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a b s t r a c t 

Pre-dehumidification time ( 𝜏pre ) and pre-dehumidification energy consumption ( E pre ) play important roles in 

preventing the condensation of moisture on the floors of rooms that use a radiant floor cooling (RFC) system. 

However, there are few theoretical or experimental studies that focus on these two important quantities. In 

this study, an artificial neural network (ANN) was used to predict condensation risk for the integration of RFC 

systems with mixed ventilation (MV), stratum ventilation (SV), and displacement ventilation (DV) systems. A 

genetic algorithm-back-propagation (GA-BP) neural network model was established to predict 𝜏pre and E pre . Both 

training data and validation data were obtained from tests in a computational fluid dynamics (CFD) simulation. 

The results show that the established GA-BP model can predict 𝜏pre and E pre well. The coefficient of determination 

( R 2 ) of 𝜏pre and of E pre were, respectively, 0.973 and 0.956. For an RFC system integrated with an MV, SV, or 

DV system, the lowest values of 𝜏pre and E pre were with the DV system, 23.1 s and 0.237 kWh, respectively, for a 

67.5 m 

3 room. Therefore, the best pre-dehumidification effect was with integration of the DV and RFC systems. 

This study showed that an ANN-based method can be used for predictive control for condensation prevention in 

RFC systems. It also provides a novel and effective method by which to assess the pre-dehumidification control 

of radiant floor surfaces. 
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. Introduction 

Global warming increasingly affects people’s health and quality of

ife [ 1 , 2 ]. Among the countries of the world, China has been the largest

arbon emitter and energy consumer since 2011 [ 3 , 4 ]. In general, build-

ng energy is used mainly for lighting, electrical devices, and heating,

entilating, and air conditioning (HVAC) systems, of which about 50%

re traditional HVAC systems [5] . People are advocating low-carbon

ifestyle while pursuing a higher quality of life as the concept of energy

aving and emission reduction has become popular [ 6 , 7 ]. The appli-

ation of energy-saving technology in HVAC systems is one important

eans by which to slow the upward trend of energy consumption [ 8 , 9 ].

Radiant-cooling air conditioning systems make use of enclosing

urfaces as cooling sources to exchange heat with humans by way of
Abbreviation: ANN, artificial neural network; BP, back propagation; CFD, compu

entilation; DPT, dew point temperature; DO, discrete ordinate; GA, genetic algorithm

ir conditioning; MV, mixed ventilation; PRESTO!, pressure staggering option; RFC, 

 

2 , coefficient of determination; RMSE, root mean square error; SIMPLE, pressure-li

rogram. 
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adiation and convection [10–12] . A radiant cooling system can main-

ain the same human thermal comfort as a conventional convective air

onditioning system with an indoor temperature 1 to 2 K higher than

or a conventional system [ 13 , 14 ]. Also, radiant cooling systems can

e characterized as having uniform indoor-temperature distribution,

deal thermal comfort, quiet operation, and energy saving. [ 15 , 16 ].

ccordingly, radiant cooling systems are gaining favor and have also

ecome the focus of study by researchers in the HVAC field [ 17 , 18 ].

t the same time, however, there are some disadvantages such as high

nitial cost, inability to dehumidify the air, the possibility of water

apor condensation, and a relatively long start-up time [ 19 , 20 ]. 

The biggest challenge in using radiant cooling is the risk of moisture

ondensation on the surface of chilled radiant plates (floors, ceiling or

alls) [ 21 , 22 ]. Condensation occurs most likely in two situations: an
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Nomenclature 

E chiller energy consumption of the chiller (kWh) 

E fan energy consumption of the fan (kWh) 

E pre pre-dehumidification energy consumption (kWh) 

H as air supply humidity ratio (g/kg) 

Q cooling load of conditioning the outdoor fresh air to the 

air supply state (kWh) 

T as air supply temperature ( °C) 

T floor floor temperature ( °C) 

T ini initial indoor air temperature ( °C) 

V as air supply flow rate (m 

3 /s) 

V m 

different ventilation mode 

Greek letters 

𝛽 thermal expansion factor (1/K) 

𝜀 turbulent dissipation rate (m 

2 /s 3 ) 

𝜇 dynamic viscosity (N·s/m 

2 ) 

𝜌 air density (kg/m 

3 ) 

𝜏pre pre-dehumidification time (h) 

𝜂 efficiency 

𝜂fan fan efficiency 

Subscripts 

as air supply 

chiller chiller device 

floor radiant floor 

fan fan device 

ini initial indoor air 

m mode 

out outdoor air 

pre pre-dehumidification 

ncrease in indoor air dew point temperature (DPT) due to air infiltra-

ion from open windows and doors or significant internal moisture gain

rom the occupants [23] . When such a situation prevails, adjusting the

emperature of the chilled water or cutting off the chilled water supply

an prevent condensation [24] . In addition, condensation occurs at the

tart-up moment of a radiant cooling system, usually in the morning,

ecause the indoor air moisture level is higher after a night’s accumula-

ion while the temperature of chilled water entering the radiant panels

s low. Supplying fresh air to bear the indoor latent load and partial cool-

ng load is a good choice for solving the problem of condensation [25] .

oreover, it plays an important role in improving energy efficiency and

ndoor thermal comfort [26] . 

Most non-residential buildings have regular occupancy hours, which

re called occupied times. After these hours or on weekends, the spaces

n these building are not used; these are unoccupied times [27] . An ef-

ective approach is to operate ventilation systems during the unoccu-

ied times before operating radiant cooling systems during the occupied

imes. 

Most recent studies on the prevention of condensation in these

wo situations have focused on radiant ceiling cooling (RCC) [28–30] ,

hile radiant floor cooling (RFC) has received more limited atten-

ion, especially condensation occurs at the start-up moment. Lim et al.

31] conducted numerical simulations and experimental tests to study

ontrol methods for RFC air-conditioning systems in Korean residen-

ial buildings. Their results showed that for room temperature con-

rol, indoor- and outdoor-temperature-feedback-based water temper-

ture control was superior to water flow rate control and could ef-

ectively control condensation. Ren et al. [32] used a measurement

ethod to study the operational control of RFC with displacement ven-

ilation (DV) systems. A recommendation was to implement a 1–1.5 h

tart of the DV system for dehumidification before the occupied time,

hen condensation on the radiant surface can be effectively prevented.
2 
ased on the climate characteristics of Hong Kong, Zhang and Niu

33] suggested that turning on a ventilation system one hour before

tarting a radiant cooling system can effectively prevent radiant panel

ondensation. 

When comparing ventilation strategies [34] , a DV system is re-

arded as one of the most interesting solutions, because it can pro-

ide a high level of air quality at the breathing level [ 35 , 36 ]. Conse-

uently, there have been many studies of the combination of a DV sys-

em and an RFC system [ 32 , 35 ]. In contrast, the applications of mixed

entilation (MV) and stratum ventilation (SV) systems have been in-

estigated only in limited studies. Liu et al. [37] evaluated the ther-

al comfort performance of RFC systems when combined with differ-

nt ventilation systems. The conclusion was that MV and SV systems

ave small vertical air temperature gradients and better thermal com-

ort. Li et al. [38] found that an SV system can effectively control air

ollutants and provide better thermal performance, thermal comfort,

nd indoor air quality. Most of the published studies are focused on air

uality and indoor thermal comfort [ 39 , 40 ]; there are relatively few

tudies on the integration of RFC with different ventilation systems for

re-dehumidification. 

