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Pre-dehumidification time (z,,) and pre-dehumidification energy consumption (E,) play important roles in
preventing the condensation of moisture on the floors of rooms that use a radiant floor cooling (RFC) system.
However, there are few theoretical or experimental studies that focus on these two important quantities. In
this study, an artificial neural network (ANN) was used to predict condensation risk for the integration of RFC
systems with mixed ventilation (MV), stratum ventilation (SV), and displacement ventilation (DV) systems. A
genetic algorithm-back-propagation (GA-BP) neural network model was established to predict 7,,, and E,.. Both
training data and validation data were obtained from tests in a computational fluid dynamics (CFD) simulation.
The results show that the established GA-BP model can predict 7,,, and E,,,, well. The coefficient of determination
(R?) of 7,,, and of E,, were, respectively, 0.973 and 0.956. For an RFC system integrated with an MV, SV, or
DV system, the lowest values of 7, and E,,, were with the DV system, 23.1 s and 0.237 kWh, respectively, for a
67.5 m® room. Therefore, the best pre-dehumidification effect was with integration of the DV and RFC systems.
This study showed that an ANN-based method can be used for predictive control for condensation prevention in
RFC systems. It also provides a novel and effective method by which to assess the pre-dehumidification control

of radiant floor surfaces.

1. Introduction radiation and convection [10-12]. A radiant cooling system can main-

tain the same human thermal comfort as a conventional convective air

Global warming increasingly affects people’s health and quality of
life [1,2]. Among the countries of the world, China has been the largest
carbon emitter and energy consumer since 2011 [3,4]. In general, build-
ing energy is used mainly for lighting, electrical devices, and heating,
ventilating, and air conditioning (HVAC) systems, of which about 50%
are traditional HVAC systems [5]. People are advocating low-carbon
lifestyle while pursuing a higher quality of life as the concept of energy
saving and emission reduction has become popular [6,7]. The appli-
cation of energy-saving technology in HVAC systems is one important
means by which to slow the upward trend of energy consumption [8,9].

Radiant-cooling air conditioning systems make use of enclosing
surfaces as cooling sources to exchange heat with humans by way of

conditioning system with an indoor temperature 1 to 2 K higher than
for a conventional system [13,14]. Also, radiant cooling systems can
be characterized as having uniform indoor-temperature distribution,
ideal thermal comfort, quiet operation, and energy saving. [15,16].
Accordingly, radiant cooling systems are gaining favor and have also
become the focus of study by researchers in the HVAC field [17,18].
At the same time, however, there are some disadvantages such as high
initial cost, inability to dehumidify the air, the possibility of water
vapor condensation, and a relatively long start-up time [19,20].

The biggest challenge in using radiant cooling is the risk of moisture
condensation on the surface of chilled radiant plates (floors, ceiling or
walls) [21,22]. Condensation occurs most likely in two situations: an

Abbreviation: ANN, artificial neural network; BP, back propagation; CFD, computational fluid dynamics; COP, coefficients of performance; DV, displacement
ventilation; DPT, dew point temperature; DO, discrete ordinate; GA, genetic algorithm; GA-BP, genetic algorithm-back-propagation; HVAC, heating, ventilation and
air conditioning; MV, mixed ventilation; PRESTO!, pressure staggering option; RFC, radiant floor cooling; RCC, radiant ceiling cooling; RNG, renormalized group;
R2, coefficient of determination; RMSE, root mean square error; SIMPLE, pressure-linked equations; SV, stratum ventilation; TRNSYS, Transient system simulation
program.
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Nomenclature

E hitter energy consumption of the chiller (kWh)

Egn energy consumption of the fan (kWh)

E. pre-dehumidification energy consumption (kWh)

Hy, air supply humidity ratio (g/kg)

Q cooling load of conditioning the outdoor fresh air to the
air supply state (kWh)

Ty air supply temperature ( °C)

Thoor floor temperature ( °C)

Tini initial indoor air temperature ( °C)

Vs air supply flow rate (m3/s)

Vin different ventilation mode

Greek letters

p thermal expansion factor (1/K)
£ turbulent dissipation rate (m?/s3)
u dynamic viscosity (N-s/m?)

p air density (kg/m?)

Tpre pre-dehumidification time (h)
n efficiency

fan fan efficiency

Subscripts

as air supply

chiller chiller device

floor radiant floor

fan fan device

ini initial indoor air

m mode

out outdoor air

pre pre-dehumidification

increase in indoor air dew point temperature (DPT) due to air infiltra-
tion from open windows and doors or significant internal moisture gain
from the occupants [23]. When such a situation prevails, adjusting the
temperature of the chilled water or cutting off the chilled water supply
can prevent condensation [24]. In addition, condensation occurs at the
start-up moment of a radiant cooling system, usually in the morning,
because the indoor air moisture level is higher after a night’s accumula-
tion while the temperature of chilled water entering the radiant panels
is low. Supplying fresh air to bear the indoor latent load and partial cool-
ing load is a good choice for solving the problem of condensation [25].
Moreover, it plays an important role in improving energy efficiency and
indoor thermal comfort [26].

Most non-residential buildings have regular occupancy hours, which
are called occupied times. After these hours or on weekends, the spaces
in these building are not used; these are unoccupied times [27]. An ef-
fective approach is to operate ventilation systems during the unoccu-
pied times before operating radiant cooling systems during the occupied
times.

Most recent studies on the prevention of condensation in these
two situations have focused on radiant ceiling cooling (RCC) [28-30],
while radiant floor cooling (RFC) has received more limited atten-
tion, especially condensation occurs at the start-up moment. Lim et al.
[31] conducted numerical simulations and experimental tests to study
control methods for RFC air-conditioning systems in Korean residen-
tial buildings. Their results showed that for room temperature con-
trol, indoor- and outdoor-temperature-feedback-based water temper-
ature control was superior to water flow rate control and could ef-
fectively control condensation. Ren et al. [32] used a measurement
method to study the operational control of RFC with displacement ven-
tilation (DV) systems. A recommendation was to implement a 1-1.5 h
start of the DV system for dehumidification before the occupied time,
when condensation on the radiant surface can be effectively prevented.
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Based on the climate characteristics of Hong Kong, Zhang and Niu
[33] suggested that turning on a ventilation system one hour before
starting a radiant cooling system can effectively prevent radiant panel
condensation.

When comparing ventilation strategies [34], a DV system is re-
garded as one of the most interesting solutions, because it can pro-
vide a high level of air quality at the breathing level [35,36]. Conse-
quently, there have been many studies of the combination of a DV sys-
tem and an RFC system [32,35]. In contrast, the applications of mixed
ventilation (MV) and stratum ventilation (SV) systems have been in-
vestigated only in limited studies. Liu et al. [37] evaluated the ther-
mal comfort performance of RFC systems when combined with differ-
ent ventilation systems. The conclusion was that MV and SV systems
have small vertical air temperature gradients and better thermal com-
fort. Li et al. [38] found that an SV system can effectively control air
pollutants and provide better thermal performance, thermal comfort,
and indoor air quality. Most of the published studies are focused on air
quality and indoor thermal comfort [39,40]; there are relatively few
studies on the integration of RFC with different ventilation systems for
pre-dehumidification.

