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A B S T R A C T   

This study aims to improve our current understanding of the seismic assessment of load-bearing 
unreinforced masonry (URM) systems by proposing a probabilistic computational modeling 
framework using the discrete element method (DEM). The main objective is to predict the 
structural behavior and capacity of URM walls with openings subjected to lateral loading, 
considering uncertainties in material properties. The proposed modeling strategy represents 
masonry as an assembly of rigid blocks interacting along their boundaries by adopting the point- 
contact hypothesis. Fracture energy-based softening contact models are implemented into a 
commercial discrete element code (3DEC) to better simulate both the pre- and post-peak behavior 
of masonry. The results highlight the influence of material properties on the force capacity, 
displacement capacity (drift limits), and collapse mechanisms of walls with openings. Based on 
the applied non-spatial probabilistic analyses, the most commonly observed failure mechanisms 
are further assessed using a simplified macro-block formulation. As a result, practical, yet 
necessary, inferences are made, providing valuable contributions. Furthermore, the validated 
discontinuum analysis framework is demonstrated as an accurate structural analysis strategy and 
a useful approach to simulating the potential collapse mechanism of load-bearing URM structures.   

1. Introduction 

Unreinforced masonry (URM) buildings constitute the majority of cultural heritage and residential buildings worldwide, especially 
in high seismicity zones [1]. The characteristics and structural behavior of these structures vary remarkably based on the type of 
building material (e.g., stone, brick, adobe, etc.) and construction technique (workmanship). Although existing URM buildings provide 
many favorable features (e.g., durability, fire safety, high thermal mass for energy conservation, etc.), they are vulnerable to seismic 
actions due to their high mass, the weak tensile strength of masonry compared to its compression strength, and, often, low-quality 
construction practices. In this regard, recent and past earthquakes indicated the poor seismic performance of existing URM 
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buildings due to the low construction quality and improper connections between structural components [2–4]. 
Post-seismic event surveys reveal that URM buildings suffer from various damage patterns related to in-plane and out-of-plane 

directions [5]. When out-of-plane failures are prevented, in-plane damage may develop under lateral forces governed by the 
in-plane lateral capacity of walls and pier-spandrel systems. The seismic capacity of masonry walls relies on their material properties, 
boundary conditions, vertical (compression) loads, slenderness ratios, and wall cross-section morphologies, as discussed in the 
literature [6–11]. In parallel with URM walls, pier-spandrel systems representing walls with openings are sensitive to these factors but 
require special attention to assess the coupling effect between the spandrels and piers, where spandrels work as a horizontal element 
transferring forces between the piers. 

In contrast to the vast amount of studies on masonry walls, knowledge of masonry spandrels is limited [12]. Recent research focuses 
on the strength estimation [13], or experimental and numerical behavior of masonry spandrels [14–16], which significantly 
contributed to the understanding of mechanics and in-plane capacity. The coupling effect between piers and spandrels was also 
investigated [17], and the behavior of pier-spandrel systems was further studied via laboratory tests and detailed micro-models 
[18–21]. Moreover, the influence of the spandrel configuration was examined for various lintel types [22,23]. However, most of 
the mentioned numerical studies do not consider the uncertainty in material properties and their impact on the structural behavior and 
capacity of pier-spandrel systems. This research gap. which is the main motivation of the current study, necessitates a more accurate 
and efficient modeling strategy, further explained in the next section. 

2. URM pier-spandrel systems and research motivation 

Masonry is a composite, orthotropic and non-linear material consisting of units and mortar. From the computational modeling 
perspective, each feature adds to the complexity of structural modeling of masonry buildings, proving accurate capacity predictions 
challenging. Typically, global collapse mechanisms of masonry structures result from successive developments of local failures at the 
mortar joints, referred to as weak joints, due to considerable differences in stiffness and strength parameters of masonry constituents. 
This phenomenon is explicitly considered in the proposed modeling strategy to capture crack localization induced by lateral seismic 
forces, based on the discrete element method (DEM). The schematization of the workflow is represented in Fig. 1. 

