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ABSTRACT
Data analytics including machine learning (ML) is essential to ex-
tract insights from production data in modern industries. However,
industrial ML is affected by: the low transparency of ML towards
non-ML experts; poor and non-unified descriptions of ML practices
for reviewing or comprehension; ad-hoc fashion of ML solutions
tailored to specific applications, which affects their re-usability. To
address these challenges, we propose the concept and a system of
executable knowledge graph (KG), which represent KGs that rely
on semantic technologies to formally encode ML knowledge and
solutions. These KGs can be translated to executable scripts in a
reusable and modularised fashion.

CCS CONCEPTS
• Information systems → Information systems applications.
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1 INTRODUCTION
Data analysis technologies play an important role in a wide range of
modern industries and applications, such as recommendation sys-
tem in internet, production monitoring in automatic manufacturing,
pose estimation in robotics etc [2, 8, 22]. Among the technologies,
machine learning (ML) attracts substantial yet increasing attention,
for its strong modelling capability without the need of explicit pro-
gramming [7] and the voluminous data that become available due
to the introduction of internet of things into manufacturing [6, 24].

Take the quality monitoring of automated welding at Bosch as an
example, which is an impactful automatic manufacturing process
accounting for the production over 50 million cars globally in a
year [20]. During the welding process, a high current flows through
the car body work pieces to melt the metal materials, which then
congeal after cooling down, to form connecting spots to connect the
work pieces. Traditional monitoring approaches require to destroy
the welded cars to measure the diameters of the connecting spots
as prescribed in international and German standards [3, 5], which is
extremely costly and produces much waste. In contrast, data-driven
methods will reduce the need of destroying welded cars, thus reduc-
ing the waste and contributing to more economical and sustainable
manufacturing industry [19]. The data analytics projects here in-
volve experts from various domains with asymmetric knowledge
background: welding experts, data scientists, measurement experts,
managers, etc. They need to discuss extensively, formulate and
prioritise the questions according to technical feasibility, company
strategies, and invest-return ratio. After that, they design data an-
alytics pipelines to process massive data from many sources like
different customers, factories, to solve various questions.

Challenges. Development of such ML anlaytics solutions exist still
many challenges of ML practice in the industry. In ML projects
where interdisciplinary teams of experts with distinct background
are involved (which is often), the transparency of ML (C1) to non-
ML experts (e.g., domain experts, managers) is usually challeng-
ing [21], since the latter often specialise in their domain knowledge
and did not receive excessive training of ML that is often required
to understand the sophisticated ML methods and interpret the ML
results. The non-ML experts need to understand ML and trust that
ML applied in manufacturing robots operating with high electricity
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Figure 1: (a) Executable KG framework in the schema level, and (b) in the individual level, (c) KG schemata (ontologies) for the executable KG

can ensure product quality and personnel safety. In addition, in
traditional ML projects, the ML procedures, methods, scripts, and
decisions are described in the technical language of ML, which
is highly dependent on the person who writes the document. ML
knowledge and solutions are hardly described or documented in
a standardised way (C2), causing difficulties for later review and
retrospective comprehension of the projects in big companies like
Bosch, which have strict regulations in reporting the details for later
audit and analysis. Moreover, ML solutions are often developed
in an ad-hoc fashion and tailored to specific applications, which
complicates its reusability (C3) for new data or questions [13, 23].

ExeKG System. To address C1-C3 challenges, we present a novel
system that allows to combine semantic technologies and ML and
enables users with minimal training of data analytics to do data
analytics through GUI-based KG construction, without coding. Ex-
eKG system enables this by encoding ML solutions in knowledge
graphs (KG), which helps in describing ML knowledge and solu-
tions in a standardised way that follows our KG framework and
pre-defined schemata, which contains data science knowledge in
formal language. Our system offers KG construction that repre-
sent executable data pipelines via GUI-based system for creation,
modification, integration and visualisation of KGs. We name our
system executable KGs (ExeKG), because our KGs can be translated
to modularised and executable ML scripts that can be modified
and reused for new data and new questions, besides, these KGs
can also be used in other industrial applications such as pipeline
verification and selection based query answering [17]. In particular,
we focus on three important activities of data analytics practice: (1)
visual analytics using various plotting methods to visualise data for
intuitive data understanding; (2) statistical analytics with statistical
methods to extract insights from data; (3) ML analytics relying on
classic ML methods as well as neural networks for classification or
regression. The former two are often known as exploratory data
analysis and seen as important preceding steps for ML analytics [9].

Demo Overview. The attendees will experience how easy one
can analyse data for welding quality monitoring on anonymised
industrial data provided by Bosch.With zero knowledge in semantic
technologies and a minimal common knowledge of data anlaytics,

the users can use our GUI tools in three scenarios for three analytical
tasks: to visualise, modify, and create executable KGs for visual
analytics, statistic analytics and ML analytics, and see the execution
results of the data pipelines translated from these KGs.