The start time of a ventilation system before the room is occu-
pied—that is, the pre-dehumidification time (rpre)—is critical. It influ-
ences both pre-dehumidification energy consumption (E,,) and the pre-
vention of condensation. The longer is 7, the better the effect of con-
densation prevention. However, most energy is consumed in handling
and delivering the outdoor air. In practical application, it is quite hard
to determine the optimal building design and HVAC system operation in
relation to 7, and E,, due to the large number of variables that need
to be considered [41].

Artificial neural networks (ANNs) are widely accepted for over-
coming the limitations of physical modeling of complicated systems
and processes [42]. They have been used by many researchers for
predictive control of building systems. Ruano et al. [43] discussed
the design of indoor air temperature prediction using an ANN model.
Ben-nakhi et al. [44,45] used ANN to optimize the thermal behav-
ior of air conditioning in office buildings and public buildings. The
end time of thermostat failure and the cooling load of buildings were
predicted for saving energy. Yang et al. [27,46] used ANN to pre-
dict the time of indoor air temperature drop and to realize the start
and stop control of indoor heating system. The above results show
that a predictive control method using ANN is effective and has high
accuracy.

At present, ANN techniques have been applied by a number of re-
searchers for modeling and predicting radiant cooling-system ventila-
tion and dehumidification. Ge et al. [25] used ANN to predict the risk
of condensation on cooling ceilings and to predict the optimum 7.
They used two ANN models to predict the temperature of the cooling
ceiling and indoor air DPT when the system is started. A third model
was also used to predict the optimum 7, for a condensation-prevention
system. The results showed that for buildings in Hong Kong, 30 min of
pre-dehumidification time is sufficient. Keblawi et al. [47] studied a
model-based RCC and DV online monitoring system, established a dy-
namic multi-variable cost function, and used a genetic algorithm (GA)
to solve the problem. Their results showed that online optimization con-
trol produced good results and could improve the energy efficiency of
RCC and DV systems.

Since the training of a neural network requires a large amount of
data, most recent studies have focused on the application of a transient
system simulation program (TRNSYS) to obtain the needed amount of
data [25,48]. In recent decades, the CFD method has been demonstrated
to be a highly efficient tool in the design of indoor environments and
planned energy consumption [49]. Because air distribution in a room
directly affects the ventilation and air conditioning, the use of TRNSYS
cannot yield detailed distribution of the air in a space. Compared with
experimental studies, CFD is characterized by lower costs, and the de-
tailed indoor air distribution can be more accurately predicted than with
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Fig. 1. Schematic of RFC integrated with a DV, SV, or MV system and ANN prediction model for dehumidifying an indoor thermal environment.

TRNSYS. This study therefore used a CFD simulation to obtain some nu-
merical results, followed by the neural network method for training and
prediction.

As an advanced neural network model in computer processing, pat-
tern recognition, and data analysis with good corrections, the back prop-
agation (BP) neural network follows a multi-layer feed-forward neural
network with error, which has been widely used to simulate numerical
data analysis and to predict pattern recognition and intelligent control
[50]. Although the BP neural network has high accuracy, it still has some
defects [51]. For example, when the initial value is not appropriate, it
has some errors, and the topological structure is not comprehensive. Be-
cause of these limitations, this study used GA to improve the BP neural
network and achieve higher accuracy.

Aiming at the problem of pre-dehumidification, the RFC environ-
ment integrated with different ventilation systems is established. Fig. 1
shows a schematic of RFC integrated with a DV, SV, or MV system and
ANN predicted model for dehumidification control of an indoor ther-
mal environment. The main principle is to transmit the temperature,
humidity, and flow rate sensor data to the ANN prediction model to
obtain 7., so that management can know how long to ventilate be-
fore turning on the RFC system. After the RFC system is turned on, the
difference between the DPT and the floor temperature can be moni-
tored to determine whether ventilation parameters need to be changed
to avoid condensation on the floor surface. However, the key to control
is whether an ANN model can provide accurate prediction. Therefore,
the goal of this study is to establish a good ANN prediction model for
future pre-dehumidification control. The ANSYS Fluent 16.2 software
was used to simulate the thermal and humidity environments of an of-
fice located in Jinan, China, in the summer. 7, and E,,, were set as
the predicted target parameters. Different modes of ventilation (V,,),
air-supply temperature (T,,), air-supply humidity ratio (Hy,), air-supply
flow rate (V,), and floor temperature (Tﬂoor) were used as design vari-
ables. Finally, the influence of different design parameters on 7, and

E,, were analyzed based on CFD simulation and the algorithm-back-

propagation (GA-BP) prediction model for predicting 7,,, and E,, was
obtained.

2. Research methodology
2.1. Description of the geometric model

A typical office room was chosen as the study object of the simulation
analysis; its size was 6.0 m x 4.5 m x 2.5 m. The heat sources consisted of
two office workers, each providing a heat flux of 147 W; two computers,
each providing a heat flux of 370 W; and a 40-W lamp located near the
ceiling. The air supply opening heights of DV, SV, and MV systems were
0.1, 1.15, and 2.2 m, respectively. The outlet was close to the ceiling.
The size of the inlet was 0.2 m x 0.8 m and of the outlet 0.2 m x 0.25 m.
Fig. 2 shows an isometric view of the simulation model. The detailed
configuration of this model is provided in Table 1.

2.2. Numerical model and schemes

This study first conducted the simulation using commercial CFD soft-
ware, namely ANSYS Fluent 16.3. Different ventilation systems com-
bined with the RFC system were applied using the Boussinesq approx-
imation due to the effect of air density differences. The turbulent flow
was assumed and an incompressible gas composed of dry air and water
vapor was chosen. Previous studies [52,53] revealed that the renormal-
ized group RNG k-¢ turbulence model produces an accurate prediction of
indoor air flow and temperature. For the pressure-velocity coupling, the
semi-implicit method for pressure-linked equations (SIMPLE) algorithm
was selected. Pressure staggering option (PRESTO!) discretization was
specified for the pressure solution. The second-order upwind scheme
was applied to momentum, energy, turbulent kinetic energy, and turbu-
lent dissipation rate. The details of the numerical model and simulation
setup are summarized in Table 2.
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Fig. 2. Isometric view of the CFD simulation. (DV: displacement ventilation;
SV: stratum ventilation; MV: mixed ventilation. 1-computer; 2-human model;
3-lamp; 4-bookcase; 5-air outlet; 6-window.).