Recent advances in DEM-based modeling of masonry structures provide different computational frameworks, as recently presented 
by the authors of this paper and other researchers with different levels of complexity and accuracy [8,24–26]. It is also worth noting 
that the application of discrete element modeling has a wide spectrum, from macro-scale collapse analysis of masonry infrastructures 
to micro-scale fracture simulations of quasi-brittle construction materials [11,27–33]. The common feature among all discrete element 
models is that the material (or the structural element) is considered as a distinct body or system of bodies, which may be rigid or 
deformable. Hence, the computational cost is proportional to the number of distinct bodies utilized in the simulation and whether they 
are rigid or deformable. 

This study utilizes a discontinuum-based modeling approach to simulate an unreinforced masonry pier-spandrel system based on 
the simplified micro-modeling representation of brickwork assemblage aligned with the previous studies [34–36]. The complex 
structural behavior of URM pier-spandrel systems is investigated using a validated computational model. Additionally, the inherent 
uncertainty of material properties is considered to estimate its influence on the global behavior and collapse mechanism. This research 
compromises the computational cost and accuracy by presenting an alternative approach, utilizing rigid blocks with 
fracture-energy-based contact constitutive models referred to as discrete rigid block analysis (D-RBA). To simulate all potential failure 
mechanisms, together with their probability of occurrence, the authors present a probabilistic framework integrated with D-RBA and 
discuss each collapse mode with associated drift limits. Therefore, the proposed modeling approach and results contribute to the 
seismic analysis of URM buildings that can be utilized to prevent partial failures, life-threatening collapses, and future loss of cultural 
heritage. Further, more accurate computational models will lead to better future interventions for maintaining or strengthening 
existing masonry structures as well as masonry debris distribution/impact analysis beyond near collapse (e.g. Ref. [37]). 

The organization of the manuscript is as follows: in Sect. 2, the mathematical background and computational procedure of D-RBA 
are presented. The performed validation study is explained in Sect. 3, where the advantageous features of the proposed modeling 

Fig. 1. Pier-spandrel system and corresponding DEM-based computational model.  
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approach and modeling details are highlighted and discussed. In Sect. 4, the data selection procedure is explained, and the stochastic 
analyses are carried out. The obtained distinct failure modes are discussed, and the effects of variable material properties on the 
behavior are investigated. According to the probabilistic D-RBA results, in Sect. 5, drift limits for different failure mechanisms are 
discussed and compared with the previous numerical solutions and experiments. Additionally, in Sect. 6, a simplified macro-block 
approach is proposed based on kinematic limit analysis to assess the same wall with an opening, and the results are compared 
against the obtained probabilistic solutions. Finally, Sect. 7, provides the highlights of this study, while conclusions, and potential 
areas for future works are given in Sect. 8. 

3. Discrete rigid block analysis (D-RBA): computational framework 

Computational modeling of masonry structures can be categorized under two groups, i.e., continuum and discontinuum-based 
solutions. While the former approach typically represents the composite structure of masonry as a homogeneous isotropic material, 
the latter explicitly considers the weak joints in the numerical formulation. Different discontinuum types of analysis have been pro
posed in the literature within the last several decades, namely the non-smooth contact dynamics method (NSCD), the discontinuous 
deformation analysis (DDA), and the combined finite-discrete element method (FDEM) [38–41]. This study uses another 
discontinuum-based approach using the discrete element method (DEM), first presented by Cundall [42]. The core idea of DEM relies 
on the integration of equations of motion for rigid or deformable bodies (replicating a discontinuous media) that can mechanically 
interact with each other based on contact stress-displacement laws. A dynamic solution algorithm is followed during analysis, in which 
the integrated motion equations provide new velocities and block positions that are utilized to calculate new contact forces. Then, the 
obtained contact forces are applied to the blocks in the next step, and equations of motion are solved for new velocities again [43]. The 
explained mechanical calculation cycle continues until the quasi-static solution (if any) is reached. 

