CT and programming into K–
12 education. In the Nordic countries, it has been suggested that CT and pro-
gramming should be part of a more comprehensive 21st century skills approach 
(Bocconi et al., 2016). 21st century skills are defined as encompassing creativity, 
critical thinking, and problem solving, as well as other skills students should 
develop to act as creators of knowledge rather than passive consumers in the 
classroom (Gretter & Yadav, 2016). 

CT was first coined by Papert (1980) as the relationship between programming 
and thinking skills. Building on this, Wing (2006) defined CT as solving prob-
lems, designing systems, and understanding human behaviour, by drawing on the 
concepts fundamental to computer science. However, there is not one agreed-
upon definition of CT. Shute et al. (2017) define CT as the conceptual ingredient 
required to solve problems effectively and efficiently (i.e., algorithmically, with 
or without the assistance of computers) with solutions that are applicable in 
different contexts. In a school context, CT is viewed as extending computer 
science principles to other disciplines to help break down the elements of any 
problem, determine their relationship to each other, and devise algorithms to 
arrive at an automated solution (Kafai & Burke, 2013). What all these definitions 
have in common is that they perceive CT as transcending programming; it also 
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entails problem-solving processes. CT can be regarded as an investigative and 
problem-solving method that utilises computer science concepts, tools, and 
techniques in science, technology, engineering, and mathematics (STEM) (Lee et 
al., 2020). This article adopts the view of CT as encompassing both a program-
ming perspective and a problem-solving perspective. The connection between 
programming and CT is that through programming, pupils develop computational 
thinking. Lye and Koh (2014) underscore that during the process of programming, 
pupils are exposed to CT, which involves the use of computer concepts. 

CT has been included in school curricula in many countries. In recent years, 
the Nordic countries have all introduced CT into their curricula; however, differ-
ent countries have interpreted and implemented CT in different ways (Bocconi et 
al., 2016; Heintz et al., 2016; Zhang & Nouri, 2019). Bocconi et al. (2016) 
emphasise that CT and programming have been advocated by educational stake-
holders as skills that all people should learn, as fundamental as numeracy and 
literacy. Although CT and related concepts (programming, coding, algorithmic 
thinking) have received increasing attention in the educational field, there is a 
dearth of research on the successful integration of CT in compulsory education, 
and there are a plethora of unresolved issues and challenges (Bocconi et al., 2016). 
Programming skills have become important core competencies for 21st century 
skills, particularly in education; as a result, many countries have recognised that 
programming needs to be integrated into school curricula to equip pupils with 
these skills, such as problem-solving and logical thinking (Forsström & Kauf-
mann, 2018). In recent years there has been a new interest in reviving learning 
and teaching programming at all K–12 levels (Kafai & Burke, 2013). The focus 
in this article is on exploring CT as an integrated part of a school subject. In 
autumn 2020, Norway implemented a new curriculum for K–12 education where-
in programming and CT were integrated into selected subjects: maths, natural 
science, music, and arts and crafts. This warrants research into the implications of 
introducing CT and programming into the new curriculum to uncover how it 
works in practice. 

The integration of CT into STEM subjects is relatively new, and CT is 
regarded as having the potential to deepen STEM learning by enabling pupils to 
act as young scientists through engagement in authentic STEM practices (Lee et 
al., 2020). Consequently, there is a need for research on the implications hereof. 
The research question addressed in this article is: 
 

In what ways can block-based programming be integrated into a maths 
subject, and what are the implications for computational thinking? 

 

The focus of this article is K–12 education. A maths subject is the context for the 
study, which explores the processes that emerge during block-based programming 
and the implications for computational thinking. 
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Related literature 
 
This section presents literature relevant to CT in K–12 education, block-based 
programming and CT in K–12 education, and computer-supported collaborative 
learning (CSCL) and CT. 
 
Studies related to CT in K–12 education 
Several researchers have elucidated what CT entails and suggested frameworks 
for how to understand it (Weintrop et al., 2016; Heintz et al., 2016; Ioannidou et 
al., 2011; Brennan & Resnick, 2012). Other studies have reported how CT can be 
facilitated using block-based programming languages (Dwyer et al., 2015; 
Moreno-León et al., 2016), and some studies have focused on the integration of 
CT in STEM subjects (Lye & Koh, 2014; Lee et al., 2020). Scrutinising how CT 
transcends programming and exploring how to redefine it as a thinking process is 
an increasing development (Lodi & Martini, 2021; Lee et al., 2020). Several 
reviews provide overviews of CT in K–12 education (Grover & Pea, 2013; Shute 
et al., 2017; Heintz et al., 2016; Lye & Koh, 2014) and in K–9 education (Nouri 
et al., 2020; Heintz & Mannila, 2018; Flórez et al., 2017). Several studies focus 
on exploring how CT can be integrated in K–12 STEM education (Kong et al., 
2019; Lee et al., 2020), but there is a lack of empirical case studies exploring how 
CT can be integrated into K–12 education and what the implications are. 
 