Table 1
Configuration of the simulation model.

Component Description Number
DV Air inlet size 0.8 m x 0.2 m, air supply 2
opening height 0.1 m

Air outlet size 0.25 m X 0.2 m 1
sV Air inlet size 0.8 m X 0.2 m, air supply 2
opening height 1.15 m
Air outlet size 0.25 m x 0.2 m 1
MV Air inlet size: 0.8 m X 0.2 m, air supply 2
opening height 2.2 m
Air outlet size 0.25 m x 0.2 m 1
Human model Dimensions 0.4 m X 0.3 m x 1.2 m, 2
cooling load 147 W,
moisture 109 g/h
Computer Dimensions 0.45 m X 0.45 m x 0.45 m, 2
cooling load 370 W
Lamp Dimensions 1.2 m X 0.2 m x 0.15 m, 1
cooling load 40 W
Window Dimensions 1.5 m x1.2 m 1
Bookcase Dimensions 1.05 m x 0.4 m x1.8 m 1

2.3. Setting up boundary condition

For an office building, as noted above, there is a fixed time of use,
called occupied time. The RFC system is opened when the space is occu-
pied, but the rate of Tg,,, cooling is slow, and due to the moisture added
by the human body, the air DPT near the floor will gradually increase
and soon become greater than T, causing condensation. Therefore, it
is necessary to open the ventilation system to reduce the DPT near the
floor to an ideal level in the unoccupied time. In this study, the ideal
level for opening the RFC system was chosen to be when DPT was 2 °C
lower than Tj,,,. Fig. 3 shows the DPT curve in the room during occu-
pied and unoccupied time, as well as the variation of ventilation system

Table 2
Numerical model and simulation setup.
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Fig. 3. DPT as a function of time at z = 0.1 m for several load conditions [27].

Table 3
The setting-up initial indoor parameters at different floor temperature.
Toor (°C) Ty CC), Hyy (%) DPT (°C)
20 26, 65.02 19
21 26.5, 67.21 20
22 27, 69.44 21

start-up time with cooling load. With an increase of cooling load, the
start-up time (7, 7, Or 7g) of the ventilation system must come ear-
lier. If the ventilation time before the occupied time is too long, energy
will be wasted; if it is too short, DPT will not have reached the ideal
level when the space is occupied, which will lead to condensation on
the floor. To reach an ideal level, an optimal start time is needed. How-
ever, since 7, and Ep,, are related not only to air supply parameters
and operation, but also to the mode of ventilation, five factors affecting
the 7,,, and Ey,, are considered: Vi, Tos, Hyso Vo, and Tgoor-

The selected V,, were set as 0.016, 0.024, and 0.036 m3/s in order
to fulfill summer conditions and satisfy the recommended outdoor ven-
tilation rate [54]. In addition, T, should be at least 2 °C lower than the
indoor air temperature [55]. Therefore, the calculated T, values were
selected to be 21, 22, and 23 °C, and the predefined H,, values were set
as 6.5, 7.25, and 8 g/kg. When the RFC system is open, Tg,, should be
larger than 18 °C so the air supply can efficiently spread along the floor
at Tp,,r below 25 °C [56].

Therefore, the values of Tg,,, in the simulation were selected as 20,
21, and 22 °C. The difference between Tg,,, and DPT was set as 1 °C. The
setting-up initial indoor temperature (T;,;;) and relative humidity (H;,)
at different values of Tg,,, are shown in Table 3. Based on these choices,
the selected values of different influencing factors are listed in Table 4.
A selection of simulation parameters was chosen to obtain 243 data sets
of the five variables in different combinations. The personnel and equip-
ment cooling were ignored, as there was no occupant in the numerical
simulation of pre-dehumidification. In addition, the predefined outdoor
air temperature was set as 32 °C and the outdoor the relative humidity
as 85%.

Solver

Turbulence model

Species model

Numerical schemes

Air inlet

Air outlet

Floor, ceiling, window, side walls
bookcase

RNG k-¢ turbulence model
Species transport

Velocity inlet

Pressure outlet
Constant-temperature surfaces
Adiabatic surface

3D pressure based, transient state, implicit formulation

For pressure, the staggered third scheme PRESTO!; for other terms, second-order upwind discretization scheme and the SIMPLE algorithm
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Table 4

The setting-up variables for different simulation cases.
Variable Selected values Unit
Vi DV, SV, MV
Vi 0.016, 0.024, 0.032 m3/s
Ty 21, 22,23 °C
H, 6.5,7.25, 8 g/kg
Toor 20, 21, 22 °C

2.4. Energy consumption calculation

This study mainly focused on the pre-dehumidification stage while
the radiant floor system was shut off. Therefore, the energy consump-
tion generated by cooling coils in order to eliminate the heat load of
the indoor space is not included in the calculation of cooling energy
consumption. Only the portion of cooling energy used to condition the
outdoor fresh air to the air supply state is included. The total cooling
load Q, which is the energy portion used to condition the outdoor fresh
air (kW), can be expressed by Eq. (1) below [57]. The energy consump-
tion equipment in the operation of ventilation system includes fan and
chiller. Its power is calculated using Egs. (2) and (3) below [58].

QzVasp(hout - has)Tpre (1)

where V,, is the air supply flow rate (m3/h), p is air density, the value
of which was taken to be 1.29 kg/m3, and h,,, and h are, respectively,
the specific enthalpies of the outdoor and supply air. The energy con-
sumption of the fan (kWh) is

E. = VasAp @)

fan 360077fan Tpre

where Ap is the fan total pressure rise (Pa), and ry, is the fan efficiency.
The energy consumption of the chiller (kWh) is

Y
Echillerzm 3

where COP (the coefficient of performance) is the ratio of the cooling
power to the electricity input power.

2.5. Grid independence analysis

In order to study the grid independence of simulation, the numerical
results of temperature and humidity variation at z = 0.1 m for three dif-
ferent grids were compared. There are 337,542, 529,276, and 836,336
cells in coarse, medium, and fine grids. Fig. 4 shows differences in tem-
perature and humidity for different grids. Fig. 4(a) shows temperature
vs. time, with the blue area showing differences between coarse and
medium grids, and the red area showing differences between medium
and fine grids. It can be seen from the figure that the blue area fluctu-
ates significantly, indicating that the errors between coarse and medium
grids are large, the maximum difference reaching 0.084 °C. The red area
shows less fluctuation, with a small difference only after 60 s, and a
maximum difference of 0.058 °C. The same trends show up also in the
humidity comparison of Fig. 4(b), where the blue area fluctuates signif-
icantly, with a maximum difference of 0.198 g/kg, while the red area
fluctuates only slightly, with a difference of 0.093 g/kg, less than the dif-
ference from medium to fine grid by about 53%. Therefore, the medium
grid size with 529,276 cells was selected for the subsequent numerical
simulation study.