2 EXEKG SYSTEM
2.1 Executable Knowledge Graph Framework
We define data, methods and tasks as follows: Data D is a set of
facts, statistics, or items of information in forms such as numerals,
diagrams or strings organised in different structures such as tables,
etc. A Method F is a function in the form of language-dependent
script (such as in C++ or Python). A method can take some data
which fulfils certain constraints CF as input and can output specific
data. Formally, D𝑜𝑢𝑡 = F (D𝑖𝑛), if CF (D𝑖𝑛) = 𝑇𝑟𝑢𝑒 . A Task T is
the process of invoking a method by feeding it with some data that
meets certain constraints, and by doing so to obtain some other data.
Formally, T ⟨D𝑖𝑛, F ⟩ = F (D𝑖𝑛) = D𝑜𝑢𝑡 , if CF (D𝑖𝑛) = 𝑇𝑟𝑢𝑒 .

Some tasks have a singlemethod, while othermore complex tasks
can not solved by invoking a single method but can be unfolded into
a sequence of tasks where each task is a part of the complex one.
We refer the complex tasks as pipelines T𝑝 . Formally, a pipeline T𝑝
with input dataD𝑖𝑛 to getD𝑜𝑢𝑡 , expressed as T𝑝 ⟨D𝑖𝑛, F ⟩ = D𝑜𝑢𝑡

can be unfolded in the sequence {T1,T2, ...,T𝑛}, where:

T1 ⟨D𝑖𝑛
1 , F1 ⟩ = D𝑜𝑢𝑡

1 , D𝑖𝑛
1 ⊆ D𝑖𝑛, CF1 (D

𝑖𝑛
1 ) = 𝑇𝑟𝑢𝑒 ; ... (1)

T𝑛 ⟨D𝑖𝑛
𝑛 , F𝑛 ⟩ = D𝑜𝑢𝑡

𝑛 , D𝑖𝑛
𝑛 ⊆ ¤⋃

𝑖∈{1,...𝑛−1}
D𝑜𝑢𝑡

𝑖 ∪ D𝑖𝑛, CF𝑛 (D𝑖𝑛
𝑛 ) = 𝑇𝑟𝑢𝑒

−→ D𝑜𝑢𝑡 ⊆ ¤⋃
𝑖∈{1,...,𝑛}

D𝑜𝑢𝑡
𝑖 , CF =

¤⋂
𝑖∈{1,...,𝑛}

CF1 (D
𝑖𝑛
𝑖 ) . (2)

Based on the above definitions, we determine the framework
for the executable KGs as Fig. 1 a, such executable KG should take
the form as Fig. 1 b. Here we split the properties from the data D,
which strictly speaking also belong to D, but correspond to the
properties rather than objects of a 𝑇𝑎𝑠𝑘 . Except those 𝑇𝑎𝑠𝑘𝑠 with
their 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 already been integrated in script, all other 𝑇𝑎𝑠𝑘𝑠
can be modularised in a 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 and be unfolded into a sequence
of 𝑇𝑎𝑠𝑘𝑠 . The objectProperty :hasFirstTask connects the 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒
with the first task in its unfolded sequence, while :hasNextTask
connects the task in the sequence with its following task. In this
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framework, as long as the 𝐷𝑎𝑡𝑎 and 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 of every𝑇𝑎𝑠𝑘 fulfil
the constraints of the𝑀𝑒𝑡ℎ𝑜𝑑 in the 𝑇𝑎𝑠𝑘 , the 𝑇𝑎𝑠𝑘 is executable.
If every𝑇𝑎𝑠𝑘 in a 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 is executable, the 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 is executable.
In addition, as a 𝑇𝑎𝑠𝑘 , the 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 can also be a part of another
𝑇𝑎𝑠𝑘 , which represents the modularity of the executable KG.

2.2 Architectural Overview
We now give an architectural overview of our system, which con-
sists of five layers (Fig. 2 a), namely: (non-KG) data layer, application
layer, KG database layer, semantic modules layer, and semantic arte-
facts layer. From the bottom left, we start with the welding raw
data collected from production lines. These data are transformed by
the Data Integration module (with the help of domain ontologies)
to Domain-ML KG, it is a type of welding data KG with its datatype
properties are annotated by some classes in data science ontology
and thus carries ML annotation. These KGs are used by four types
of analytics applications in the application layer.