The choice of rigid or deformable blocks in DEM-based models directly depends on the physics of the problem, deemed simpli
fications, and the available computational power. Here, rigid blocks are utilized to replicate the masonry units, whereas mortar joints 
are represented as zero-thickness interfaces, as shown in Fig. 2. The dimensions of the rigid blocks in the discrete element model are 
expanded up to the half-thickness of the mortar joints, classified as a simplified micro-model [34]. Note that a masonry unit consists of 
two equal rigid blocks in contact, sharing the same potential cracking surface (see Fig. 2). 

The proposed D-RBA assumes that the deformation can only occur at the joints between the blocks. Each rigid block has 6◦ of 
freedom (3 translations and 3 rotational). The integration of translational and rotational equations of motion is performed via the 
explicit central difference method and solved for each rigid block centroid in the system. The new translational (u̇t+) and rotational 
(ωt+) velocities (evaluated at the mid-intervals of a time step, Δt; t+ = t+ Δt/2, t− = t − Δt/2) are computed as follows: 

u̇t+
i = u̇t−

i +
Δt
m

(
ΣFt

i − λ
⃒
⃒Ft

i

⃒
⃒sgn(u̇t− )

)
(1)  

ωt+
i =ωt−

i +
Δt
I
(
ΣMt

i − λ
⃒
⃒Mt

i

⃒
⃒sgn(ωt− )

)
(2)  

where F, M, I, and λ are the force vector, including the sum of contact forces and applied forces (e.g., self-weight), moment vector, 
consisting of moments developed by contact forces and applied forces, mass moments of inertia and non-dimensional damping con
stant (default value is 0.8), respectively. Moreover, m and g stand for block mass and gravitational acceleration vectors. For quasi-static 
analysis, the viscous damping parameter is adjusted to obtain steady-state solutions (either corresponding to equilibrium or steady- 
state failure (collapse)) using the local-damping formulation discussed in the reference study [44]. Note that the adopted damping 
algorithm is proportional to the unbalanced force (ΣF) and moment (ΣM) opposing to the motion depending on the velocity vector 
(sgn(ξ) = 1, if ξ ≥ 0, sgn(ξ) = − 1, if ξ < 0). Furthermore, the numerical stability is ensured using satisfactorily smaller time steps 
(Δt < Δtcritical). As mentioned earlier, once the new velocities are computed, the displacement (Δu) and rotation (Δθ) increments are 
obtained (Equation (3)) to calculate the new position of the block centroid (xt+), given in Equation (4). Accordingly, block vertices and 
edge orientations are determined that are essential to computing contact (interaction) forces. 

Δu=(u̇t+)Δt (3.1)  

Δθ=(ωt+)Δt (3.2) 

Fig. 2. Discrete rigid block model and point contact representation (2D).  
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xt+ = xt + Δu (4) 

The updated spatial configuration of the discontinuous system is utilized to compute new contact forces developing among the 
adjacent blocks via orthogonal linear/non-linear springs defined at each contact point (see Fig. 2). The employed numerical formu
lation is based on the soft contact approach, which allows the interpenetration at contact points controlled by the normal (kn) and shear 
(ks) stiffness, as shown in Fig. 2. The relative contact displacement increments are traced through the calculation steps to determine the 
contact stress increments in the normal (Δσ) and shear (Δτ) directions among the adjacent blocks. Also, the elastic contact stress 
increments are simply obtained as written in Equations (5) and (6). 

Δσ = knΔun (5)  

Δτ= ksΔus (6)  

where Δun and Δus denote the decomposed relative contact displacement in the normal and shear directions, respectively. Then, each 
stress increment is added to the previous one to obtain the new contact stresses (Equations (7) and (8)), which are later multiplied by 
the associated contact area to be utilized as forces in equations of motion. 