Table 5
Temperature and humidity differences for different grids.
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2.6. Model validations

To verify the accuracy of the simulation model established in this
study, Ma’s study was used to compare with simulated data [59]. In
Ma’s study, indoor moisture was tested experimentally. Since indoor
humidity strongly influences DPT, the accuracy of the simulated hu-
midity distribution was verified by experimental conditions based on
Ma’s work. However, the experimental conditions in Ma’s study were
not related to pre-dehumidification, which is the focus of this study. A
pre-dehumidification experiment was therefore conducted in an envi-
ronmental chamber. The details of the two validations are given in the
following subsection.

2.6.1. Verification of indoor humidity condition

The experimental study conducted by Ma et al. was first chosen
to verify the accuracy of simulating the humidity distribution using
CFD software [59]. The schematic diagram of the laboratory in Ma’s
study is shown in Fig. 5(a). Points 1 to 5 in the figure were used
to predict the indoor humidity distribution in the validation study.
Fig. 5(b) shows the comparisons of humidity ratios obtained from the
experimental measurement and the simulation. It is evident that the sim-
ulated data were consistent with most of the experimentally measured
data. Fig. 5(c) shows the differences between measured and simulated
values. Point 1 exhibits a deviation and has a large difference in the
initial stage; Ma et al. [59] mentioned that the fluctuation of the exper-
imental measurement data was caused by the instability of the system
in the initial stage. The difference between the experimental and sim-
ulation data may have been relatively large because Point 1 was close
to the entrance. The simulations of points 2 to 5 were largely consistent
with the experimental data.

2.6.2. Verification of the pre-dehumidification stage

The field test was carried out in an environmental chamber at Shan-
dong Jianzhu University, China. The dimensions of the chamber were
5.65m x 4.9 m x 2.19 m. An SV system was adopted in the environmen-
tal chamber, in which air was blown in from two air inlets 1.36 m above
the floor and out of two air outlets in the ceiling. The sizes of air inlet
and outlet were, respectively, 0.29 m x 0.19 m and 0.27 m x 0.17 m.
The layout of field test points is shown in Fig. 6(a). There are eight
measuring points to test indoor air temperature and humidity. The field
test environment is shown in Fig. 6(b). The temperature of the floor in
the environmental chamber was 23.75 °C, and the temperature of the
surrounding walls ranged from 25 to 27 °C.

Before the pre-dehumidification experiment, the air inlets and out-
lets were closed, and two humidifiers and a radiator were used to heat
and humidify the indoor environment to create a high-temperature
and high-humidity environment. An electric fan was used to constantly
distribute the air evenly. When the indoor temperature was main-
tained at 27-28 °C, the relative humidity was between 70 and 80%,
and the air DPT was not higher than the floor surface temperature.
Then the humidifiers, heater, and fan were turned off, and the SV
system was opened for dehumidification. To determine the variation
of air temperature and humidity at a section 0.1 m above the floor,
five measuring points were arranged, each a distance of 0.1 m from
the floor. Their positions are shown in Fig. 6(c). The average value
at the five measuring points was compared with the simulated value.
Other measuring points were arranged at distances of 0.6, 1.1, and

Temperature maximum difference (°C)

Humidity maximum difference (g/kg)

Item Total number of elements

Coarse grid 337,542 -
Medium grid 529,276 0.084
Fine grid 836,336 0.058

0.198
0.093
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1.8 m above the floor to observe the variation of temperature and hu-
midity in the vertical direction. The specific locations are shown in
Fig. 6(d).

2.6.3. Verification of pre-dehumidification stage

Two dehumidification tests were carried out in the environment
chamber with different values of V,,. The boundary and initial condi-
tions are given in Table 6. Fig. 7 shows the comparative results of the
experiment and the simulation. Figs. 7(a) and (c) are the comparisons of
DPT at section z = 0.1 m for V,, = 0.018 and 0.015 m3/s, respectively.
It can be seen from the figures that the experiment and simulation are
quite consistent, with maximum differences of 0.23 and 0.24 °C, respec-
tively. Since it is difficult to control the temperature and humidity to
have the same values in different experimental tests, the dehumidifica-
tion times for DPT to drop by 1 °C were compared.

Table 6

The setting-up parameters of dehumidification tests.
Item Experiment 1 Experiment 2 Unit
Vi 0.018 0.015 m3/s
Ty 27.84 28.3 °C
Hyy; 71.96 73.61 %
DPT 22.38 23.19 °C
T, 21.2 °C
H, 41.93 %

As shown in Fig. 7(a), when V, = 0.018 m3/s, the DPT decreased
by 1 °C, which took 62 s in the experiment and 64 s in the simulation.
Fig. 7(c) shows that when V,, = 0.015 m3/s, the DPT decreased by 1°C,
which took 66 s in the experiment and 70 s in the simulation. The ex-
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(b)

2.15m

Fig. 6. The arrangement of measuring points for pre-dehumidification experiment. (a) 3D view of the experimental environment chamber. (b) Field-test environment
in the environment chamber. (c) Top view of the measuring points. (d) Side view of the measuring points.

periment showed that increasing V,, can shorten the dehumidification
time. Figs. 7(b) and (d) show the comparison of temperature at 0.6, 1.1,
and 1.8 m away from the floor for V,; = 0.018 and 0.015 m3/s. It can
be seen from the figures that the measured and simulated data are quite
consistent. As shown in Fig. 7(b), when V, = 0.018 m3/s, the maxi-
mum differences at 0.6, 1.1, and 1.8 m were, respectively, 0.17, 0.12,
and 0.08 °C. As shown in Fig. 7(d), when V, = 0.015 m3/s, the maxi-
mum differences at 0.6, 1.1, and 1.8 m were, respectively, 0.29, 0.24,
and 0.21 °C. This satisfactory consistency indicates that the accuracy of
this model is sufficient for further study following the above verification.

2.7. BP neural network optimized by genetic algorithm
2.7.1. BP neural network

In recent years, ANN procedures have shown excellent performance
in various prediction applications [60,61]. Their ability to learn new
data and their adaptive performance make them ideal choices in many
applications [48]. A BP neural network is a kind of multi-layer feedfor-
ward neural network, which adopts the error back propagation learning
algorithm. Its basic idea is the gradient descent method, which uses gra-
dient search technology to minimize the mean square difference of the
actual output value and the expected output value of the network. The
BP algorithm includes two processes: signal forward propagation and
error back propagation. The error output is calculated in the direction
from input to output, while the adjustment weight and threshold are
calculated in the direction from output to input.