The start time of a ventilation system before the room is occu-

ied —that is, the pre-dehumidification time ( 𝜏pre ) —is critical. It influ-

nces both pre-dehumidification energy consumption ( E pre ) and the pre-

ention of condensation. The longer is 𝜏pre , the better the effect of con-

ensation prevention. However, most energy is consumed in handling

nd delivering the outdoor air. In practical application, it is quite hard

o determine the optimal building design and HVAC system operation in

elation to 𝜏pre and E pre due to the large number of variables that need

o be considered [41] . 

Artificial neural networks (ANNs) are widely accepted for over-

oming the limitations of physical modeling of complicated systems

nd processes [42] . They have been used by many researchers for

redictive control of building systems. Ruano et al. [43] discussed

he design of indoor air temperature prediction using an ANN model.

en-nakhi et al. [ 44 , 45 ] used ANN to optimize the thermal behav-

or of air conditioning in office buildings and public buildings. The

nd time of thermostat failure and the cooling load of buildings were

redicted for saving energy. Yang et al. [ 27 , 46 ] used ANN to pre-

ict the time of indoor air temperature drop and to realize the start

nd stop control of indoor heating system. The above results show

hat a predictive control method using ANN is effective and has high

ccuracy. 

At present, ANN techniques have been applied by a number of re-

earchers for modeling and predicting radiant cooling-system ventila-

ion and dehumidification. Ge et al. [25] used ANN to predict the risk

f condensation on cooling ceilings and to predict the optimum 𝜏pre .

hey used two ANN models to predict the temperature of the cooling

eiling and indoor air DPT when the system is started. A third model

as also used to predict the optimum 𝜏pre for a condensation-prevention

ystem. The results showed that for buildings in Hong Kong, 30 min of

re-dehumidification time is sufficient. Keblawi et al. [47] studied a

odel-based RCC and DV online monitoring system, established a dy-

amic multi-variable cost function, and used a genetic algorithm (GA)

o solve the problem. Their results showed that online optimization con-

rol produced good results and could improve the energy efficiency of

CC and DV systems. 

Since the training of a neural network requires a large amount of

ata, most recent studies have focused on the application of a transient

ystem simulation program (TRNSYS) to obtain the needed amount of

ata [ 25 , 48 ]. In recent decades, the CFD method has been demonstrated

o be a highly efficient tool in the design of indoor environments and

lanned energy consumption [49] . Because air distribution in a room

irectly affects the ventilation and air conditioning, the use of TRNSYS

annot yield detailed distribution of the air in a space. Compared with

xperimental studies, CFD is characterized by lower costs, and the de-

ailed indoor air distribution can be more accurately predicted than with
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Fig. 1. Schematic of RFC integrated with a DV, SV, or MV system and ANN prediction model for dehumidifying an indoor thermal environment. 
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RNSYS. This study therefore used a CFD simulation to obtain some nu-

erical results, followed by the neural network method for training and

rediction. 

As an advanced neural network model in computer processing, pat-

ern recognition, and data analysis with good corrections, the back prop-

gation (BP) neural network follows a multi-layer feed-forward neural

etwork with error, which has been widely used to simulate numerical

ata analysis and to predict pattern recognition and intelligent control

50] . Although the BP neural network has high accuracy, it still has some

efects [51] . For example, when the initial value is not appropriate, it

as some errors, and the topological structure is not comprehensive. Be-

ause of these limitations, this study used GA to improve the BP neural

etwork and achieve higher accuracy. 

Aiming at the problem of pre-dehumidification, the RFC environ-

ent integrated with different ventilation systems is established. Fig. 1

hows a schematic of RFC integrated with a DV, SV, or MV system and

NN predicted model for dehumidification control of an indoor ther-

al environment. The main principle is to transmit the temperature,

umidity, and flow rate sensor data to the ANN prediction model to

btain 𝜏pre , so that management can know how long to ventilate be-

ore turning on the RFC system. After the RFC system is turned on, the

ifference between the DPT and the floor temperature can be moni-

ored to determine whether ventilation parameters need to be changed

o avoid condensation on the floor surface. However, the key to control

s whether an ANN model can provide accurate prediction. Therefore,

he goal of this study is to establish a good ANN prediction model for

uture pre-dehumidification control. The ANSYS Fluent 16.2 software

as used to simulate the thermal and humidity environments of an of-

ce located in Jinan, China, in the summer. 𝜏pre and E pre were set as

he predicted target parameters. Different modes of ventilation ( V m 

),

ir-supply temperature ( T as ), air-supply humidity ratio ( H as ), air-supply

ow rate ( V as ), and floor temperature ( T floor ) were used as design vari-

bles. Finally, the influence of different design parameters on 𝜏pre and

 pre were analyzed based on CFD simulation and the algorithm-back-
3 
ropagation (GA-BP) prediction model for predicting 𝜏pre and E pre was

btained. 

. Research methodology 

.1. Description of the geometric model 

A typical office room was chosen as the study object of the simulation

nalysis; its size was 6.0 m × 4.5 m × 2.5 m. The heat sources consisted of

wo office workers, each providing a heat flux of 147 W; two computers,

ach providing a heat flux of 370 W; and a 40-W lamp located near the

eiling. The air supply opening heights of DV, SV, and MV systems were

.1, 1.15, and 2.2 m, respectively. The outlet was close to the ceiling.

he size of the inlet was 0.2 m × 0.8 m and of the outlet 0.2 m × 0.25 m.

ig. 2 shows an isometric view of the simulation model. The detailed

onfiguration of this model is provided in Table 1 . 

.2. Numerical model and schemes 

This study first conducted the simulation using commercial CFD soft-

are, namely ANSYS Fluent 16.3. Different ventilation systems com-

ined with the RFC system were applied using the Boussinesq approx-

mation due to the effect of air density differences. The turbulent flow

as assumed and an incompressible gas composed of dry air and water

apor was chosen. Previous studies [ 52 , 53 ] revealed that the renormal-

zed group RNG k - 𝜀 turbulence model produces an accurate prediction of

ndoor air flow and temperature. For the pressure-velocity coupling, the

emi-implicit method for pressure-linked equations (SIMPLE) algorithm

as selected. Pressure staggering option (PRESTO!) discretization was

pecified for the pressure solution. The second-order upwind scheme

as applied to momentum, energy, turbulent kinetic energy, and turbu-

ent dissipation rate. The details of the numerical model and simulation

etup are summarized in Table 2 . 
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Fig. 2. Isometric view of the CFD simulation. (DV: displacement ventilation; 

SV: stratum ventilation; MV: mixed ventilation. 1-computer; 2-human model; 

3-lamp; 4-bookcase; 5-air outlet; 6-window.). 

Table 1 

Configuration of the simulation model. 

Component Description Number 

DV Air inlet size 0.8 m × 0.2 m, air supply 

opening height 0.1 m 

2 

Air outlet size 0.25 m × 0.2 m 1 

SV Air inlet size 0.8 m × 0.2 m, air supply 

opening height 1.15 m 

2 

Air outlet size 0.25 m × 0.2 m 1 

MV Air inlet size: 0.8 m × 0.2 m, air supply 

opening height 2.2 m 

2 

Air outlet size 0.25 m × 0.2 m 1 

Human model Dimensions 0.4 m × 0.3 m × 1.2 m, 

cooling load 147 W, 

moisture 109 g/h 

2 

Computer Dimensions 0.45 m × 0.45 m × 0.45 m, 

cooling load 370 W 

2 

Lamp Dimensions 1.2 m × 0.2 m × 0.15 m, 

cooling load 40 W 

1 

Window Dimensions 1.5 m ×1.2 m 1 

Bookcase Dimensions 1.05 m × 0.4 m ×1.8 m 1 

2
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Fig. 3. DPT as a function of time at z = 0.1 m for several load conditions [27] . 