The domain ontologies include various domain specific knowl-
edgemodels, e.g., resistance spot welding ontology [12], hot-staking
ontology. These ontologies are created based on the upper domain
ontology [11], the manufacturing ontology. We briefly introduce on-
tology here and refer the readers to [1, 4]. In essence an ontology is
a formal specification of a domain of interest written in a set of first-
order logic formulae of a special form over atomic classes and prop-
erties, where each formula essentially says that one atomic class
(resp. property) is a subclass (resp. subproperty) of another, and com-
plex classes (resp. properties) are composed from the atomic classes
and properties (resp. properties) using logical and, or, not as well
as universal and existential quantifiers. Reasoning over ontologies
allows to compute logical entailments. The manufacturing ontology
is semantically connected with an upper task ontology, the data sci-
ence ontology (𝑂𝑑𝑠 ), in a way that the datatype properties in the for-
mer one are annotated by some classes in the latter one. A series of
task ontologies, including the visualisation ontology (𝑂𝑣𝑖𝑠𝑢 ), the sta-
tistical ontology (𝑂𝑠𝑡𝑎𝑡𝑠 ), and ML ontology (𝑂𝑚𝑙 ), are created based
on the 𝑂𝑑𝑠 . These task ontologies serve as the schemata for the
Executable KG Construction module, which encodes the executable
data pipelines in the executable KGs, including the visualisation KG,
statistical KG, and ML pipeline KG. These executable KGs then can
be translated by the Executable KG Translator module to executable
scripts for three analytics applications: Visual Analytics, Statistic
Analytics, and ML Analytics, which generate the analytics results.

2.3 Semantic Artefacts
Manufacture Ontology and Domain Ontologies are OWL 2 ontologies
and can be expressed in the Description Logics S(D). With its
1170 axioms, which define 95 classes, 70 object properties and 122
datatype properties, the manufacture ontology as the upper domain
ontology models the general knowledge of discrete manufacturing
process, which refers to a broad range of manufacturing processes.
The domain ontologies describe several manufacturing domains at
Bosch. These ontologies are created by domain experts in such a
way that all classes/properties in the domain ontologies are sub-
classes/sub-properties of that in upper domain ontology.

Data Science and Visual/Statistic/ML Ontologies are also OWL 2
ontologies and are created by Bosch data scientists. This ontologies
(Fig. 1 c) are expressed usingALH(D) Description Logic. The data

science ontology (𝑂𝑑𝑠 ) as the upper task ontology formalises the
general knowledge of data science activities. It contains three most
important classes (Fig 1 b): Data that is the class of all data concepts
(the existential being in data science), Method is the class of all
algorithms and functions (the way that data move), whose allowed
input, output and parameters are defined, and Task is the class of the
scripts that invoke the functions, which has an important sub-class,
Pipeline that consists of a series of ordered tasks (the way that the
data movement is organised). Based on 𝑂𝑑𝑠 , the 𝑂𝑣𝑖𝑠𝑢 , 𝑂𝑠𝑡𝑎𝑡𝑠 , and
𝑂𝑚𝑙 are created in such as way that all classes/properties in the
task ontologies are sub-classes/sub-properties of that in 𝑂𝑑𝑠 .

Besides, these ontologies also explicitly identify the rules that
constrain the input data for these methods. For example, the rule
stats:Concatnate(𝑣1, 𝑣2) ∧ ds:TimeSeries(𝑣1) ∧ ds:hasDimension(𝑣1, 𝑥)
∧ ds:TimeSeries(𝑣2) ∧ ds:hasDimension(𝑣2, 𝑦) ⇒ ds:equal(𝑥, 𝑦) indicates
the input ds:TimeSeties of the statistical task stats:Concatnate should
have the same dimension in the concatenation dimension.

2.4 Executable Knowledge Graph Construction
The executable KGs construction follows the task ontologies 𝑂𝑣𝑖𝑠𝑢 ,
𝑂𝑠𝑡𝑎𝑡𝑠 , and 𝑂𝑚𝑙 as schemata [15, 16, 18], and rely on KG tem-
plates [27, 28], which are parameterised ontologies with pre-defined
structures and a set of variables of entities and properties. We
adopt a solution similar to Reasonable Ontology Templates frame-
work [10]. By providing values (arguments) for each parameter,
users create an instance of a template, which is then serialised
as OWL axioms. When the KG templates are designed legal and
consistent, they possibly ensure legality and consistency of the
generated knowledge graphs as well as the relative simplicity of the
KG construction process [25]. In our system, we created a template
library that relies on the classes, properties and constraints defined
within 𝑂𝑣𝑖𝑠𝑢 , 𝑂𝑠𝑡𝑎𝑡𝑠 , and 𝑂𝑚𝑙 .