Stochastic gradient descent has been used as the optimizer to adjust
weights and bias values, which helps to reduce the error rate between
the predicted and the target output [62]. After signal forward propaga-
tion and error back propagation, the adjustment of weight and thresh-

old value is repeated until reaching the pre-set number of learning and
training, or the output error is reduced to an allowable degree [63].
Therefore, the BP neural network was adopted in this study. Five input
parameters and two output parameters are selected to define the numer-
ical results of the neural network system. The initial setting of weight
and bias are important for training of the BP neural network. Accord-
ing to Liu’s study [64], the weights and biases are randomly initialized
within the range of [-1, 1] in this study. The input parameters are V,,,
Tas» Hass Vas» Thoors the output parameters are 7, and Ey,,; and the num-
ber of neurons in the hidden layers is set to be 10. The structure of the
neural network is shown in Fig. 8.

The transfer function used in this study was the tangent sigmoid func-
tion, and root mean square error (RMSE) was used as the evaluation
index of model accuracy, which can be expressed by Eq. (4) below. Fur-
thermore, the coefficient of determination (R?), which is a measure of
the degree of linear correlation between two study variables, can be
expressed by Eq. (5) below. The simulated data were divided into two
parts, 80% of which were randomly selected for BP neural network train-
ing and 20% for verification.

/LY 160 P
RMSE = nzf|"f o] @)

T, (6,-3)°
iz ("i - 5:‘)2

where n is the number of data sets, o; is the predicted value, and o; is
the simulated value.

RP=1- )

2.7.2. Genetic algorithm

Although the traditional BP neural network has been widely used, it
has many defects, including slow learning convergence speed, the fact
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Fig. 8. Structure of BP neural network.
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Fig. 9. The crossover and mutation processes in GA [69].

that convergence to a global minimum cannot be guaranteed, and that
the network structure is not easy to determine [51]. Therefore, the BP
neural network needs to be improved.

Most BP neural networks use a gradient descent method. The advan-
tage of this method is that it has only one direction and is fast in local
optimization, but it easily falls into a local minimum, resulting in a low
global optimization performance. GA, one of the gradient-free direct
methods, has been successfully applied for optimization on HVAC sys-
tem controls [65], green building design [66], and thermal and energy
performances of refrigeration systems [67]. GA can search in multiple
regions of solution space at the same time, and is able to jump from
a local optimum and get the global optimum. GA is used to improve
the weights and thresholds of BP neural network, and the convergence
speed and accuracy of prediction model are improved [51].

Therefore, based on the defect analysis of the BP neural network,
GA is used to improve the accuracy of BP neural network in this study.
Its working principle comes from reproduction and natural selection in
biological processes. The algorithm has high computing speed, can cal-
culate and constrain any form of objective function, and can also accel-
erate the convergence speed of the BP neural network and improve its
generalization ability and learning ability. GA is made up of five steps:

Start

I

Validated CFD models

Simulation factors of

Calculate 7, and
Tas, Vas; Has, Tﬂoor
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coding, fitness calculation, operator selection, exchange operation, and
mutation operation [68].

On the basis of individual gene expression, the phenomena of
crossover and mutation in the process of heredity are simulated by ge-
netic operators, and the population is selected by generation, so as to
obtain an optimal individual. GA composed of 12 bits is presented in
Fig. 9 to explain the process of crossover and mutation.

2.7.3. Establishment of prediction model of GA-BP

GA optimization of a BP neural network is divided into three parts:
First, the structure of the BP neural network is determined according
to the number of input and output parameters of the fitting function,
and the length of the GA is determined. Second, the weights and thresh-
olds of a BP neural network are optimized by GA. Each individual in the
population contains a network ownership value and threshold. The indi-
viduals calculate the individual fitness value through a fitness function,
and GA through selection, crossover, and mutation operations to find
the optimal fitness value corresponding to the individual [63]. Third,
BP neural network prediction. The optimal individual obtained by GA
is used to assign the initial weight and threshold value of the BP neu-
ral network. The BP neural network is then used for local optimization,
and the predicted value of the BP neural network with global optimal
solution is obtained. Its algorithm flowchart is shown in Fig. 10. The
implementation steps are as follows.

First, the individual real numbers are encoded. Under the condition
that the network structure is known, it can form a neural network whose
structure, weight, and threshold are determined. With the prediction
error between the output and the expected output of the absolute value
and E as fitness of F, the calculation formula is as follows [63].

F:k(Z?abs(yi—0[)> ©)

Fig. 10. The framework of the BP neural network
optimized by GA.
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Fig. 11. Comparison of different ventilation sys-
tems. (a) Variation of DPT at z = 0.1 m. (b) Vari-

A1 B11 B12

20.2

ation of E,,.

(b)

where n is the output node number of the network, y; is the expected
output of the ith node of the BP neural network, o; is the predicted output
of the ith node, and k is a coefficient.

The work reported here chooses the roulette method, and the selec-
tion probability P; of each individual is, from

fi=k/F, 7
found to be
fi
P=—-— ®
2 fi
i=1

J

In Eq. (7), F; is the fitness value of individual I and k is the coefficient.
In Eq. (8), N is the number of individuals in the population.

The cross-operation method of the k chromosome a;, and the I chro-
mosome ¢; in the jth bit is
akj:akj(l—b)+a,jb} ©)
a;; =a;(1=b)+ayb

where b is a random number between 0 and 1.

10

Epre (kWh)

SV

When the jth gene g;;0f the ith individual is selected for mutation,
the operation is as follows:

= {ai/ + (aij = Amay) X f(8),r > 0.5}
ij —

Gy + iy — @) X f(2)o7 < 0.5 (10

where a,,,,is the upper bound of gene g;;, a,is the lower bound of
gene a;;, f(g) = ry(1 — g/Gpyay), T is a random number, g is the current
iteration number, G, is the maximum number of evolutions, and r is
a random number between 0 and 1.

3. Results
3.1. CFD simulation results

3.1.1. Comparison of different ventilation systems

In Fig. 11 different ventilation systems are compared.
Fig. 11(a) shows the variation of DPT with dehumidification time
at z = 0.1 m for different ventilation systems. With other conditions the
same, it can be seen that the longest 7, was 48 s in the MV system, and
the shortest 7,,,, was 23.1 s in the DV system. Compared with SV and
MV systems, the DV system can, respectively, save 47.8% and 51.87%
dehumidification time. For the SV system, the pre-dehumidification
stage was divided into two stages: Stage A2 (0-8.7 s) DPT was kept
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Fig. 12. The air contours at y = 0.1 m at z = 5 s in the DV system. (a) Air temperature contour. (b) Air humidity contour.

constant and the central space was dehumidified. In Stage B2 (be-
ginning after 8.7 s), with the dehumidification of the space, the DPT
decreased. For the MV system, the pre-dehumidification stage can also
be divided into two stages. Stage A1l (0-13.1 s) DPT was kept constant
and the upper space was dehumidified; in Stage B1 (beginning after
13.1 s), with the dehumidification of the space, the DPT decreased.
Stage B1 of MV can be divided further into Stage B11 (13.1-17.4 s),
which DPT decreased sharply with the dehumidification in space, and
Stage B12 (beginning after 17.4 s), which DPT decreased slowly with
the dehumidification in space, presenting a stepped shape.