Studies related to block-based programming and CT in K–12 education 
Block-based programming is a visual programming language that takes the form 
of dragging and dropping programming instructions together as it uses a 
programming-primitive-as-a-puzzle-piece metaphor to provide visual cues to the 
user as to how and where commands may be used (Weintrop, 2019). One of the 
advances of block-based programming is that it reduces pupils’ challenges in 
learning the language syntax when programming (compared to text-based 
programming) and renders programming more accessible to novices (Sengupta et 
al., 2013). Some studies have reported how CT can be facilitated through block-
based programming (Weintrop, 2019; Sengupta et al., 2013). In a study by 
Weintrop et al. (2016), the researchers developed a taxonomy of CT practices for 
maths and science consisting of data practices (collecting, creating, manipulating, 
analysing, and visualising data), modelling and simulation practices, computa-
tional problem-solving practices, and systems thinking practices. Sengupta et al. 
(2013) emphasise that arguments favouring the integration of CT and pro-
gramming into K–12 STEM curricula have been suggested; they present a critical 
review of educational computing and propose a set of guidelines for designing 
learning environments focusing on science topics that foster the development of 
CT. The focus in this article is on block-based programming, since the data are 
drawn from the social interactions and collaborations between pupils when using 
the block-based programming language MakeCode. 
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Studies related to CSCL and CT 
Computer-supported collaborative learning (CSCL) is an interdisciplinary re-
search field which focuses on studying how people together can learn with the 
help of a computer; it emphasises the interplay between learning and technology 
(Stahl et al., 2006). In CSCL, the group is the unit of analysis. The underlying 
principle in CSCL is that collaboration is primarily conceptualised as a process of 
shared meaning construction, and the meaning making processes do not merely 
express mental representations of the individuals but also an interactional achieve-
ment (Stahl et al., 2006). CSCL studies are often divided between focusing on 
physical co-located studies or distributed studies. The focus here is on distributed 
CSCL, as the context for the empirical data derives from a distributed online 
setting. In one empirical study, being in a distributed CSCL context, the term 
“mutual development” was defined as a joint collaboration process wherein mul-
tiple stakeholders with different backgrounds co-created shared artifacts (Ander-
sen & Mørch, 2009). In another study, the focus was on mutual development and 
the co-creation of artifacts at different levels of participation, as well as investi-
gating collaborative knowledge creation processes mediated by online technolo-
gies (Andersen, 2019). Kafai (2016) underlines that CT and programming are 
social creative practices, and they offer a context involving making applications 
for others wherein sharing and collaboration are the premise. This article follows 
along these by framing CT and programming in a collaborative learning context, 
emphasising the group as a unit of analysis. 

There are few research studies that focus on CT, programming, and CSCL. 
One study investigates how students are motivated to learn programming concepts 
in a CSCL setting (Serrano-Cámara et al., 2014); another study investigates how 
collaborative learning through pair programming can improve pupils’ computa-
tional thinking skills (Echeverría et al., 2019). The present article uses CSCL in 
combination with CT and programming to explore and understand how pupils 
interact and collaborate when using block-based programming as an integrated 
part of learning maths when working in small groups. According to Stahl (2007), 
there is a need for empirical analysis of how meaning is constructed in small-
group interactions. He underlines that meaning is created and shared through 
processes of interaction, communication, and coordination. 
 
In summary, this review demonstrates that there is substantial research that 
defines, discusses, and presents frameworks for understanding CT in K–12 edu-
cation. However, there are few empirical studies exploring how CT and program-
ming are integrated into STEM subjects in K–12 education. Moreno-León et al. 
(2016) underscored this when stating that there is a lack of empirical studies that 
investigate how learning to program at an early age affects other school subjects. 
There is a need for research regarding the implications of introducing CT into K–
12 education. This article addresses this gap by contributing with empirical 
research concerning how pupils collaborate in small groups when solving tasks 
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using block-based programming as an integrated component of a maths subject; 
it also examines the implications for CT. 
 
 
Conceptual framework 
 
The conceptual framework consists of two different research perspectives: CT and 
computer-supported collaborative learning (CSCL). The CT perspective is used 
to highlight the programming and CT elements, whereas CSCL is used to bring 
the collaborative components in these settings to the foreground. These perspec-
tives are combined because, when used in combination, they provide a richer data 
analysis. From the CT perspective, Brennan and Resnick’s (2012) CT framework 
is used, comprising: computational concept, computational practice, and concept-
ual perspective. From the CSCL perspective (Stahl, 2007), the concepts 
knowledge sharing, meaning making, and group cognition are presented. The 
connection between these two perspectives is that they represent different 
approaches to exploring the programming processes, and they are useful in 
combination because they complement each other by gaining insights into both 
the CT processes and the collaborative learning processes emerging in the 
programming. This provides a group interaction perspective on the programming 
processes and a group perspective on CT in K–12 education, which is novel. See 
Table 1 for an overview of the conceptual framework. The analytical concepts 
presented in the conceptual framework are used to analyse the empirical data. 
 