σt+ = σt + Δσ (7)  

τt+ = τt + Δτ (8) 

It is worth mentioning that new contact stresses are corrected (if applicable) via a predictor-corrector algorithm, as performed in 
non-linear explicit numerical solutions. Typically, DEM-based simulations employ rather simpler contact constitutive models and 
neglect fracture energies associated with cracking and shear failures. Recently, the authors proposed bilinear, polynomial, and 
exponential fracture energy-based softening constitutive contact models to better capture the post-peak response of brickwork as
semblages [29,30]. Similarly, in this study, a bilinear fracture energy-based softening contact model is utilized in tension, shear, and 
compression, as shown in Fig. 3. It is noted that the Coulomb-slip joint model is used in shear, requiring cohesion (c0), friction angle 
(φ0), mode-II fracture energy (GII

f ), residual cohesion (cres) and residual friction angle (φres), whereas tension and compression behavior 
are defined considering tensile strength (fT), mode-I fracture energy (GI

f ) and compression strength (fC) with associated fracture energy 
(GC), respectively. Finally, damage in tension and shear are coupled using a single damage parameter, which is further explained in 
Pulatsu et al. [45]. 

The proposed DEM-based modeling framework is performed using 3DEC, a commercial three-dimensional discrete element code 
developed by ITASCA [46]. The adopted contact models are written in C++ and compiled as DLL (dynamic link library) into 3DEC via 
the user-defined constitutive model option. In the next section, validation of the proposed modeling strategy is presented, where the 
in-plane behavior of the URM pier-spandrel system is analyzed. 

4. Validation study 

In this section, the validation of the proposed D-RBA approach is presented using a previously published experimental study. The 
computational model is validated using the experimental program performed by Augenti et al. [47]. 

4.1. Experimental setup 

The URM pier-spandrel system used in this study to validate D-RBA was a tuff stone masonry wall with a central opening (Fig. 4a). 
The masonry was a double-leaf, running bond assemblage of Neapolitan yellow tuff stones (150 × 300 × 100 mm3 in size) connected 
with each other through pozzolana-like hydraulic mortar joints which were 10 mm thick. The specimen was made of two equal piers 
with 1.70 m width and a spandrel with 1 m height, having the masonry above the opening supported by a timber lintel with anchorage 
length equal to 150 mm within both piers. The central opening was 1.70 m wide, resulting in the same size of piers. Thus, the overall 
length and height of the specimen were respectively equal to 5.10 m and 3.62 m, whereas the thickness was 0.31 m. Each pier was 
constructed above a reinforced concrete beam, cast in place, and rigidly anchored to the laboratory basement via Ω-shaped steel plates 
bolted to squared holes on both sides of the pier. 

Fig. 3. Contact constitutive law assigned to unit-mortar interface: (a) Tension-compression; (b) Shear.  
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Vertical forces were applied on top of both piers by means of hydraulic jacks, stiffened steel I-beams with the same width of the 
piers, and transverse steel portal frames that were fixed to the laboratory basement (Fig. 4b). Each portal frame created a reaction 
system against the vertical force applied to the pier, whereas the stiffened I-beam allowed a uniform distribution of compressive 
pressures on the masonry below. On each side of the specimen, three horizontal I-beams beams were bolted to the columns of the portal 
frames at different heights, ensuring the safety of the technicians (protection against unexpected out-of-plane movements) and further 
connection of vertical reaction systems. In-plane lateral loading on the specimen was monotonically applied with displacement control 
through a servo-hydraulic actuator, which was connected to a non-prismatic, stiff reaction wall fixed to the laboratory basement. Shear 
and flexural deformations were measured using wire potentiometers and linear variable differential transformers (LVDTs). An addi
tional LVDT was installed on the opposite side of the specimen with respect to the servo-hydraulic actuator to measure the lateral 
displacement experienced by the specimen under lateral loading. 

4.2. Numerical simulation of experimental test through D-RBA 

The discrete rigid-block model was developed by adopting the identical geometrical properties mentioned in the previous section. 
Given that the deformations are lumped at the joints, assigned spring stiffness corresponds to the elastic properties of the masonry (i.e., 
Young’s and shear modulus; E and G), which were taken from the benchmark study. Accordingly, the contact stiffness in the normal 
and shear directions was computed as follows: 

kn,j =E
/

h (9.1)  

ks,j =G
/

h (9.2)  

where h stands for the vertical joint spacing, approximately 0.1 m. Furthermore, the non-linear contact properties were taken from the 
comprehensive material testing series reported in related studies [48,49]. For the sake of simplicity, the same strength and stiffness 
values are used for bed and head joints. The adopted linear and non-linear strength parameters are given in Table 1, in which the 
tensile, shear, and compressive fracture energies are calculated (if not provided in referred studies) based on the suggestions presented 
by Lourenço [50]. 