This behavior occurs because the locations of the air supply inlets
of the three ventilation systems are different. The shortest distance be-
tween inlet and floor was 0.1 m, for DV. The SV distance was 1.15 m,
and the greatest distance was 2.2 m, for MV. This study focused on the
variation between the DPT of air near the floor and the floor temper-
ature. In SV and MV systems, fresh air was delivered through higher
air inlets, and it took a certain amount of time for the air to settle to
the floor. Therefore, the DPT in these two ventilation modes experi-
ences a constant stage, which will be analyzed in detail in section 4.1.2.
Fig. 11(b) shows the comparison of E,,, for different ventilation sys-
tems. In MV, SV, and DV systems, the values of Ep, were, respectively,
0.493, 0.453, and 0.237 kWh. E,,, was 8.05% less in the SV system
than in the MV system, and 43.8% less in the DV system than in the
MV system. Therefore, in comparing the energy-saving effect of pre-
dehumidification, DV provided the greatest energy saving, mainly due
to the strong influence of 7, on energy consumption. The longer is 7,
the greater is Ep,.

3.1.2. Distributions of the indoor air temperature and humidity

In order to further and more clearly explore the variation of indoor
air temperature and humidity in the pre-dehumidification stage in the
three ventilation systems, the section y = 0.1 m was selected for studying

11

the temperature and humidity environment. Fig. 12 exhibits the varia-
tion of temperature and humidity at section y = 0.1 m in the DV system
at r = 5. As can be seen from the figure, in the DV system, where the
air supply inlet is closer to the floor, the temperature and humidity at
the bottom of the room were usually lower, while the temperature and
humidity gradually increased from bottom to top. Figs. 13(a) and (b)
exhibit the variation of temperature and humidity at section y = 0.1 m
in the SV and MV systems, respectively. Compared with the DV system,
the low-temperature and low- humidity air transported by the SV and
MV systems obviously doesn’t reach the floor as quickly when fresh air
enters the room.

The temperature contour line of 297.15 K (24 °C) and humidity con-
tour line of 0.01 were taken as an example. In the DV system, this tem-
perature contour line was 0.2 m above the floor, and the 0.01 contour
line was also located at this same height. In the SV system, the 297.15 K
(24 °C) temperature contour line and also the 0.01 humidity contour
line was 1.2 m above the floor. In the MV system, the two contour lines
were also at the same height above the floor, 1.9 m. This explains why
there is a phase in which the DPT remains constant in the SV and MV
systems.

Fig. 14(a) shows the variation of the temperature and humidity at
section y = 0.1 m when the SV system was ventilated for 8.7 s. At this
point, the low temperature and low humidity air had reached the floor
after a period of settlement, and then, with an increase of ventilation
time, the DPT of the air near the floor gradually decreased. Fig. 14(b) ex-
hibits the variation of temperature and humidity at section y = 0.1 m
when the MV system was ventilated for 13.1 s. It can be seen from this
figure that the low-temperature and humid air reached near the floor,
and that the DPT of the air near the floor gradually decreased. Since the
air inlet of the MV system is higher than that of the SV system, the low
temperature and humidity air from the MV system take a longer time
to settle to the floor than for the SV system. This explains why the DV
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Fig. 13. Air temperature and humidity contours at y = 0.1 m at 7 = 5 s in (a) the SV system and (b) the MV system.
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Fig. 14. Air temperature and humidity contours at y = 0.1 m in different ventilation systems. (a) At z = 8.7 s in the SV system. (b) At r = 13.1 s in the MV system.

system has the shortest 7,,,,, followed by the SV system, and then by the
MV system, which has the longest 7.

3.2. Verification of the established prediction model

80% of the data were randomly selected for neural network training,
and the remaining data were used for validation. The number of iter-

13

ations of the neural network was 1000, the learning rate was 0.1, and
the expected error was 0.00001. The parameters of the GA were set as
follows: population size, 20; number of genetic iterations, 50; crossover
probability, 0.7; and mutation probability, 0.01. When the loss function
curve decreases to a certain value, and remains stable with an increase
of the number of iterations, the training is considered to have achieved
convergence [70]. Fig. 15 shows the fitness curve of the GA. The
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Fig. 15. Variation of fitness with the number of genetic iterations.

fitness does not decrease after the 14th genetic iteration—that is, the
optimal fitness value was reached. Adjusting the network structure and
selecting a reasonable learning rate were adopted in this study, which
improves the generalization capability of the predicted model [71].
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Table 7
Comparison of predicted results for BP and GA-BP models.
Tpre Epre
BP GA-BP BP GA-BP
RMSE 5.618 1.994 0.051 0.042
R? 0.913 0.973 0.935 0.956

Fig. 16(a) exhibits a comparison between the predicted results of
the GA-BP model and the BP model for 7, with the original simulated
data. It can be seen qualitatively that the prediction effect of the GA-
BP model is significantly better than that of the BP model, and the
predicted value of the GA-BP neural network is basically consistent
with the simulated value of CFD. Fig. 16(b) compares the differences
between the predicted results of the GA-BP model and the BP model
with the simulated original data of 7. It can be seen that the maxi-
mum predicted difference was 3 s, less than the 14 s of the BP model.
From Table 7 it can be concluded that the RMSE and R? of Tpre PTE-
dicted by the BP model were 5.618 and 0.913, respectively, while the
RMSE and R? predicted by the GA-BP model were 1.944 and 0.973,
respectively.

Fig. 16(c) compares the predicted results of the GA-BP and BP mod-
els for E,,, with the simulated original data. The predicted value of the
GA-BP neural network has a high degree of fit with the simulated value
of CFD. Fig. 16(d) compares the differences between the predicted re-
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Fig. 16. Comparisons of the predicted and simulated values of (a) Tpres (b) the relative error of ¢ pres () E pre> and (d) the relative error of Ep.
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sults of the GA-BP model and the BP model with the simulated origi-

nal data of E

pre- 1t can be seen that the maximum predicted difference

of the GA-BP model was 0.0248 kWh, less than the 0.125 kWh of the

BP model. In Table 7 it can be seen that the RMSE and R2 of E

'pre PTE-

dicted by the BP model were 0.051 and 0.935, respectively, while the
RMSE and R? predicted by the GA-BP model were 0.042 and 0.956,

respectively.
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Based on the above analysis, it can be concluded that both the
GA-BP and BP models can reflect relatively well the internal rela-
ro and Ep., and input variables, but it is obvi-
ous that the prediction model optimized by GA-BP has higher pre-
diction accuracy. Note that the computational times for training
with GA-BP and BP were about 0.30 hour and 0.08 hour, respec-
tively. Therefore, taking into account the accuracy of the perdition

tionship between 7,
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Fig. 18. Variation of z,,, with T, in the DV and SV systems.