Table 1. The conceptual framework of the article 

 

Brennan and Resnick’s framework of categorising CT (2012) divides it into three 
dimensions: a) the concepts designers engage with in programming, i.e., sequen-
ces, loops, parallelism, events, conditionals, operators, and data; b) the practices 
designers develop as they engage with the concepts, i.e., being incremental and 
iterative, testing and debugging, reusing and remixing, abstracting, and modular-
ising; and c) the perspectives designers form about the world around them and 
about themselves, i.e., expressing, connecting, and questioning. This means that 
the computational concepts are concepts the programmers use, the computational 
practices are the problem-solving processes that emerge in the programming 
process, and the computational perspective concerns how the programmers and 

Analytical concepts from CT 
(Brennan & Resnick, 2012) 

Analytical concepts from CSCL 
(Stahl, 2007) 

Computational concepts (sequences, loops, 
parallelism, events, conditionals, operators, and data) 

Knowledge sharing (individual shares 
information with group) 

Computational practices (being incremental and 
iterative, testing and debugging, reusing and remixing, 
abstracting and modularising) 

Meaning making (collaborative 
construction of shared meaning) 

Computational perspective (expressing, connecting, 
questioning) 

Group cognition (a gradually evolving 
result of the group discourse) 
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learners perceive the world and themselves in it, including the technological 
aspect. From the perspective of CSCL, the concepts knowledge sharing, meaning 
making, and group cognition are presented. Knowledge sharing is when individu-
als communicate what they already know to the others and when the participants 
offer alternative views related to the discussion (Stahl, 2007). Meaning making is 
defined as shared meaning construction, in which shared group meaning is 
collaboratively created by the entire group; it is interactively achieved in a dis-
course and may not originate from any particular individual (Stahl, 2007). Pro-
cesses of establishing shared meaning involve a process of group cognition of the 
shared construction of a meaning; this emerges through the participants building 
on each other’s utterances, in which the individual group members have to 
interpret the meaning from their own personal perspectives, display their under-
standing of the meaning, and affirm that meaning as shared (Stahl, 2007). 
 
 
Methods 
 
Research design 
The empirical data in this article originate from an ongoing research project where 
the applied overall research design is design-based research (DBR). DBR is a 
research methodology used in an educational context that seeks to increase the 
impact, transfer, and translation of educational research into improved practice – 
also underlining the need for theory building and the development of design 
principles that guide and inform the practice (Barab & Squire, 2004). In DBR, 
teachers, researchers, and other participants design and create educational inter-
ventions through collaboration. DBR is also often referred to as “educational 
design research” which focuses on the iterative development of solutions to 
practical and complex educational problems in addition to offering the context for 
empirical investigation, which also may produce theoretical knowledge that can 
inform others (McKenney & Reeves, 2018). The research project focuses on 
creating and testing a series of eight learning designs that were used as inter-
ventions in classes consisting of gifted pupils. They focus on learning block-based 
programming as an integrated part of their course subject (maths). In total, four 
iterations each year were conducted over a two-year period. In each semester, two 
interventions are tested; they are evaluated based on feedback, and as such, the 
research design and the interventions are iteratively evolving. This means that the 
learning designs were modified and revised after each intervention as a result of 
feedback from the teachers and pupils. In sum, the interventions (learning designs) 
gradually evolved. The pupils met three hours per week for 16 weeks during two 
semesters each year. This reflects two interventions each semester (two semesters 
per year) which lasted for 8 weeks over a 2 year period. We followed the same 
pupils for one year at a time, which means we have two sets of different pupils in 
the dataset. The data used in this article are from the same year and therefore the 
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same set of pupils. In total, up to 200 gifted pupils between 12 and 16 years old 
participated in the project. They are divided into classes with around 20 
participants in each class. This article reflects data from 43 of these pupils. The 
competence goals which are used as a premise for designing the learning designs 
in the intervention are 3 to 5 years above the pupils’ age. Each class is taught by 
a high school teacher, and there are six participating high school teachers in the 
research project. Each of the interventions is organised to consume around three 
hours per week, with a duration of 8 weeks. The data presented in this article are 
derived from the second intervention, in which the topic of the learning design 
was probability. The interventions were structured as follows: First, the teacher 
introduced the topic for the intervention, and the teacher then divided the class 
into groups consisting of 3 to 4 pupils in different breakout rooms in Zoom1. The 
pupils used MakeCode as a block-based programming language and the subse-
quent micro:bit (a block-based programming language with similar syntax and 
structure as Scratch, see Figure 1) to solve the maths tasks they were assigned. In 
order to facilitate collaboration among the pupils, the teachers encouraged the 
pupils to share their screen in Zoom so that the others in the group could see their 
partial solution. This gave the students a common ground for further discussion 
regarding how to solve the task assigned by the teacher. As a result, the group was 
the unit of analysis. 
 
Figure 1. A screenshot of the micro:bit the pupils use when solving the tasks in assignments 

 
 
Selection of participants 
Gifted pupils were selected as participants in the research project due to their need 
for differentiated learning in school. After receiving nominations from teachers 
and parents, the participants applied for participation in the research project. 
 