Table 3 

The setting-up initial indoor parameters at different floor temperature. 

T floor (°C) T ini (°C), H ini (%) DPT (°C) 

20 26, 65.02 19 

21 26.5, 67.21 20 

22 27, 69.44 21 
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.3. Setting up boundary condition 

For an office building, as noted above, there is a fixed time of use,

alled occupied time. The RFC system is opened when the space is occu-

ied, but the rate of T floor cooling is slow, and due to the moisture added

y the human body, the air DPT near the floor will gradually increase

nd soon become greater than T floor , causing condensation. Therefore, it

s necessary to open the ventilation system to reduce the DPT near the

oor to an ideal level in the unoccupied time. In this study, the ideal

evel for opening the RFC system was chosen to be when DPT was 2 °C

ower than T floor . Fig. 3 shows the DPT curve in the room during occu-

ied and unoccupied time, as well as the variation of ventilation system
Table 2 

Numerical model and simulation setup. 

Solver 3D pressure based, transient state, implicit formulatio

Turbulence model RNG k- 𝜀 turbulence model 

Species model Species transport 

Numerical schemes For pressure, the staggered third scheme PRESTO!; fo

Air inlet Velocity inlet 

Air outlet Pressure outlet 

Floor, ceiling, window, side walls Constant-temperature surfaces 

bookcase Adiabatic surface 

4 
tart-up time with cooling load. With an increase of cooling load, the

tart-up time ( 𝜏L , 𝜏M 

, or 𝜏S ) of the ventilation system must come ear-

ier. If the ventilation time before the occupied time is too long, energy

ill be wasted; if it is too short, DPT will not have reached the ideal

evel when the space is occupied, which will lead to condensation on

he floor. To reach an ideal level, an optimal start time is needed. How-

ver, since 𝜏pre and E pre are related not only to air supply parameters

nd operation, but also to the mode of ventilation, five factors affecting

he 𝜏pre and E pre are considered: V m 

, T as , H as , V as , and T floor . 

The selected V as were set as 0.016, 0.024, and 0.036 m 

3 /s in order

o fulfill summer conditions and satisfy the recommended outdoor ven-

ilation rate [54] . In addition, T as should be at least 2 °C lower than the

ndoor air temperature [55] . Therefore, the calculated T as values were

elected to be 21, 22, and 23 °C, and the predefined H as values were set

s 6.5, 7.25, and 8 g/kg. When the RFC system is open, T floor should be

arger than 18 °C so the air supply can efficiently spread along the floor

t T floor below 25 °C [56] . 

Therefore, the values of T floor in the simulation were selected as 20,

1, and 22 °C. The difference between T floor and DPT was set as 1 °C. The

etting-up initial indoor temperature ( T ini ) and relative humidity ( H ini )

t different values of T floor are shown in Table 3 . Based on these choices,

he selected values of different influencing factors are listed in Table 4 .

 selection of simulation parameters was chosen to obtain 243 data sets

f the five variables in different combinations. The personnel and equip-

ent cooling were ignored, as there was no occupant in the numerical

imulation of pre-dehumidification. In addition, the predefined outdoor

ir temperature was set as 32 °C and the outdoor the relative humidity

s 85%. 
n 

r other terms, second-order upwind discretization scheme and the SIMPLE algorithm 
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Table 4 

The setting-up variables for different simulation cases. 

Variable Selected values Unit 

V m DV, SV, MV - 

V as 0.016, 0.024, 0.032 m 

3 /s 

T as 21, 22, 23 °C 

H as 6.5, 7.25, 8 g/kg 

T floor 20, 21, 22 °C 

2
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.4. Energy consumption calculation 

This study mainly focused on the pre-dehumidification stage while

he radiant floor system was shut off. Therefore, the energy consump-

ion generated by cooling coils in order to eliminate the heat load of

he indoor space is not included in the calculation of cooling energy

onsumption. Only the portion of cooling energy used to condition the

utdoor fresh air to the air supply state is included. The total cooling

oad Q , which is the energy portion used to condition the outdoor fresh

ir (kW), can be expressed by Eq. (1) below [57] . The energy consump-

ion equipment in the operation of ventilation system includes fan and

hiller. Its power is calculated using Eqs. (2) and (3) below [58] . 

 = 𝑉 𝑎𝑠 𝜌
(
ℎ 𝑜𝑢𝑡 − ℎ 𝑎𝑠 

)
𝜏𝑝𝑟𝑒 (1)

here V as is the air supply flow rate (m 

3 /h), 𝜌 is air density, the value

f which was taken to be 1.29 kg/m 

3 , and h out and h as are, respectively,

he specific enthalpies of the outdoor and supply air. The energy con-

umption of the fan (kWh) is 

 𝑓𝑎𝑛 = 

𝑉 𝑎𝑠 Δ𝑝 
3600 𝜂𝑓𝑎𝑛 

𝜏𝑝𝑟𝑒 (2)

here ∆p is the fan total pressure rise (Pa), and 𝜂fan is the fan efficiency.

he energy consumption of the chiller (kWh) is 

 𝑐ℎ𝑖𝑙 𝑙 𝑒𝑟 = 

𝑄 

𝐶𝑂𝑃 
(3)

here COP (the coefficient of performance) is the ratio of the cooling

ower to the electricity input power. 

.5. Grid independence analysis 

In order to study the grid independence of simulation, the numerical

esults of temperature and humidity variation at z = 0.1 m for three dif-

erent grids were compared. There are 337,542, 529,276, and 836,336

ells in coarse, medium, and fine grids. Fig. 4 shows differences in tem-

erature and humidity for different grids. Fig. 4(a) shows temperature

s. time, with the blue area showing differences between coarse and

edium grids, and the red area showing differences between medium

nd fine grids. It can be seen from the figure that the blue area fluctu-

tes significantly, indicating that the errors between coarse and medium

rids are large, the maximum difference reaching 0.084 °C. The red area

hows less fluctuation, with a small difference only after 60 s, and a

aximum difference of 0.058 °C. The same trends show up also in the

umidity comparison of Fig. 4(b) , where the blue area fluctuates signif-

cantly, with a maximum difference of 0.198 g/kg, while the red area

uctuates only slightly, with a difference of 0.093 g/kg, less than the dif-

erence from medium to fine grid by about 53%. Therefore, the medium

rid size with 529,276 cells was selected for the subsequent numerical

imulation study. 
Table 5 

Temperature and humidity differences for different grids. 

Item Total number of elements Temperature maxim

Coarse grid 337,542 –

Medium grid 529,276 0.084 

Fine grid 836,336 0.058 

5 
.6. Model validations 

To verify the accuracy of the simulation model established in this

tudy, Ma’s study was used to compare with simulated data [59] . In

a’s study, indoor moisture was tested experimentally. Since indoor

umidity strongly influences DPT, the accuracy of the simulated hu-

idity distribution was verified by experimental conditions based on

a’s work. However, the experimental conditions in Ma’s study were

ot related to pre-dehumidification, which is the focus of this study. A

re-dehumidification experiment was therefore conducted in an envi-

onmental chamber. The details of the two validations are given in the

ollowing subsection. 