First, the discrete element model was brought into equilibrium under gravity loads and vertical pressures (corresponding to 200 kN 
per pier), as indicated in Fig. 5. Then, lateral loading was applied considering relatively low displacement rates (i.e., 0.001 m/s) 
prescribed at the block center of mass (see Fig. 5 - indicated adjacent to the lateral force). The corresponding reaction forces were 
computed using a subroutine implemented in the software based on FISH functions, an executable programming language in 3DEC. 
Note that since the executed explicit solution scheme is prone to numerical oscillations due to abrupt changes in displacements/ve
locities, the applied displacement rate was kept sufficiently small to obtain smooth and stable results, as discussed in Ref. [26]. In the 
proposed computational model, the timber lintel was simulated as a deformable block (discretized into finite-difference volumes, 

Fig. 4. Experimental setup: (a) Geometry of specimen (dimensions in cm); (b) Picture of the instrumented specimen before testing.  

Table 1 
Linear and non-linear contact properties.  

Interaction within masonry units 
kn,u(GPa /m) ks,u (GPa /m) f*

t,u ,cu(MPa) θ0,u,θres(
◦
) GI

f ,u,G
II
f ,u (N /m)

10 4 0.23, 0.46 38, 38 8, 550 
Interaction between the masonry units (ψ = 0◦) 
kn,j (GPa /m) ks,j (GPa /m) ft,j , c*

j (MPa) φ0,j (
◦
)* θres,j (

◦
)a 

20 8 0.15 16.2 14.6 
fC (MPa)a GI

f,u (N /m) GII
f ,u (N /m)* GC (N /m)

3.96 4.3 125 12,800   
a Data taken from experimental studies [48,49], 
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shown in Fig. 5) with a low bending stiffness, where E ≈ 0.3 GPa, to better capture both flexural and shear deformations. Even though 
the lintel-spandrel interaction is an intricate subject deserving further research, the addition of the timber lintel into the computational 
model is a significant improvement. Observed behavior was better approximated this way because the residual shear strength of 

Fig. 5. Representation of the discrete element model, including vertical stresses, lateral loading, and boundary conditions.  

Fig. 6. Comparison between experimental results and results of the proposed D-RBA: (a) Experiment (Left); Computational Model (Right) - (b) Computational 
progressive joint opening (corresponding to cracks) under lateral deflections (from left to right); 10, 20 and 30 mm – (c) Force vs. displacement curves obtained from 
experiment and D-RBA. 
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spandrels is significantly affected by the presence of lintels [12]. Displacement time history was monitored during the analysis for 
subsequent comparison with experimental findings. 

The damage state of the physical testing and discontinuum model are shown in Fig. 6a, which is associated with the maximum 
displacement imposed during testing (almost 30 mm). As depicted from the explored damage progression (see Fig. 6b), first, flexural 
cracks developed at the base of the piers and pier-spandrel wall connections, then successive diagonal tensile cracks occurred in the 
spandrel, as observed during the experiment. In general, the results show that D-RBA captures both pre- and post-peak responses of the 
URM pier-spandrel system, in line with the experimental results shown in Fig. 6c in terms of the force-displacement diagram. 
Approximately 10% difference between computational and experimental result regarding the peak base shear is noted. This difference 
can be attributed to the complexity of the experimental setup (i.e., boundary condition and pre-loading protocol), material uncertainty, 
and the uniqueness of the testing. 

In the next section, the validated computational model is utilized to investigate all possible failure modes of the pier-spandrel 
system, considering different material properties. 