Methods for collecting the data 
Data were collected through video recordings of the pupils’ screens using Zoom. 
As a result, a virtual ethnography approach was used, which included participant 
                                                 
1 Due to the pandemic Covid 19 in 2020–2021. Zoom is a video communications app that allows participants to 
set up video conferencing (Zoom, 2021). 
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observation. Virtual ethnography is a method used for analysing social inter-
actions in online contexts, and a technique for collecting data is to engage in the 
social interactions when collecting data (Hine, 2000). Participant observation 
implies that the pupils were sometimes asked to elaborate upon what they were 
doing during their group work. In total, there are 70 hours of screen recordings of 
interaction data between different pupils. All of the participants in the article have 
been anonymised, meaning that their names are fictive. The research project was 
reported to and approved by the National Center for Data services in Norway in 
order to reassure that the research project follows ethical guidelines and data 
protection laws. 
 
Methods for analysing the data 
A combination of thematic analysis (Braun & Clarke, 2006) and interaction 
analysis (Jordan & Henderson, 1995) was applied for analysing the empirical data 
to ensure a richer analysis, from an overview and from a more detailed exami-
nation of the data, respectively. Thematic analysis is defined as a qualitative 
method for systematically identifying and organising patterns of meanings across 
a data set. This enables the researcher to see and make sense of collective or shared 
meaning and experiences (Braun & Clarke, 2006). Examples of the thematic 
codes that emerged when screening the data are as follows: knowledge sharing, 
programming, computational concepts, and collaboration. Interaction analysis is 
defined as a method for the empirical investigation of interactions between human 
beings and the objects in their environments, including speech, non-verbal 
actions, and the use of artifacts (Jordan & Henderson, 1995). Consequently, the 
data were analysed using a two-step approach: 1) Thematic analysis provided an 
overview of the data set when screening the whole data set, looking for thematic 
codes and emerging patterns. 2) Interaction analysis was employed when zooming 
in on specific data and analysing it in detail. 
 
Validity 
A typical validity issue is anecdotilism, meaning that the researcher only presents 
a few well-chosen examples (Silverman, 2005). To overcome the issue of anec-
dotilism, a focus was placed on ensuring that the selected thematic codes were 
representative for at least 3 to 5 data excerpts to underscore that the thematic code 
represents a common issue in the data set and not merely a deviant case or a one-
time issue. 
 
 
Empirical data and analysis 
 
Two data extracts representing different aspects of the social interactions 
emerging when pupils use block-based programming to solve maths tasks are 
presented: 1) programming the micro:bit to calculate probability, and 2) discus-
sing how to fix a code that is not working via collaborative debugging. 
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Extract 1: Programming the micro:bit to calculate probability 
Contextualising the extract 
In the extract below, the pupils are assigned the task to program the micro:bit to 
create a dice and calculate the probability of getting the number “6” on the dice 
after rolling the dice a given number of times (for example, 10,000 dice rolls). 
The extract is derived from an intervention focusing on maths and consists of 
three pupils who collaborate on creating the code. The extract stems from the start 
of the group session, immediately after they have started discussing how to create 
the code. 
 
Table 2. Data extract 1 (translated into English by the author) 

Turn Actor Utterance Analytical concept 
1 Lucas Now I will show you and try to explain what I did. When 

“Button A” is pressed we create a variable which we define 
as “denominator” – agree? Yes, then, we declare the 
variable “denominator” to 0 because then we have a 
starting point for that variable. Next, we create a loop which 
is repeated 10,000 times, and in connection to this we 
create another variable which we define as “the dice roll” 
and then we also declare it to 0. Next, we use a maths 
operator block which chooses a random number between 
1–6. Did you also do it like this? 

Knowledge sharing, 
computational 
concepts  
(loop and variable) 

2 James Yes, I guess we have the same code  
3 Noah What result did you get as the probability? Meaning-making 

(turns 3–10) 
4 James Wait a minute  
5 Lucas 0.16 or 0.17  
6 Noah If the roll of the dice becomes 6, then I get the probability to 

be 1.05 percent. 
 

7 Lucas Then it just is very unlikely (that the dice will roll and 
becomes 6). How many times did you program it to be 
repeated (that the dice would roll)? 

Computational 
perspective, com-
putational concept 

8 Noah 1,500 times  
9 Lucas Oh yes, ok.  
10 Lucas Then, we go to the logics blocks and we take this block (if-

else block) if the dice is rolled 1,500 times, then we increase 
the variable “denominator” with 1, like this. Have you also 
done it like this? And then “show number” (block) divided by 
the number of repetitions, which is 10,000, like this. Is this 
how you have done it? 

Knowledge sharing, 
Computational 
concepts 
(conditionals, 
operators) 

11 James Yes, just that I have not programmed the last part yet. I have 
not calculated the probability in percent yet since I thought I 
did not know how to do it. Now, I will try to program the 
percent calculations as well, so maybe it will turn out to be 
correct. 