.6.1. Verification of indoor humidity condition 

The experimental study conducted by Ma et al. was first chosen

o verify the accuracy of simulating the humidity distribution using

FD software [59] . The schematic diagram of the laboratory in Ma’s

tudy is shown in Fig. 5(a) . Points 1 to 5 in the figure were used

o predict the indoor humidity distribution in the validation study.

ig. 5(b) shows the comparisons of humidity ratios obtained from the

xperimental measurement and the simulation. It is evident that the sim-

lated data were consistent with most of the experimentally measured

ata. Fig. 5(c) shows the differences between measured and simulated

alues. Point 1 exhibits a deviation and has a large difference in the

nitial stage; Ma et al. [59] mentioned that the fluctuation of the exper-

mental measurement data was caused by the instability of the system

n the initial stage. The difference between the experimental and sim-

lation data may have been relatively large because Point 1 was close

o the entrance. The simulations of points 2 to 5 were largely consistent

ith the experimental data. 

.6.2. Verification of the pre-dehumidification stage 

The field test was carried out in an environmental chamber at Shan-

ong Jianzhu University, China. The dimensions of the chamber were

.65 m × 4.9 m × 2.19 m. An SV system was adopted in the environmen-

al chamber, in which air was blown in from two air inlets 1.36 m above

he floor and out of two air outlets in the ceiling. The sizes of air inlet

nd outlet were, respectively, 0.29 m × 0.19 m and 0.27 m × 0.17 m.

he layout of field test points is shown in Fig. 6(a) . There are eight

easuring points to test indoor air temperature and humidity. The field

est environment is shown in Fig. 6(b) . The temperature of the floor in

he environmental chamber was 23.75 °C, and the temperature of the

urrounding walls ranged from 25 to 27 °C. 

Before the pre-dehumidification experiment, the air inlets and out-

ets were closed, and two humidifiers and a radiator were used to heat

nd humidify the indoor environment to create a high-temperature

nd high-humidity environment. An electric fan was used to constantly

istribute the air evenly. When the indoor temperature was main-

ained at 27–28 °C, the relative humidity was between 70 and 80%,

nd the air DPT was not higher than the floor surface temperature.

hen the humidifiers, heater, and fan were turned off, and the SV

ystem was opened for dehumidification. To determine the variation

f air temperature and humidity at a section 0.1 m above the floor,

ve measuring points were arranged, each a distance of 0.1 m from

he floor. Their positions are shown in Fig. 6(c) . The average value

t the five measuring points was compared with the simulated value.

ther measuring points were arranged at distances of 0.6, 1.1, and
um difference (°C) Humidity maximum difference (g/kg) 

–

0.198 

0.093 
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Fig. 4. Grid independence analysis of numerical simulation. (a) Temperature vs, time at z = 0.1 m. (b) Humidity ratio vs. time at z = 0.1 m. 

Fig. 5. Validating the results of the established CFD model. (a) Locations of measuring points [59] . (b) Comparison of measured and simulated values of the humidity 

ratio. (c) Differences between measured and simulated values. 
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Table 6 

The setting-up parameters of dehumidification tests. 

Item Experiment 1 Experiment 2 Unit 

V as 0.018 0.015 m 

3 /s 

T ini 27.84 28.3 °C 

H ini 71.96 73.61 % 

DPT 22.38 23.19 °C 

T as 21.2 °C 

H as 41.93 % 

 

b  

F  

w  
.8 m above the floor to observe the variation of temperature and hu-

idity in the vertical direction. The specific locations are shown in

ig. 6(d) . 

.6.3. Verification of pre-dehumidification stage 

Two dehumidification tests were carried out in the environment

hamber with different values of V as . The boundary and initial condi-

ions are given in Table 6 . Fig. 7 shows the comparative results of the

xperiment and the simulation. Figs. 7(a) and ( c ) are the comparisons of

PT at section z = 0.1 m for V as = 0.018 and 0.015 m 

3 /s, respectively.

t can be seen from the figures that the experiment and simulation are

uite consistent, with maximum differences of 0.23 and 0.24 °C, respec-

ively. Since it is difficult to control the temperature and humidity to

ave the same values in different experimental tests, the dehumidifica-

ion times for DPT to drop by 1 °C were compared. 
6 
As shown in Fig. 7(a) , when V as = 0.018 m 

3 /s, the DPT decreased

y 1 °C, which took 62 s in the experiment and 64 s in the simulation.

ig. 7(c) shows that when V as = 0.015 m 

3 /s, the DPT decreased by 1 °C,

hich took 66 s in the experiment and 70 s in the simulation. The ex-
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Fig. 6. The arrangement of measuring points for pre-dehumidification experiment. (a) 3D view of the experimental environment chamber. (b) Field-test environment 

in the environment chamber. (c) Top view of the measuring points. (d) Side view of the measuring points. 
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h  
eriment showed that increasing V as can shorten the dehumidification

ime. Figs. 7(b) and ( d ) show the comparison of temperature at 0.6, 1.1,

nd 1.8 m away from the floor for V as = 0.018 and 0.015 m 

3 /s. It can

e seen from the figures that the measured and simulated data are quite

onsistent. As shown in Fig. 7(b) , when V as = 0.018 m 

3 /s, the maxi-

um differences at 0.6, 1.1, and 1.8 m were, respectively, 0.17, 0.12,

nd 0.08 °C. As shown in Fig. 7(d) , when V as = 0.015 m 

3 /s, the maxi-

um differences at 0.6, 1.1, and 1.8 m were, respectively, 0.29, 0.24,

nd 0.21 °C. This satisfactory consistency indicates that the accuracy of

his model is sufficient for further study following the above verification.

.7. BP neural network optimized by genetic algorithm 

.7.1. BP neural network 

In recent years, ANN procedures have shown excellent performance

n various prediction applications [ 60 , 61 ]. Their ability to learn new

ata and their adaptive performance make them ideal choices in many

pplications [48] . A BP neural network is a kind of multi-layer feedfor-

ard neural network, which adopts the error back propagation learning

lgorithm. Its basic idea is the gradient descent method, which uses gra-

ient search technology to minimize the mean square difference of the

ctual output value and the expected output value of the network. The

P algorithm includes two processes: signal forward propagation and

rror back propagation. The error output is calculated in the direction

rom input to output, while the adjustment weight and threshold are

alculated in the direction from output to input. 

Stochastic gradient descent has been used as the optimizer to adjust

eights and bias values, which helps to reduce the error rate between

he predicted and the target output [62] . After signal forward propaga-

ion and error back propagation, the adjustment of weight and thresh-
7 
ld value is repeated until reaching the pre-set number of learning and

raining, or the output error is reduced to an allowable degree [63] .

herefore, the BP neural network was adopted in this study. Five input

arameters and two output parameters are selected to define the numer-

cal results of the neural network system. The initial setting of weight

nd bias are important for training of the BP neural network. Accord-

ng to Liu’s study [64] , the weights and biases are randomly initialized

ithin the range of [ − 1, 1] in this study. The input parameters are V m 

,

 as , H as , V as , T floor ; the output parameters are 𝜏pre and E pre ; and the num-

er of neurons in the hidden layers is set to be 10. The structure of the

eural network is shown in Fig. 8 . 