5. Probabilistic D-RBA 

Masonry structures are most often analyzed using deterministic methods, even though masonry properties have a probabilistic 
nature. Such variations stem from the inherent differences of the material properties and uneven deterioration of masonry. In addition, 
the very same specimen might yield significantly different elastic and inelastic properties depending on the experimental method 
applied [51]. Probabilistic structural models that account for the uncertainties in material properties and their effects on the strength 
and behavior of structures are deemed more realistic for structural engineering problems associated with random variables [52]. 
Probabilistic assessment of masonry structures that considers the uncertainty in the material properties has recently been employed for 
various structural typologies [21,53–59]. These examples demonstrated the importance of stochastic modeling on capacity and 
behavior prediction and highlighted the need for substantial research to quantify the uncertainties in the analysis. In this regard, the 
probabilistic D-RBA analysis carried out in this study considered the uncertainties in material properties, investigating their effects on 
the capacity and behavior of URM walls with openings. 

5.1. Data preparation 

Two types of joint and unit properties for masonry were considered in the probabilistic analysis: random and dependent properties. 
Note that the same elastic stiffness is considered for the lintel during the analyses. The random parameters taken into consideration in 
this study are the compressive strength of masonry (fc,m), the joint (unit-mortar interface) tensile strength (ft,j), the tensile strength of 
units (ft,u), the friction angle (φ), and the stiffness ratio R given as the stiffness of units divided by the joint stiffness (kn,u/ kn,j), as 
presented in Table 2. The mean value and coefficient of variation (CoV) of strength parameters are taken from the extensive library 
compiled from experimental results [22,48,49]. 

The dependent variables are the ones fully correlated with the random variables, and their mean and CoV are the multiples of the 
random variables. For example, the cohesion of the unit and joint has the following relation: cunit = 1.5ft,unit and cbond = 1.5ft,bond, 
respectively. Similarly, the fracture energies are either taken from the available experimental findings or calculated based on the 
suggestions presented by Lourenço [50], which are given in Table 2. 

Normal distribution was presumed for compressive strength, elastic stiffness, and friction angle parameters, whereas the tensile 
strength of units and joints were assigned a lognormal distribution, following the pertinent literature [54,56,60–62]. Once the sta
tistical distributions and their parameters are defined, the Latin Hypercube Sampling (LHS) method [63] is utilized to derive sample 
values for Monte Carlo simulations. With the LHS method, 250 simulations without any correlation between the random parameters 
were run. Fig. 7 presents the histograms of the sampled values and the probability distributions of the random variables. The number of 
simulations was determined by observing the change in the average maximum lateral force obtained from the analyses. The average 
maximum force, in Fig. 8, stabilizes after approximately 80 simulations and starts oscillating around 163 kN after that. 

Table 2 
Variables, their associated distributions, and parameters.  

Random Variable Probability Distribution Mean (μ) Coefficient of Variation (CoV) 

fc,m (MPa) Normal 3.96 0.125 
ft,j(MPa) Lognormal 0.15 0.30 
ft, u(MPa) Lognormal 0.23 0.22 
φ (degrees) Normal 16 0.20 
R (kn,u /kn,j) Normal 0.5 0.20 
Dependent Variable Relationship 
c 1.5ft,j 
Gf,I 0.029 ft,bond 
GC 3.2 fm  
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Fig. 7. Mean estimate of maximum lateral force under varying number of simulations.  

Fig. 8. Variation of the average maximum lateral force with respect to the number of simulations.  

Fig. 9. Distinct failure mechanisms (FMs) of URM pier-spandrel systems.  
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5.2. Distinct failure modes and force-displacement behaviors of the pier-spandrel system 

The non-spatial probabilistic discontinuum analysis (i.e., each simulation the mechanical properties kept identical spatially within 
the pier-spandrel system) resulted in five distinct failure mechanisms (FMs) grouped according to their near-collapse behavior, as 
shown in Fig. 9. The salient feature of these collapse modes is controlled by the sole pier, spandrel, or combined pier-spandrel action. 
The computational investigations demonstrated that the localized crack patterns are developed mainly at the pier-spandrel connec
tions due to flexural tensile stresses and in the pier and spandrels as diagonal tension cracks. The total number of each failure 
mechanism among the 250 analyses is shown in Fig. 10. 