Group cognition  

12 Lucas Shall we see, here we get (running the code in micro:bit) 
0.17 – Yes! 

Knowledge sharing, 
see Figures 2 and 3 
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Analysing the extract 
The extract starts with Lucas in turn 1, explaining to the group how he pro-
grammed the code that calculates the probability of rolling the number “6” on the 
dice after 10,000 repetitions. This utterance has similarities to knowledge sharing 
(Stahl, 2007). Knowledge sharing is defined by Stahl (2007) as when individuals 
communicate what they already know to the others. In turn 1, we can also see 
instances of what Brennan and Resnick (2012) refer to as computational concepts. 
Examples of the computational concepts are “variable” and “loop.” In turn 2, 
James responds that he has programmed the same code as Lucas in turn 1. How-
ever, Noah interrupts in turn 3 and wants to know the answer to the task (what is 
the probability?). This question triggers a discussion with similarities to a 
meaning-making process, wherein the different utterances by the pupils build on 
each other and forge a shared meaning construction (Stahl, 2007). In turns 3 
through 10, the pupils discuss and build on each other’s utterances, and a common 
understanding of how to program the code emerges. In processes of meaning-
making, there is an uptake of the other pupils’ utterances by posting a subsequent 
one, and through this continuation, the interactions and collaboration processes 
advance forward (Stahl, 2007). As a result, in turn 5, Lucas states his result when 
he runs the code and tests out how the micro:bit can be used as a calculator. Lucas 
gets a probability of 0.16 or 0.17, which is correct. However, in turn 6, Noah gets 
another result that is too low. In turn 10, there are several instances of compu-
tational concepts, such as conditionals (when talking about the “if-else block”) 
and operators, and the pupils discuss the computational concepts. Conditionality 
is a key computational concept defined as the ability to make decisions based on 
certain conditions, which supports the expression of multiple outcomes (Brennan 
& Resnick, 2012). Additionally, when saying “show number” (block) divided by 
the number of repetitions, 10 is an example of using the operator as a compu-
tational concept. “Operator” is also a computational concept defined as providing 
support for mathematical, logical, and string expressions, enabling the program-
mer to perform numeric and string manipulations (Brennan & Resnick, 2012). In 
turn 11, James states that he has learned a new method of programming the 
percent calculations. Together, the students have discussed and formed a new 
solution, which they have created in collaboration during the social interaction; 
this is an indication of group cognition. Group cognition is defined by Stahl 
(2007) as learning that is constituted of the interactions between the participants. 
Finally, in turn 12, Lucas happily exclaims “yes!”, stating that he has created a 
code that is working and shares knowledge of this. 

Figure 2 is a screenshot of the program code they created (as referred to in turn 
12). It depicts how the micro:bit can calculate the probability of getting the 
number “6” on the dice roll when rolling the dice 10,000 times. Figure 3 is a 
screenshot of the micro:bit when it runs the code in Figure 2. Figure 3 illustrates 
how the number “0.17” is visualised and printed on the micro:bit screen when 
running the code. 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 4

Renate Andersen 11/22



Figure 2. Screenshot of the programmed code in extract 1 (turn 12) 

 
 
Figure 3. Screenshot of the micro:bit and the result of running the code in Figure 2 

 
 
Extract 2: Discussing how to fix a code that is not working – collaborative 
debugging 
Contextualising the extract 
This extract stems from the same discussion as extract 1 above and presents the 
final part of the discussion. The focus is on three pupils who collaborate on how 
to help James find a solution for how to fix his code, which is not working. 
 
Table 3. Data extract 2 (translated into English by the author) 

Turn Actor Utterance Analytical concept 
1 James Oh! It is not working Lucas!  
2 Lucas What?! Did the code turn out to be the same as this? 

(pointing to his screen) 
 

3 Noah Yes, I have the same (code) as that  
4 Lucas Is it working?  
5 Noah Yes, it is working.  
6 James I must have overlooked a small detail. I will set all my 

variables to the exact same (parameters) as you have. 
Computational concept 
(parameter, variable), 
computational practice 
(debugging and testing) 

7 Lucas Yes, but do not set so high numbers here then 
(because if the number of repetitions is high it takes 
longer time to test the code) – set it to only 10,000 
(repetitions in the loop) (instead of 100,000) 

Computational concept 
(repetition, parameter, 
loop) 
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8 James Yes, that is what I am trying to do. Okey, then I am 
changing the variable “denominator” 

 

9 Lucas Have you tried to change the number down here 
(pointing at the maths block in MakeCode) to divide – 
so that it divides here? 

Computational concept 
(testing and debugging), 
knowledge sharing 

10 James Eh, yes. (clicking on the computer) now I have! Hehe 
but it still does not work now either 

 

11 Noah James, have you made sure to set the parameter in 
your if-loop so that it says “if-dice roll-then” and not 
“if denominator-then”? 