The transfer function used in this study was the tangent sigmoid func-

ion, and root mean square error (RMSE) was used as the evaluation

ndex of model accuracy, which can be expressed by Eq. (4) below. Fur-

hermore, the coefficient of determination ( R 

2 ), which is a measure of

he degree of linear correlation between two study variables, can be

xpressed by Eq. (5) below. The simulated data were divided into two

arts, 80% of which were randomly selected for BP neural network train-

ng and 20% for verification. 

𝑀𝑆𝐸 = 

√ 

1 
n 
∑

𝑖 
||𝑜 𝑖 − 𝑜 𝑖 

||2 (4)

 

2 = 1 − 

∑𝑛 
𝑖 =0 

(
𝑜 𝑖 − 𝑜 𝑖 

)2 
∑𝑛 
𝑖 =0 

(
𝑜 𝑖 − 𝑜 𝑖 

)2 (5)

here n is the number of data sets, 𝑜 𝑖 is the predicted value, and o i is

he simulated value. 

.7.2. Genetic algorithm 

Although the traditional BP neural network has been widely used, it

as many defects, including slow learning convergence speed, the fact
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Fig. 7. Comparisons of experiment and simulation. (a) Variation of DPT at section z = 0.1 m when V as = 0.018 m 

3 /s. (b) Variation of temperature in the vertical 

direction when V as = 0.018 m 

3 /s. (c) Variation of DPT at section z = 0.1 m when V as = 0.015 m 

3 /s. (d) Variation of temperature in the vertical direction when 

V as = 0.015 m 

3 /s. 

Fig. 8. Structure of BP neural network. 

8 
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Fig. 9. The crossover and mutation processes in GA [69] . 

t  

t  

n

 

t  

o  

g  

m  

t  

p  

r  

a  

t  

s

 

G  

I  

b  

c  

e  

g  

c  

m

 

c  

n  

o  

F

2

 

F  

t  

a  

o  

p  

v  

a  

t  

B  

i  

r  

a  

s  

i

 

t  

s  

e  

a

𝐹  
hat convergence to a global minimum cannot be guaranteed, and that

he network structure is not easy to determine [51] . Therefore, the BP

eural network needs to be improved. 

Most BP neural networks use a gradient descent method. The advan-

age of this method is that it has only one direction and is fast in local

ptimization, but it easily falls into a local minimum, resulting in a low

lobal optimization performance. GA, one of the gradient-free direct

ethods, has been successfully applied for optimization on HVAC sys-

em controls [65] , green building design [66] , and thermal and energy

erformances of refrigeration systems [67] . GA can search in multiple

egions of solution space at the same time, and is able to jump from

 local optimum and get the global optimum. GA is used to improve

he weights and thresholds of BP neural network, and the convergence

peed and accuracy of prediction model are improved [51] . 

Therefore, based on the defect analysis of the BP neural network,

A is used to improve the accuracy of BP neural network in this study.

ts working principle comes from reproduction and natural selection in

iological processes. The algorithm has high computing speed, can cal-

ulate and constrain any form of objective function, and can also accel-

rate the convergence speed of the BP neural network and improve its

eneralization ability and learning ability. GA is made up of five steps:
9 
oding, fitness calculation, operator selection, exchange operation, and

utation operation [68] . 

On the basis of individual gene expression, the phenomena of

rossover and mutation in the process of heredity are simulated by ge-

etic operators, and the population is selected by generation, so as to

btain an optimal individual. GA composed of 12 bits is presented in

ig. 9 to explain the process of crossover and mutation. 

.7.3. Establishment of prediction model of GA-BP 

GA optimization of a BP neural network is divided into three parts:

irst, the structure of the BP neural network is determined according

o the number of input and output parameters of the fitting function,

nd the length of the GA is determined. Second, the weights and thresh-

lds of a BP neural network are optimized by GA. Each individual in the

opulation contains a network ownership value and threshold. The indi-

iduals calculate the individual fitness value through a fitness function,

nd GA through selection, crossover, and mutation operations to find

he optimal fitness value corresponding to the individual [63] . Third,

P neural network prediction. The optimal individual obtained by GA

s used to assign the initial weight and threshold value of the BP neu-

al network. The BP neural network is then used for local optimization,

nd the predicted value of the BP neural network with global optimal

olution is obtained. Its algorithm flowchart is shown in Fig. 10 . The

mplementation steps are as follows. 

First, the individual real numbers are encoded. Under the condition

hat the network structure is known, it can form a neural network whose

tructure, weight, and threshold are determined. With the prediction

rror between the output and the expected output of the absolute value

nd E as fitness of F , the calculation formula is as follows [63] . 

 = 𝑘 
(∑𝑛 

𝑖 
𝑎𝑏𝑠 

(
𝑦 𝑖 − 𝑜 𝑖 

))
(6)
Fig. 10. The framework of the BP neural network 

optimized by GA. 
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Fig. 11. Comparison of different ventilation sys- 

tems. (a) Variation of DPT at z = 0.1 m. (b) Vari- 

ation of E pre . 
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here n is the output node number of the network, y i is the expected

utput of the i th node of the BP neural network, o i is the predicted output

f the i th node, and k is a coefficient. 

The work reported here chooses the roulette method, and the selec-

ion probability P i of each individual is, from 

 𝑖 = 𝑘 ∕ 𝐹 𝑖 , (7)

ound to be 

 𝑖 = 

𝑓 𝑖 
𝑁 ∑
𝑗=1 

𝑓 𝑖 

(8)

In Eq. (7) , F i is the fitness value of individual I and k is the coefficient.

n Eq. (8), N is the number of individuals in the population. 

The cross-operation method of the k chromosome 𝑎 𝑘 and the l chro-

osome 𝑎 𝑖 in the j th bit is 

𝑎 𝑘𝑗 = 𝑎 𝑘𝑗 ( 1 − 𝑏 ) + 𝑎 𝑙𝑗 𝑏 

𝑎 𝑙𝑗 = 𝑎 𝑙𝑗 ( 1 − 𝑏 ) + 𝑎 𝑘𝑗 𝑏 

} 

(9) 

here b is a random number between 0 and 1. 
10 
When the j th gene 𝑎 𝑖𝑗 of the i th individual is selected for mutation,

he operation is as follows: 

 𝑖𝑗 = 

{ 

𝑎 𝑖𝑗 + ( 𝑎 𝑖𝑗 − 𝑎 max ) × 𝑓 ( 𝑔 ) , 𝑟 > 0 . 5 
𝑎 𝑖𝑗 + ( 𝑎 min − 𝑎 𝑖𝑗 ) × 𝑓 ( 𝑔 ) , 𝑟 ≤ 0 . 5 

} 

(10)

here 𝑎 max is the upper bound of gene 𝑎 𝑖𝑗 , 𝑎 min is the lower bound of

ene 𝑎 𝑖𝑗 , 𝑓 ( 𝑔) = 𝑟 2 ( 1 − 𝑔∕ 𝐺 max ) , r 2 is a random number, g is the current

teration number, G max is the maximum number of evolutions, and r is

 random number between 0 and 1. 