Based on the GUI, users are able to construct executable KGs
in three ways [14]: creation, modification and integration. Creation
refers to represent specific data analytics pipelines by instantiat-
ing templates from the scratch, choosing the appropriate template
which determines the domain and structure of the KG, and filling
variables of entities and properties guided by the GUI step by step
(Fig. 2 b). Modification refers to changing variables of entities or
properties of an existing KG to represent a different but similar data
pipeline, e.g., modifying the input data node of the visual pipeline
KG (Fig. 2 b) makes the visual pipeline applicable for other input
datasets. Integration refers to merging existing executable KGs to
form bigger KGs. This is possible because each executable KG rep-
resents a data 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 , which is a 𝑡𝑎𝑠𝑘 according to Section 2.1,
and thus an existing executable KG can be treated as a single 𝑡𝑎𝑠𝑘
for forming bigger KGs that represent integrated pipelines.

2.5 Executable Knowledge Graph Execution
The KG execution includes three steps: verification, translation, and
execution. In verification, all constraints in a constructed KG are ver-
ified against the properties of the data entities, methods, and tasks
that comprise the KG. KG translation refers to the process of trans-
lating KG into executable scripts, which is language-dependent [26].
In our system we use Python as the language for discussion. Each
executable KG representing a data pipeline, which consists of a
series of 𝑇𝑎𝑠𝑘𝑠 of sequential or parallel structures connected with
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Figure 2: (a) Architectural overview of ExeKG system; (b) KG template instantiation Example: For specific visual analytics, instantiation of
visual pipeline template includes the configuration of the first visual:CanvasCreationTask by identifying (1.1) the canvas layout with a pair of
integers; then visual:PlotTask, the identification of (2.1) input data from the ds:DataDictionary; (2.2) plot method such as visual:Lineplot; (2.3) other
properties corresponding to selected visual method. The configurations of the following visual:PlotTask (if required) are similar.

hasNextTask (Fig. 1 a). Each Task is connected with hasMethod to
an individual of Method, which is a Python function script, whose
inputs/outputs and parameters are clearly defined. Thus, the trans-
lation of an executable KG invokes the Python function scripts
with the inputs/outputs and parameters given by DataEntity and
datatype properties of KGs (which are arguments of the Python
function script), according to the order defined by hasNextTask. In
the special case of merging two parallel structures, the translator
will search the preceding dependency with hasNextTask, until no
preceding Task is found. In Execution, the translated scripts are
executed. In this step, the dataset in the system back-end will be up-
dated, the results can be seen in the data-panel, and the result-panel
will present the numerical or visual results.

3 DEMONSTRATION SCENARIOS
During the demonstration we will present our ExeKG system for
industrial data analysis tasks with the help of three scenarios Statis-
tic Analytics, ML Analytics and Visual Analytics. The data for the
scenarios are anonymised snippets collected from one machine in
the production of resistance spot welding, a world-widely applied
process at many plants of Bosch and Bosch’s renowned customers.
In these scenarios, the attendees will construct and execute the KGs
to solve the specific data analysis tasks, and experience how easy
one can do data anlaytics without coding and a minimal common
sense knowledge in data analytics. We have prepared 6 tasks for
the 3 scenarios for the attendees to choose from.

Statistic Analytics. Our system ExeKG incorporates two basic
categories of statistical analysis tasks: the calculation of statistical
properties such as average and standard deviation over a certain
data set, and the selection of target data based on methods such as
filter and sliding window. Combing these basic tasks in a pipeline in
ExeKG helps the users to gain insights from the data, for example,

averaging over a sliding window of time-series data will provide a
trend of these data with less influence of noise.

ML Analytics. For ML analysis scenarios, ExeKG supports users
with basic ML knowledge to select existing KGs for ML pipelines, to
modify them by changing variables of the KG nodes, and advanced
users to create KGs from the scratch. The attendees will first under-
stand an ML pipeline that uses linear regression (LR) for predicting
welding quality (spot diameter). They then need to specify the input
data for the ML pipeline and run the pipelines. After that, they can
modify the ML pipeline to use multilayer perceptron (MLP), for
predicting another welding quality indicator (Q-Value) by changing
the method node and the output feature node. Then they will see
the results of the ML analysis. We will also present the process
creating a ML pipeline by selecting a KG template and filling the
variables for nodes and properties.

Visual Analytics. ExeKG covers the generation of plots like line
plot, scatter, pie chart, bar char etc., that are intended to represent
the properties such as the distribution, change, statistical informa-
tion etc of numerical data. The attendees will visualise the raw data
and also as the ML analysis results to intuitively understand the
analysis results. The attendees will first identify the layout of the
canvas. Then in each grid of the canvas, then select the method
node for the line-plot and scatter plot, and their properties like line
width, colour, etc., and at last add some descriptions on the canvas
such as legend, x and y labels, titles, etc.
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