Meaning-making (turns 
11–23), computational 
concept (loop, 
conditionals) 

12 James Yes. I must have made some small mistake  
13 Lucas You must not change the variable set “denominator”, 

you must not write "change dice roll" you must write 
"set dice roll to" on where you have the purple 
(block), no, not down there, a little further up, you 
need to change it 

Meaning making, 
computational concept 
(variable) 

14 James Ahh! (frustrated)  
15 Lucas Yes, is it (the code) working now? 0.003… I do not 

know if it is completely correct ... 
Meaning-making 

16 James Have I done everything right now?  
17 Lucas Now it actually looks pretty good, does it not?  
18 James Yeah ... 0.0 ... no! Now it showed something else 

(visualised on the micro:bit screen) 
 

19 Lucas 0.00 but that is a completely wrong number!  
20 Lucas Do you have too many zeros? Shall we see—one-two-

three 
 

21 James Do I have too many zeros?  
22 Lucas No, it is the right number of zeros  
23 James Can you see what is wrong?  
24 Noah James, I told you it is because you have… Group cognition  
25 Lucas =he has the right variables in the right places (In the 

code) – eh no! 
Group cognition, 
computational concept 
(variable) 

26 Noah =no! “denominator”! so it should not be the 
denominator – change it (the variable) to “dice roll” 
where it says “denominator” – it is the second highest 
variable – the purple (block) 

Group cognition, 
computational concept 
(variable) 

27 James =the variable second from the top (referring to a drop-
down button) – the purple (block) 

 

28 Noah Yes! There it should say “roll the dice”  
29 Lucas Oh, that's what I messed with earlier when I switched 

(the variable block) 
 

30 James Try now! Yey! (clapping)  
31 Lucas Yey!  
32 Noah Yey!  

 
Analysing the extract 
In turn 1, James exclaims that his code is not working, and Lucas (in turn 2) asks 
James if he has created the same code as him. Noah replies, in turn 3, that he has 
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a similar code as Lucas. Next, Lucas asks Noah (in turn 4) if his code is working 
and he responds it does (turn 5). In turn 6, James underlines that his code is still 
not working and that he will attempt to set all parameters as the same as the other 
codes in the group. Also in turn 6, James uses the computational concepts “para-
meter” and “variable” when suggesting a strategy for how to debug and figure out 
how to make the code to work. When stating that he will set all his variables to 
the exact same as his peers, he suggests a debugging strategy as part of a 
computational practice (Brennan & Resnick, 2012). Computational practice is 
defined as the processes wherein one is moving beyond what they are learning to 
how they are learning. In these processes, several practices were identified, such 
as being incremental and iterative, testing and debugging, reusing and remixing, 
and abstracting and modularising (Brennan & Resnick, 2012). 

In turn 7, Lucas follows up James’ debugging approach (setting the same 
parameters as the others in the group) but emphasises that he should not set 
excessively high parameters on the repetitions of the loop since it takes a longer 
time to the test the code the higher the parameters are set. This is an example of a 
debugging strategy which is in line with Brennan & Resnick (2012), underlining 
that when programming code, it rarely works just as imagined; it is therefore 
necessary to develop strategies for dealing with and anticipating problems. 
Testing and debugging are components of computational practices when 
programming code. In turn 8, James confirms that he will follow the advice from 
his peers. In turn 9, Lucas suggests changing the variable, which is an example of 
how the pupils use computational concepts (Brennan & Resnick, 2012) as part of 
their discussion and social interactions. Turn 9 also contains a component of 
knowledge sharing (Stahl, 2007) when Lucas provides information about 
changing the variable. Nevertheless, the code is still not working. This triggers a 
meaning-making process in turns 11 through 23 when Lucas and Noah suggest 
different ideas for how to fix the code and make it work. The pupils build on each 
other’s statements, such as in turn 11: “James, have you made sure to set the 
parameter in your if-loop …” Lucas responds in turn 13, saying “you must not 
change the variable”. Meaning-making is a social and collaborative activity in 
which there emerges a collaborative construction of new problem-solving knowl-
edge wherein individuals negotiate and share meanings relevant to the problem-
solving task at hand (Stahl, 2007, referring to Roschelle & Teasly, 1995). In turns 
11 through 23, several computational concepts are mentioned by the pupils: In 
turn 11, Noah talks about loops and if-then conditionals. Lucas, in turn 12, also 
discusses how to program the variable and strives to understand how the 
conditionals should be defined. In turns 11 through 14, different suggestions for 
how to fix the code are proposed which contain similarities to a meaning-making 
process (Stahl, 2007). The pupils are collaborating in creating solutions for how 
James can fix the code and make it work again, which can be interpreted as an 
example of collaborative debugging. Collaborative debugging can be identified 
as a process wherein different pupils interact and collaborate in trying to fix a 
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program code that is not working. In turn 15, Lucas says, “the code is working 
now,” and he continues to read aloud the result of the code (“0.003”) and carefully 
says that the code still does not work. From this, one can infer that part of the 
collaborative debugging process is to read each line of the code aloud, to prompt 
discussion of the code, invite new suggestions, and build on the existing suggested 
code ideas. The pupils adapt, refine, run, and test the code to assess whether it 
works (as in turns 15 and 17) and continue the process in iterations. In turn 24, 
Noah proposes an idea for how to fix the code but is interrupted by Lucas. In turn 
25, Lucas goes through the code once more and suggests another idea for how to 
fix the code, but in turn 26, Noah strongly disagrees and builds on Lucas’ 
utterance by stating that he has found the solution for how to fix the code. In 
response, James eagerly exclaims that he has found the solution and elaborates on 
it, building on previous utterances by Noah. These utterances have similarities 
with a group cognition process (Stahl, 2007) in that they are collaborating on 
creating a common solution to the problem by presenting different ideas for how 
to fix the code; they build on each other’s ideas and ultimately reach a common 
ground and solution. Group cognition, as defined by Stahl (2007), is a gradually 
evolving result of group discourse. Finally, in turns 30 through 32, they exclaim 
“yey,” which is a confirmation that the code is working. 