. Results 

.1. CFD simulation results 

.1.1. Comparison of different ventilation systems 

In Fig. 11 different ventilation systems are compared.

ig. 11(a) shows the variation of DPT with dehumidification time

t z = 0.1 m for different ventilation systems. With other conditions the

ame, it can be seen that the longest 𝜏pre was 48 s in the MV system, and

he shortest 𝜏pre was 23.1 s in the DV system. Compared with SV and

V systems, the DV system can, respectively, save 47.8% and 51.87%

ehumidification time. For the SV system, the pre-dehumidification

tage was divided into two stages: Stage A2 (0–8.7 s) DPT was kept



M. Su, J. Liu, M.K. Kim et al. Energy and Built Environment xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ENBENV [m5GeSdc; September 7, 2022;18:55 ] 

Fig. 12. The air contours at y = 0.1 m at 𝜏 = 5 s in the DV system. (a) Air temperature contour. (b) Air humidity contour. 
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onstant and the central space was dehumidified. In Stage B2 (be-

inning after 8.7 s), with the dehumidification of the space, the DPT

ecreased. For the MV system, the pre-dehumidification stage can also

e divided into two stages. Stage A1 (0–13.1 s) DPT was kept constant

nd the upper space was dehumidified; in Stage B1 (beginning after

3.1 s), with the dehumidification of the space, the DPT decreased.

tage B1 of MV can be divided further into Stage B11 (13.1–17.4 s),

hich DPT decreased sharply with the dehumidification in space, and

tage B12 (beginning after 17.4 s), which DPT decreased slowly with

he dehumidification in space, presenting a stepped shape. 

This behavior occurs because the locations of the air supply inlets

f the three ventilation systems are different. The shortest distance be-

ween inlet and floor was 0.1 m, for DV. The SV distance was 1.15 m,

nd the greatest distance was 2.2 m, for MV. This study focused on the

ariation between the DPT of air near the floor and the floor temper-

ture. In SV and MV systems, fresh air was delivered through higher

ir inlets, and it took a certain amount of time for the air to settle to

he floor. Therefore, the DPT in these two ventilation modes experi-

nces a constant stage, which will be analyzed in detail in section 4.1.2.

ig. 11(b) shows the comparison of E pre for different ventilation sys-

ems. In MV, SV, and DV systems, the values of E pre were, respectively,

.493, 0.453, and 0.237 kWh. E pre was 8.05% less in the SV system

han in the MV system, and 43.8% less in the DV system than in the

V system. Therefore, in comparing the energy-saving effect of pre-

ehumidification, DV provided the greatest energy saving, mainly due

o the strong influence of 𝜏pre on energy consumption. The longer is 𝜏pre ,

he greater is E pre . 

.1.2. Distributions of the indoor air temperature and humidity 

In order to further and more clearly explore the variation of indoor

ir temperature and humidity in the pre-dehumidification stage in the

hree ventilation systems, the section y = 0.1 m was selected for studying
11 
he temperature and humidity environment. Fig. 12 exhibits the varia-

ion of temperature and humidity at section y = 0.1 m in the DV system

t 𝜏 = 5 s. As can be seen from the figure, in the DV system, where the

ir supply inlet is closer to the floor, the temperature and humidity at

he bottom of the room were usually lower, while the temperature and

umidity gradually increased from bottom to top. Figs. 13(a) and ( b )

xhibit the variation of temperature and humidity at section y = 0.1 m

n the SV and MV systems, respectively. Compared with the DV system,

he low-temperature and low- humidity air transported by the SV and

V systems obviously doesn’t reach the floor as quickly when fresh air

nters the room. 

The temperature contour line of 297.15 K (24 °C) and humidity con-

our line of 0.01 were taken as an example. In the DV system, this tem-

erature contour line was 0.2 m above the floor, and the 0.01 contour

ine was also located at this same height. In the SV system, the 297.15 K

24 °C) temperature contour line and also the 0.01 humidity contour

ine was 1.2 m above the floor. In the MV system, the two contour lines

ere also at the same height above the floor, 1.9 m. This explains why

here is a phase in which the DPT remains constant in the SV and MV

ystems. 

Fig. 14(a) shows the variation of the temperature and humidity at

ection y = 0.1 m when the SV system was ventilated for 8.7 s. At this

oint, the low temperature and low humidity air had reached the floor

fter a period of settlement, and then, with an increase of ventilation

ime, the DPT of the air near the floor gradually decreased. Fig. 14(b) ex-

ibits the variation of temperature and humidity at section y = 0.1 m

hen the MV system was ventilated for 13.1 s. It can be seen from this

gure that the low-temperature and humid air reached near the floor,

nd that the DPT of the air near the floor gradually decreased. Since the

ir inlet of the MV system is higher than that of the SV system, the low

emperature and humidity air from the MV system take a longer time

o settle to the floor than for the SV system. This explains why the DV
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Fig. 13. Air temperature and humidity contours at y = 0.1 m at 𝜏 = 5 s in (a) the SV system and (b) the MV system. 
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Fig. 14. Air temperature and humidity contours at y = 0.1 m in different ventilation systems. (a) At 𝜏 = 8.7 s in the SV system. (b) At 𝜏 = 13.1 s in the MV system. 
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ystem has the shortest 𝜏pre , followed by the SV system, and then by the

V system, which has the longest 𝜏pre . 

.2. Verification of the established prediction model 

80% of the data were randomly selected for neural network training,

nd the remaining data were used for validation. The number of iter-
13 
tions of the neural network was 1000, the learning rate was 0.1, and

he expected error was 0.00001. The parameters of the GA were set as

ollows: population size, 20; number of genetic iterations, 50; crossover

robability, 0.7; and mutation probability, 0.01. When the loss function

urve decreases to a certain value, and remains stable with an increase

f the number of iterations, the training is considered to have achieved

onvergence [70] . Fig. 15 shows the fitness curve of the GA. The
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Fig. 15. Variation of fitness with the number of genetic iterations. 
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Table 7 

Comparison of predicted results for BP and GA-BP models. 

𝜏pre E pre 

BP GA-BP BP GA-BP 

RMSE 5.618 1.994 0.051 0.042 

R 2 0.913 0.973 0.935 0.956 
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tness does not decrease after the 14th genetic iteration —that is, the

ptimal fitness value was reached. Adjusting the network structure and

electing a reasonable learning rate were adopted in this study, which

mproves the generalization capability of the predicted model [71] . 
Fig. 16. Comparisons of the predicted and simulated values of (a) 𝜏pre , (b

14 
Fig. 16(a) exhibits a comparison between the predicted results of

he GA-BP model and the BP model for 𝜏pre with the original simulated

ata. It can be seen qualitatively that the prediction effect of the GA-

P model is significantly better than that of the BP model, and the

redicted value of the GA-BP neural network is basically consistent

ith the simulated value of CFD. Fig. 16(b) compares the differences

etween the predicted results of the GA-BP model and the BP model

ith the simulated original data of 𝜏pre . It can be seen that the maxi-

um predicted difference was 3 s, less than the 14 s of the BP model.

rom Table 7 it can be concluded that the RMSE and R 

2 of 𝜏pre pre-

icted by the BP model were 5.618 and 0.913, respectively, while the

MSE and R 

2 predicted by the GA-BP model were 1.944 and 0.973,

espectively. 