Table 8

The data ranges for prediction.
Decision variable Range Unit
Vi DV, SV, MV N.A.
T, 20-23 °C
H,, 6-9 g/kg
Vs 0.012-0.042 m3/s
Toor 20-23 °C

model, the GA-BP neural network was used for accurate estimation
of 7, and E,, according to the operating parameters from indoor
environments.

3.3. Predicted results of GA-BP

3.3.1. Pre-dehumidification time

To determine the laws that govern the effects of the control factors
on 7, and E,,, larger ranges of the data were set based on the scopes
of different parameters, as exhibited in Table 8. The data set was substi-
tuted into the trained GA-BP neural network model for prediction, and
the effect of different control parameters on 7, and E,,, were obtained,
as discussed below.

Fig. 17 shows a three-dimensional diagram of the variation trends of
Tpre N the DV, SV, and MV systems. Figs. 17(a), 17(c), and 17(e) show
the effect of Ty, and Vg on 7,,,,; the gray line represents the variation of
T It is obvious in Fig. 17(c) that with an increase of Ty, 7, increases
gradually in the MV system. Nonetheless, the effect of Ty, on 7, in
the DV and SV systems cannot be seen clearly in Figs 17(a) and 17(b).
Therefore, these data were transformed into a two-dimensional curve,
as shown in Fig. 18. It can be seen from this figure that 7, increases
with an increase of T,. In the SV system, with an increase of T, from
20 to 23 °C, 7, increases from 38.50 to 41.57 s, a variation of 7.38%.
In the DV system, 7, increases from 27.13 to 29.27 s, a variation of
7.31%. In the MV system, z,,, increases by 16%. In order to see clearly
the effect of V,, on 7, in the three systems, the curves of the variation
of 7, with V,,; when T, = 21, 22, and 23 °C are shown in Figs 17(a),
17(c), and 17(e). It can be seen that Tpre gradually decreases with an
increase of V.. When T,, = 21 °C, with an increase of V,, from 0.012
to 0.042 m3/s, Tpre decreases by 66.97%, 71.71%, and 84.98% in the
DV, SV, and MV systems, respectively. It follows that increasing V,, can
effectively shorten 7.

Figs. 17(b), 17(d), and 17(f) show the effect of Tﬂoo, and H,; on Tpres
the gray line traces the variation of Tg,,.. As shown in these figures,
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when Hy; = 9 g/kg, with an increase of Tg,, from 20 to 23 °C, 7,
decreases by 20.14, 20.08, and 11.72%, respectively, in the DV, SV and
MV systems. In order to see clearly the effects of Hy on 7, in the three
systems, the curves of the variation of 7, with H,; when Tg,,, = 21, 22,
and 23 °C are shown in Figs 17(b), 17(d), and 17(f). The projected curve
shows that with a decrease of Hy,, 7,,, decreases. When Tg,,, = 23 °C,
with a decrease of Hy from 9 to 6 g/kg, 7, decreases by 28.12, 40.82
and 41.48%, respectively, in the DV, SV, and MV systems.

The main reason for this phenomenon is that 7., is determined prin-
cipally by the air humidity ratio between indoor air and air supply—that
is, the dehumidification rate. A high dehumidification rate has a short
Tpre> and vice versa. With increases of T, and Hy,, the air supply humid-
ity ratio increases, and the difference in the humidity ratio of indoor air
and air supply is reduced. Furthermore, the dehumidification speed be-
comes less, and the effect of the humidity ratio on the air DPT becomes
greater. Therefore, with an increase of T, and H,, the dehumidification
time is lengthened. With an increase of V,, the dehumidification speed
increases, which allows the indoor DPT to be rapidly reduced to its tar-
get difference from the value of Tg,,,. Therefore, with an increase of V,,
Tpre 18 decreased. With an increase of Tg,,,, the set initial indoor air DPT
increases, which means that the indoor air humidity ratio increases, re-
sulting in an increase in the humidity ratio difference between the air
supply and the indoor air, as well as an increase of dehumidification
rate. Therefore, with the increase of Tgyqr, 7, decreased.

3.3.2. Pre-dehumidification energy consumption

Figs. 19(a) and 19(b) provide three-dimensional diagrams of the
variation trends of E,, in the DV system. Fig. 19(a) shows the effect
of Ty and Vg, on Ey,.,; the pink projection represents the variation of
T4 As can be seen from the figure, E,, gradually decreases with an
increase of T,,. Taking the projection of V,, = 0.032 m3/s as an exam-
ple, with an increase of T, from 20 to 23 °C, E,,, decreases from 0.275
to 0.256 kWh, a change of 7.05%. The blue projection represents the
variation of V. As V,, increases, E,,, shows a tendency to fluctuate.
Fig. 19(b) shows the effect of Hys and Tgo, 0n E,; the pink projection
represents the variation of Tg,,. As can be seen from the figure, Ep,,
gradually decreases with an increase of Tf,,,. Taking the projection of
H,s = 6 g/kg as an example, with an increase of Tg,,, from 20 to 23 °C,
E,. decreases from 0.219 to 0.109 kWh, a change of 50.2%. The blue
projection represents the variation of Hy,. With a decrease of Hy,, Eyp,
shows a tendency to decrease. With a decrease of H,, from 9 to 6 g/kg,
E, varies by 58.36%.

Figs. 19(c) to 19(f) present three-dimensional diagrams of the vari-
ation trends of E,, in the SV and MV systems. We take V,, = 0.032
m3/s as an example for analysis. In the SV system, with an increase
of Ty from 20 to 23 °C, E,, decreases from 0.56 to 0.43 kWh, a
change of 23.2%. In the MV system, E,,, decreases by 9.47%. As Vi,
increases, E,, shows a fluctuating trend. This indicates that the ef-
fect of V4 on E,, is not significant in this study. It can be seen
from Figs. 19(d) and (F) that the effects of Hy and Tgo,r 0on Epyp in
the SV and MV systems have the same trend as that in the DV sys-
tem. With a decrease of Hys and an increase of Tg,,, Ep,, gradually
decreases.