Based on analysing the empirical data in this extract, collaborative debugging 
is defined as a strategy that involves a gradual development of an emerging shared 
understanding of how to fix the code, in which the participants collaborate in 
creating by building on each other’s statements. Collaborative debugging is an 
emerging social phenomenon that evolves from using block-based programming 
as a method for learning a subject (maths) in a collaborative context. Extract 1 
describes how the pupils collaborate on programming the micro:bit to calculate 
probability. In extract 2, it becomes clear that James has not managed to program 
the code (which they agreed upon in extract 1), and the other pupils help him find 
a strategy to make the code work. 
 
 
Discussion: Implications of integrating block-based programming into 
the maths subject 
 
Integrating block-based programming into the maths subject enabled active 
and collaborative learning 
In extracts 1 and 2, I have shown instances of a gradually evolving meaning-
making process (Stahl, 2007) emerging as a result of turn-taking and social inter-
actions between the pupils when discussing how to use block-based programming 
to solve the maths task. Stahl (2007) states that in these processes, the meaning 
depends upon indexical references to the shared situation, elliptical references to 
previous utterances, and projective preferences for future utterances. This article 
expands the view of CT to also account for collaborative learning. In extracts 1 
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and 2, several examples of social interactions which entailed knowledge-sharing, 
meaning-making, and group cognition were revealed. In processes of meaning-
making, collaboration is conceptualised as a shared meaning construction, in 
which meaning-making processes are an interactional achievement (Stahl, 2007). 

Integrating block-based programming into the maths subject proved to be an 
engaging means to learn maths, and it sparked active discussions around the maths 
concepts that were the subject of the learning process. For example, in extract 1, 
the pupils eagerly discussed the nuances regarding the implications of a high or 
low probability and how this could be transferred to the block-based programming 
code they were creating (Extract 1, turn 7). Thus, one implication for CT when 
integrating block-based programming in the maths subject is that it triggers 
discussion, social interaction, and active learning connected to the topic being 
learned. Combining aspects from both CT and collaborative learning in the con-
ceptual framework provided a richer data analysis and enabled us to identify 
collaborative debugging as a computational practice. Collaborative debugging is 
identified in extract 2 as when pupils collaborate through a trial-and-error strategy 
for fixing each other’s codes. 

Collaborative debugging emerges from using block-based programming as a 
method for learning a subject in a collaborative context. It follows the same line 
of thought as Kafai (2016), who seeks to reframe computational thinking as com-
putational participation. This implies viewing CT as social and creative practices 
emerging when sharing and collaborating with others. As a result, a contribution 
of this article is defining collaborative debugging as a social and collaborative 
process that arises from CT and computational practices when learning block-
based programming as an integrated part of a subject. This aligns with Ludvigsen 
and Steier (2019), who asserted that joint attention, or meaning-making, is neces-
sary when solving complex tasks, and that joint attention emerges when partici-
pants are involved in solving problems together via coupling between represent-
ational artifacts, practices, and the social systems in which humans participate. 
 
Integrating programming into a maths subject enabled the development of 
CT 
From a CT perspective, it is evident that computational concepts such as “loops” 
and “variables” are significant elements of the dialogue. The computational 
concepts the pupils engage with are common concepts in several programming 
languages (Brennan & Resnick, 2012). When pupils are solving maths tasks using 
block-based programming, the social interactions and collaborations contain 
central computational concepts. Brennan and Resnick (2012) are interested in how 
CT can be interpreted as materialising learning and development that takes place 
with Scratch (a block-based programming language). This article follows along 
the same lines when exploring how micro:bit is used as an integrated part when 
solving maths tasks. This article presents a context and set of opportunities for 
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enabling conversations about CT. This indicates that using block-based program-
ming as a method for learning a subject-specific topic has the potential to facilitate 
active collaborations and social interactions empowering pupils to develop 
aspects of CT. One implication of this integrated approach to block-based pro-
gramming is that it triggers CT processes. This is consistent with Shute et al. 
(2017), who posited that CT skills appear to be improved via computational tools, 
such as Scratch. A contribution from this article is expanding the perspective of 
Brennan and Resnick (2012) by taking the collaborative learning aspects into 
consideration when exploring CT. In extracts 1 and 2, there is an intertwined use 
of both CT and collaborative learning aspects. 
 