Fig. 16(c) compares the predicted results of the GA-BP and BP mod-

ls for E pre with the simulated original data. The predicted value of the

A-BP neural network has a high degree of fit with the simulated value

f CFD. Fig. 16(d) compares the differences between the predicted re-
) the relative error of 𝜏pre , (c) E pre , and (d) the relative error of E pre . 
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Fig. 17. Three-dimensional diagrams of variation trends of 𝜏pre for different influencing factors. (a) The effect of T as and V as in the DV system. (b) The effect of H as 

and T floor in the DV system. (c) The effect of T as and V as in the SV system. (d) The effect of H as and T floor in the SV system. (e) The effect of T as and V as in the MV 

system. (f) The effect of H as and T floor in the MV system. 
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t  
ults of the GA-BP model and the BP model with the simulated origi-

al data of E pre . It can be seen that the maximum predicted difference

f the GA-BP model was 0.0248 kWh, less than the 0.125 kWh of the

P model. In Table 7 it can be seen that the RMSE and R 

2 of E pre pre-

icted by the BP model were 0.051 and 0.935, respectively, while the

MSE and R 

2 predicted by the GA-BP model were 0.042 and 0.956,

espectively. 
15 
Based on the above analysis, it can be concluded that both the

A-BP and BP models can reflect relatively well the internal rela-

ionship between 𝜏pre and E pre and input variables, but it is obvi-

us that the prediction model optimized by GA-BP has higher pre-

iction accuracy. Note that the computational times for training

ith GA-BP and BP were about 0.30 hour and 0.08 hour, respec-

ively. Therefore, taking into account the accuracy of the perdition
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Fig. 18. Variation of 𝜏pre with T as in the DV and SV systems. 

Table 8 

The data ranges for prediction. 

Decision variable Range Unit 

V m DV, SV, MV N.A. 

T as 20–23 °C 

H as 6–9 g/kg 

V as 0.012–0.042 m 

3 /s 

T floor 20–23 °C 
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𝜏

odel, the GA-BP neural network was used for accurate estimation

f 𝜏pre and E pre according to the operating parameters from indoor

nvironments. 

.3. Predicted results of GA-BP 

.3.1. Pre-dehumidification time 

To determine the laws that govern the effects of the control factors

n 𝜏pre and E pre , larger ranges of the data were set based on the scopes

f different parameters, as exhibited in Table 8 . The data set was substi-

uted into the trained GA-BP neural network model for prediction, and

he effect of different control parameters on 𝜏pre and E pre were obtained,

s discussed below. 

Fig. 17 shows a three-dimensional diagram of the variation trends of

pre in the DV, SV, and MV systems. Figs. 17(a) , 17(c) , and 17(e) show

he effect of T as and V as on 𝜏pre ; the gray line represents the variation of

 as . It is obvious in Fig. 17(c) that with an increase of T as , 𝜏pre increases

radually in the MV system. Nonetheless, the effect of T as on 𝜏pre in

he DV and SV systems cannot be seen clearly in Figs 17(a) and 17(b) .

herefore, these data were transformed into a two-dimensional curve,

s shown in Fig. 18 . It can be seen from this figure that 𝜏pre increases

ith an increase of T as . In the SV system, with an increase of T as from

0 to 23 °C, 𝜏pre increases from 38.50 to 41.57 s, a variation of 7.38%.

n the DV system, 𝜏pre increases from 27.13 to 29.27 s, a variation of

.31%. In the MV system, 𝜏pre increases by 16%. In order to see clearly

he effect of V as on 𝜏pre in the three systems, the curves of the variation

f 𝜏pre with V as when T as = 21, 22, and 23 °C are shown in Figs 17(a) ,

7(c) , and 17(e) . It can be seen that 𝜏pre gradually decreases with an

ncrease of V as . When T as = 21 °C, with an increase of V as from 0.012

o 0.042 m 

3 /s, 𝜏pre decreases by 66.97%, 71.71%, and 84.98% in the

V, SV, and MV systems, respectively. It follows that increasing V as can

ffectively shorten 𝜏pre . 

Figs. 17(b) , 17(d) , and 17(f) show the effect of T floor and H as on 𝜏pre ;

he gray line traces the variation of T floor . As shown in these figures,
16 
hen H as = 9 g/kg, with an increase of T floor from 20 to 23 °C, 𝜏pre 

ecreases by 20.14, 20.08, and 11.72%, respectively, in the DV, SV and

V systems. In order to see clearly the effects of H as on 𝜏pre in the three

ystems, the curves of the variation of 𝜏pre with H as when T floor = 21, 22,

nd 23 °C are shown in Figs 17(b) , 17(d) , and 17(f) . The projected curve

hows that with a decrease of H as , 𝜏pre decreases. When T floor = 23 °C,

ith a decrease of H as from 9 to 6 g/kg, 𝜏pre decreases by 28.12, 40.82

nd 41.48%, respectively, in the DV, SV, and MV systems. 

The main reason for this phenomenon is that 𝜏pre is determined prin-

ipally by the air humidity ratio between indoor air and air supply —that

s, the dehumidification rate. A high dehumidification rate has a short

pre , and vice versa. With increases of T as and H as , the air supply humid-

ty ratio increases, and the difference in the humidity ratio of indoor air

nd air supply is reduced. Furthermore, the dehumidification speed be-

omes less, and the effect of the humidity ratio on the air DPT becomes

reater. Therefore, with an increase of T as and H as , the dehumidification

ime is lengthened. With an increase of V as , the dehumidification speed

ncreases, which allows the indoor DPT to be rapidly reduced to its tar-

et difference from the value of T floor . Therefore, with an increase of V as ,

pre is decreased. With an increase of T floor , the set initial indoor air DPT

ncreases, which means that the indoor air humidity ratio increases, re-

ulting in an increase in the humidity ratio difference between the air

upply and the indoor air, as well as an increase of dehumidification

ate. Therefore, with the increase of T floor , 𝜏pre decreased. 

.3.2. Pre-dehumidification energy consumption 

Figs. 19(a) and 19(b) provide three-dimensional diagrams of the

ariation trends of E pre in the DV system. Fig. 19(a) shows the effect

f T as and V as on E pre ; the pink projection represents the variation of

 as . As can be seen from the figure, E pre gradually decreases with an

ncrease of T as . Taking the projection of V as = 0.032 m 

3 /s as an exam-

le, with an increase of T as from 20 to 23 °C, E pre decreases from 0.275

o 0.256 kWh, a change of 7.05%. The blue projection represents the

ariation of V as . As V as increases, E pre shows a tendency to fluctuate.

ig. 19(b) shows the effect of H as and T floor on E pre ; the pink projection

epresents the variation of T floor . As can be seen from the figure, E pre 

radually decreases with an increase of T floor . Taking the projection of

 as = 6 g/kg as an example, with an increase of T floor from 20 to 23 °C,

 pre decreases from 0.219 to 0.109 kWh, a change of 50.2%. The blue

rojection represents the variation of H as . With a decrease of H as , E pre 

hows a tendency to decrease. With a decrease of H as from 9 to 6 g/kg,

 pre varies by 58.36%. 

Figs. 19(c) to 19(f) present three-dimensional diagrams of the vari-

tion trends of E pre in the SV and MV systems. We take V as = 0.032

 

3 /s as an example for analysis. In the SV system, with an increase

f T as from 20 to 23 °C, E pre decreases from 0.56 to 0.43 kWh, a

hange of 23.2%. In the MV system, E pre decreases by 9.47%. As V as 

ncreases, E pre shows a fluctuating trend. This indicates that the ef-

ect of V as on E pre is not significant in this study. It can be seen

rom Figs. 19(d) and ( F ) that the effects of H as and T floor on E pre in

he SV and MV systems have the same trend as that in the DV sys-

em. With a decrease of H as and an increase of T floor , E pre gradually

ecreases. 