The HVAC issues for heat transfer and energy usage in office spaces
have not been successfully addressed using CFD techniques. Accord-
ing to Egs. (4)—(6), the main reasons for this are the following: With
variation of Ty and Hg, E,, is related to 7,, and to the difference
in the enthalpies of the air supply and outdoor air. The greater the
value of T, the smaller is the difference in the enthalpies of the air
supply and outdoor air. Hence, if T, increases, the energy consump-
tion will decrease. However, with a variation of Hy,, the difference in
the enthalpies of the air supply and outdoor air is small. Therefore,
the decisive factor affecting E,,, was found to be 7,,,. The smaller the
value of Hy, the shorter is 7., and thus E,, is also smaller. As Vy
varies, Ep,., depends mainly on 7,, and V. With an increase of Vg,

pre
Tpre decreases. The two factors do have some effect on Ej.. Thus, E,,

pre
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with different influencing factors. (a) The effects of T,, and V, in the DV system. (b) The

effects of H,; and T, in the DV system. (c) The effects of T, and V,, in the SV system. (d) The effect of H,; and Tp,,, in the SV system. (e) The effect of T, and V,,

in the MV system. (f) The effect of Hy, and Tp,,, in the MV system.

fluctuates as V,, varies. With a variation of Tg,,, Eyr. depends only
on 7,,. With an increase of Tgo,, 7pr decreases, and E,, gradually
decreases.

4, Discussion

In view of the problem of moisture condensation in the applica-
tion of an RFC system in office buildings, this work studied a venti-
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lation system to be opened in advance for pre-dehumidification treat-
ment before the space is occupied. The ANN approach is a generic tech-
nique for mapping the relationships between inputs and outputs without
knowing the details of these relationships. Therefore, ANN was used
to explore the effect of different factors on the pre-dehumidification
time and energy consumption. The learning data were collected by
CFD simulation, and then the trained neural network prediction model
was used to replace CFD simulation and predict the time needed to
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open the ventilation system in advance and the energy consumed in
the pre-dehumidification stage. Compared with other similar studies,
the unique advantage of this study is in its combination of CFD simu-
lation and a neural network, which can predict the detailed situation
of indoor air distribution. The effects of different factors on the pre-
dehumidification stage in three ventilation systems were compared. Be-
cause of a shortcoming of the BP neural network—that its convergence
is slow—if the problem is more complex, training time may be rela-
tively long [51]. GA was used to optimize the BP neural network, so
as to improve the accuracy of the prediction model. Finally, the GA-
BP neural network prediction model can quickly predict the duration
and energy consumption of pre-dehumidification for different initial
conditions.

This study provides a novel and effective evaluation method for RFC
pre-dehumidification control, but it has some limitations. Only five fac-
tors were considered that influence 7, and E,.. The issues consid-
ered here have not yet been comprehensively considered, nor is the
fitness of the model broad enough. Subsequent studies will consider
more comprehensive factors. Although this study proved that ANN can
effectively solve the problem of condensation of the floor surface in
an RFC system, the resulting static model can only reflect the steady-
state behavior of the pre-dehumidification process. However, the devel-
opment of predictive control strategy needs to combine dynamic sys-
tems, so as to dynamically adapt to the constant adjustment of dis-
turbance variation. Therefore, the dynamic neural network model is
very important for understanding the complex relationship between in-
puts and outputs under transient conditions [72], which will be further
studied.

In this study, the floor was assumed to be a constant-temperature
surface. In radiant floor systems, the distribution of the floor surface
temperature is an important parameter. The relationship between floor
surface temperature and air DPT near the floor is a crucial factor in the
prevention of condensation on a floor surface. Therefore, it is necessary
to further analyze the influence of floor-surface temperature distribu-
tion on floor performance [73,74]. Furthermore, previous studies have
shown that RFC systems are thermally inert, and that the floor temper-
ature varies due to variations in the water supply temperature and flow
rate. Therefore, it is necessary to analyze the dynamic thermal charac-
teristics of radiant structures to more accurately predict the risk of floor
condensation [75,76].

There is also a technical limitation in this work. We used 243 sam-
ple data points of neural network training obtained through simulation,
which is relatively small. Therefore, the generalization ability of the pre-
diction model is not high. Although this study considers adjusting net-
work structure and learning rate to improve generalization ability, the
methods are not comprehensive enough. In future study, more methods
will be considered, including increasing the size of each batch to make
the predicted model see more data in each iteration and prevent over-
fitting, adjusting the data distribution, doing the class of the training
data set and selecting a reasonable training time to avoid overtraining
[771.

The selection of air supply parameters was not considered compre-
hensively. The setting was based only on previous studies [54-56], with-
out considering the performance of cooling coils. Although the air sup-
ply mode was considered as a variable in this study, the air supply pa-
rameters (e.g., air supply temperature) of air supply modes have spe-
cific input ranges [37]. Future studies will seek to comprehensively op-
timize the design of air supply parameters. Even though CFD simula-
tion has great advantages in solving indoor problems, it puts a sub-
stantial demand on computing resources. Since CFD simulation takes
a long time, it requires strict requirements on computer equipment to
obtain more training data. CFD data dimension reduction is very im-
portant for improving the efficiency of database construction, training,
and storage. In a certain accuracy loss range, the calculation and pre-
diction speed can be realized quickly, thus reducing the calculation
load and shortening the calculation time [78]. Therefore, more time
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will be devoted to computing in the future to achieve more rapid CFD
simulation.

5. Conclusions

In this study, we developed predictive control strategies based
on neural networks. Taking an office as the study object, a
CFD simulation was carried out, and the accuracy of the model
was verified by experiment. A BP neural network was pro-
posed and optimized with the GA algorithm to predict the pre-
dehumidification time (Tpre) and pre-dehumidification energy con-
sumption (E,,) in an office room. The following conclusions are
drawn.

The GA-BP neural network was more accurate and stable than the BP
neural network. The R? values of Tpre and Ep,, were very high, reaching
0.9732 and 0.9557, respectively. The RMSE of 7, and E,,, were 1.994
and 0.0418, respectively. Therefore, the GA-BP neural network model
established in this study can replace a CFD simulation to predict z,,, and
Epre.

Under the same conditions, 7, in the DV system (with the low-
est air inlet) was the shortest and in the MV system (with the high-
est inlet) was the longest. Relative to SV and MV systems, the DV
system can save, respectively, 47.9% and 51.8% in 7p,. In addi-
tion, due to the influence of the location of the air inlet, the pre-
dehumidification stage can be divided into two stages in the SV and
MV systems: a stage where the air DPT remains constant and a stage
where the air DPT drops. Meanwhile, according to Egs. (4)—(6), Epre
is affected mainly by 7,.. In DV systems, 7, was the smallest and
can save about 40% in energy consumption compared with MV sys-
tems, which have the largest 7. Therefore, the combination of a DV
system and an RFC system can achieve the best pre-dehumidification
effect.

The prediction results of the GA-BP model show that for all three
ventilation systems, Vg, has the most obvious effect on 7. In the MV
system, it can save about 80% of 7. V, has the least effect on E,,,
which fluctuates as V, is varied. The research reported in this paper
can help building management departments design and select the most
effective control strategy to operate an RFC system, and provide theo-

retical reference value.
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