Block-based programming as a method for learning maths 
This article is an empirical study serving as an example of how block-based 
programming can be used as a method for learning a specific subject, in this case 
maths. In extracts 1 and 2, the students are programming the micro:bit to calculate 
probability. In these social interactions, the discussion is dynamically switching 
between discussing subject-specific skills, such as maths, and the more generic 
skills (such as CT and collaborative learning). This supports previous work where 
there is a mutual dependency between the subject specific and the more generic 
skills when using Minecraft as a digital learning resource in social science (Ander-
sen et al., 2021). When block-based programming is used as a method for solving 
maths tasks in extracts 1 and 2, the pupils use computational concepts as part of 
their collaborative learning processes. This has similarities to the study by Lee et 
al. (2020) which contended that pupils who learn to develop computational solu-
tions and to employ computational tools and methods will advance their under-
standing of subject-area content and CT skills. However, the present article differs 
from the study by Weintrop et al. (2016) because it is an empirical study exploring 
how CT is integrated into a STEM subject, whereas Weintrop et al. delineate a 
taxonomy for understanding CT in practice for maths and science (Weintrop et 
al., 2016). The present article also differs from Sengupta et al. (2013) because it 
is an empirical study as opposed to a review. This article provides an empirical 
study of block-based programming and CT in K–12. Barr and Stephenson (2011) 
clearly state that pupils must begin to work with algorithmic problem-solving and 
computational methods in K–12 education to manage their work lives and to live 
in a world heavily influenced by technology. 
 
 
Conclusion and directions for further research 
 
The research question addressed in this article is as follows: “In what ways can 
block-based programming be integrated into a maths subject, and what are the 
implications for computational thinking?” This has been addressed and discussed 
in previous sections. In summary, the main findings of this article are as follows: 
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1) Integrating block-based programming in a maths subject enabled active and 
collaborative learning. 

2) Integrating programming in a maths subject enabled the development of 
CT. 

3) Using block-based programming facilitated learning of maths. 
 

This article has discussed the implications of introducing CT into K–12 education. 
The analysis indicates that integrating block-based programming into a STEM 
subject proved to be useful because it afforded the development of CT for pupils. 
The findings in this article have parallels to those of Weintrop et al. (2016) as they 
focused on block-based programming and how it can enable the development of 
CT skills. However, this article extends the work of Weintrop et al. (2016) 
because it is an empirical case study exploring the processes emerging between 
the pupils when using block-based programming in a maths class. In addition, the 
present article adds to current research on CT and block-based programming by 
extending the work of Sengupta et al. (2013), who presented a theoretical investi-
gation of key issues that need to be considered for integrating CT into K–12 
science classes. 

One contribution from this article is elucidating how the different aspects of 
CT (computational concepts, computational practices, and computational per-
spectives) emerge and are addressed in discussions when collaborating on how to 
solve maths tasks using programming solutions in a block-based programming 
language. This follows the same strand of thought as Lye and Koh (2014), who 
emphasised that CT is more than programming, as it also encompasses problem-
solving processes in which programming helps foster CT. However, this article 
extends this approach by presenting an empirical case study of the implications of 
integrating CT in a maths subject when using block-based programming as a 
method for learning maths. When discussing how to program the code, the pupils 
used computational concepts as part of their dialogue, which may trigger further 
development of CT. Reflections connected to computational perspectives were 
not prominently in the foreground of the data, but collaborative debugging was 
identified as a computational practice that evolved during the discussions. As a 
result, this article contains parallels to the notion of computational participation, 
because it regards collaborative learning as part of the CT process. Therefore, this 
article brings new knowledge to the field of block-based programming and CT in 
K–12 education. Kafai and Burke (2013) state that there has been a transition from 
a predominantly individualistic view of technology to one that incorporates a 
greater focus on sociological and cultural dimensions when learning program-
ming and reconceptualising computational thinking as computational participa-
tion. However, this article extends Kafai and Burke’s (2013) research by ex-
tending the current research in CT with an empirical case study exploring how CT 
is integrated into a subject in a collaborative setting and what the implications are. 
DiSessa (2018) emphasises that computers might fundamentally change learning, 
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with an emphasis on maths (and more generally STEM), and underscores that 
computation is viewed as a new form of literacy. Facilitating pupils to participate 
in collaborative learning processes by using technology is one of the essential 21st 
century skills that pupils are expected to have in the future (Voogt & Roblin, 
2012). One novelty of this article is identifying how pupils develop CT skills 
while using block-based programming as a method for learning a subject in 
school, in a collaborative learning context. The findings in this article have impli-
cations for how teachers can design future learning, including how to integrate 
block-based programming in schools. 

More research that explores the perspective of how block-based programming 
can facilitate and trigger collaborative discussions which help develop CT is 
needed. An area for further work could be to explore other subjects other than 
maths and to determine the implications for CT. It would be interesting to explore 
how block-based programming can be integrated into the social sciences and 
explore the implications for computational thinking. 
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