The HVAC issues for heat transfer and energy usage in office spaces

ave not been successfully addressed using CFD techniques. Accord-

ng to Eqs. (4) —(6) , the main reasons for this are the following: With

ariation of T as and H as , E pre is related to 𝜏pre and to the difference

n the enthalpies of the air supply and outdoor air. The greater the

alue of T as , the smaller is the difference in the enthalpies of the air

upply and outdoor air. Hence, if T as increases, the energy consump-

ion will decrease. However, with a variation of H as , the difference in

he enthalpies of the air supply and outdoor air is small. Therefore,

he decisive factor affecting E pre was found to be 𝜏pre . The smaller the

alue of H as , the shorter is 𝜏pre , and thus E pre is also smaller. As V as 

aries, E pre depends mainly on 𝜏pre and V as . With an increase of V as ,

pre decreases. The two factors do have some effect on E pre . Thus, E pre 
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Fig. 19. Three-dimensional diagrams showing variation trends of E pre with different influencing factors. (a) The effects of T as and V as in the DV system. (b) The 

effects of H as and T floor in the DV system. (c) The effects of T as and V as in the SV system. (d) The effect of H as and T floor in the SV system. (e) The effect of T as and V as 

in the MV system. (f) The effect of H as and T floor in the MV system. 
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uctuates as V as varies. With a variation of T floor , E pre depends only

n 𝜏pre . With an increase of T floor , 𝜏pre decreases, and E pre gradually

ecreases. 

. Discussion 

In view of the problem of moisture condensation in the applica-

ion of an RFC system in office buildings, this work studied a venti-
17 
ation system to be opened in advance for pre-dehumidification treat-

ent before the space is occupied. The ANN approach is a generic tech-

ique for mapping the relationships between inputs and outputs without

nowing the details of these relationships. Therefore, ANN was used

o explore the effect of different factors on the pre-dehumidification

ime and energy consumption. The learning data were collected by

FD simulation, and then the trained neural network prediction model

as used to replace CFD simulation and predict the time needed to
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pen the ventilation system in advance and the energy consumed in

he pre-dehumidification stage. Compared with other similar studies,

he unique advantage of this study is in its combination of CFD simu-

ation and a neural network, which can predict the detailed situation

f indoor air distribution. The effects of different factors on the pre-

ehumidification stage in three ventilation systems were compared. Be-

ause of a shortcoming of the BP neural network —that its convergence

s slow —if the problem is more complex, training time may be rela-

ively long [51] . GA was used to optimize the BP neural network, so

s to improve the accuracy of the prediction model. Finally, the GA-

P neural network prediction model can quickly predict the duration

nd energy consumption of pre-dehumidification for different initial

onditions. 

This study provides a novel and effective evaluation method for RFC

re-dehumidification control, but it has some limitations. Only five fac-

ors were considered that influence 𝜏pre and E pre . The issues consid-

red here have not yet been comprehensively considered, nor is the

tness of the model broad enough. Subsequent studies will consider

ore comprehensive factors. Although this study proved that ANN can

ffectively solve the problem of condensation of the floor surface in

n RFC system, the resulting static model can only reflect the steady-

tate behavior of the pre-dehumidification process. However, the devel-

pment of predictive control strategy needs to combine dynamic sys-

ems, so as to dynamically adapt to the constant adjustment of dis-

urbance variation. Therefore, the dynamic neural network model is

ery important for understanding the complex relationship between in-

uts and outputs under transient conditions [72] , which will be further

tudied. 

In this study, the floor was assumed to be a constant-temperature

urface. In radiant floor systems, the distribution of the floor surface

emperature is an important parameter. The relationship between floor

urface temperature and air DPT near the floor is a crucial factor in the

revention of condensation on a floor surface. Therefore, it is necessary

o further analyze the influence of floor-surface temperature distribu-

ion on floor performance [ 73 , 74 ]. Furthermore, previous studies have

hown that RFC systems are thermally inert, and that the floor temper-

ture varies due to variations in the water supply temperature and flow

ate. Therefore, it is necessary to analyze the dynamic thermal charac-

eristics of radiant structures to more accurately predict the risk of floor

ondensation [ 75 , 76 ]. 

There is also a technical limitation in this work. We used 243 sam-

le data points of neural network training obtained through simulation,

hich is relatively small. Therefore, the generalization ability of the pre-

iction model is not high. Although this study considers adjusting net-

ork structure and learning rate to improve generalization ability, the

ethods are not comprehensive enough. In future study, more methods

ill be considered, including increasing the size of each batch to make

he predicted model see more data in each iteration and prevent over-

tting, adjusting the data distribution, doing the class of the training

ata set and selecting a reasonable training time to avoid overtraining

77] . 

The selection of air supply parameters was not considered compre-

ensively. The setting was based only on previous studies [54–56] , with-

ut considering the performance of cooling coils. Although the air sup-

ly mode was considered as a variable in this study, the air supply pa-

ameters (e.g., air supply temperature) of air supply modes have spe-

ific input ranges [37] . Future studies will seek to comprehensively op-

imize the design of air supply parameters. Even though CFD simula-

ion has great advantages in solving indoor problems, it puts a sub-

tantial demand on computing resources. Since CFD simulation takes

 long time, it requires strict requirements on computer equipment to

btain more training data. CFD data dimension reduction is very im-

ortant for improving the efficiency of database construction, training,

nd storage. In a certain accuracy loss range, the calculation and pre-

iction speed can be realized quickly, thus reducing the calculation

oad and shortening the calculation time [78] . Therefore, more time
18 
ill be devoted to computing in the future to achieve more rapid CFD

imulation. 

. Conclusions 

In this study, we developed predictive control strategies based

n neural networks. Taking an office as the study object, a

FD simulation was carried out, and the accuracy of the model

as verified by experiment. A BP neural network was pro-

osed and optimized with the GA algorithm to predict the pre-

ehumidification time ( 𝜏pre ) and pre-dehumidification energy con-

umption ( E pre ) in an office room. The following conclusions are

rawn. 

The GA-BP neural network was more accurate and stable than the BP

eural network. The R 

2 values of 𝜏pre and E pre were very high, reaching

.9732 and 0.9557, respectively. The RMSE of 𝜏pre and E pre were 1.994

nd 0.0418, respectively. Therefore, the GA-BP neural network model

stablished in this study can replace a CFD simulation to predict 𝜏pre and

 pre . 

Under the same conditions, 𝜏pre in the DV system (with the low-

st air inlet) was the shortest and in the MV system (with the high-

st inlet) was the longest. Relative to SV and MV systems, the DV

ystem can save, respectively, 47.9% and 51.8% in 𝜏pre . In addi-

ion, due to the influence of the location of the air inlet, the pre-

ehumidification stage can be divided into two stages in the SV and

V systems: a stage where the air DPT remains constant and a stage

here the air DPT drops. Meanwhile, according to Eqs. (4) —(6) , E pre 

s affected mainly by 𝜏pre . In DV systems, 𝜏pre was the smallest and

an save about 40% in energy consumption compared with MV sys-

ems, which have the largest 𝜏pre . Therefore, the combination of a DV

ystem and an RFC system can achieve the best pre-dehumidification

ffect. 

The prediction results of the GA-BP model show that for all three

entilation systems, V as has the most obvious effect on 𝜏pre . In the MV

ystem, it can save about 80% of 𝜏pre . V as has the least effect on E pre ,

hich fluctuates as V as is varied. The research reported in this paper

an help building management departments design and select the most

ffective control strategy to operate an RFC system, and provide theo-

etical reference value. 
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