The first two failure modes, FM-1 and FM-2 (37% of all simulations), correspond to a failure mechanism, which starts as a flexural 
tensile crack at the pier-spandrel connections and progresses through the piers, causing an eventual mixed-mode failure (i.e., diagonal 
tensile failure and sliding). Note that while only the right pier suffers from tension and shear damage at the joints in FM-1 (Fig. 11), 
both piers fail due to diagonal tension in FM2, illustrated in Fig. 12. As can be depicted from examples of force-displacement curves for 
FM-1 and FM-2 (see Figs. 11a and 12a), diagonal tension cracks in the piers yield abrupt force-drops in the lateral strength of the URM 
pier-spandrel system, which will be further discussed in the following sections. 

In FM-3 and FM-4, flexural tension and shear cracks, developing in the spandrel, become predominant, which constitute 54% of all 
the simulations. An additional diagonal crack in the piers is noticed for FM-3, while flexural damage at pier toes is observed in both FM- 

Fig. 10. Pie-chart showing the percentage of the obtained failure modes.  

Fig. 11. Illustration of FM-1: Typical force-displacement behavior and progressive tensile failure at the joints: (a) Left: Force vs. displacement response; Right: Near- 
collapse mechanism (computational model) - (b) Progressive joint opening (from left to right); 10, 20 and 40 mm. 
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3 and 4. Nonetheless, it is essential to note that both failure mechanisms demonstrate significant ductility and higher strength. A 
typical force-displacement curve, damage pattern, and the evolution of damage for FM-4, are shown in Fig. 13. 

Finally, the rocking behavior of the pier-spandrel system, including flexural cracks along the pier-spandrel connections, is denoted 
as FM-5 (see Fig. 14). Such a failure mode is associated with the highest lateral resisting force among all failure modes and the ability to 
maintain that lateral force up to large displacements. Although early flexural cracking of pier-spandrel connections decreases the 
stiffness, no strength degradation is observed until the toe crushing in the pier, shown in Fig. 14. This failure mode makes up 8% of all 
simulations, confirming that global rocking mechanisms of URM wall systems representative of old masonry buildings (which was the 
case considered in the experimental testing campaign, see Sect. 4) rarely occur, but they would provide the best response to in-plane 
lateral loading as expected for new buildings in seismic design codes. 

Fig. 12. Illustration of FM-2: Typical force-displacement behavior and progressive tensile failure at the joints: (a) Left: Force vs. displacement response; Right: Near- 
collapse mechanism (computational model) – (b) Progressive joint opening (from left to right); 10, 20 and 40 mm. 

Fig. 13. Illustration of FM-4: Typical force-displacement behavior and progressive tensile failure at the joints. (a) Left: Force vs. displacement response; Right: Near- 
collapse mechanism (computational model) – (b) Progressive joint opening (from left to right); 10, 20 and 40 mm. 
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5.3. Interpretation of results considering the influence of material properties 

In this section, the previously presented failure modes are further investigated to reveal any correlation between the material 
properties and the strength or displacement capacity of the pier-spandrel system. Here, the degree of correlation is represented by 
Pearson product-moment correlation coefficient, ρx,y (Equation (12)), which quantifies a linear statistical dependence between two 
random variables (x,y). This correlation coefficient ranges between 0 and 1, which respectively indicates zero and full correlation. 

ρx,y =
Σ(xi − x)(yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(xi − x)2
(yi − y)2

√ (12) 

For all failure modes, the correlation between the joint tensile strength and the lateral load capacity of the system is found to be 
substantial. In contrast, very little or no correlation was found with the other parameters. Fig. 15 not only shows the effect of the joint 
tensile strength on the load-carrying capacity for each failure mode but also represents how the failure modes change depending on 
whether the joint tensile strength (ft,j) is higher, or lower than its mean value. According to the results of the analyses, FM-3 and FM-4 
are almost directly correlated with the system’s load carrying capacity, as the correlation coefficient reaches unity. For other failure 
modes, the correlation is still significant. FM-1 and FM-2 are associated with low ft,j, whereas FM-3, FM-4, and especially FM-5 have 
higher ft,j. This result emphasizes that the joint tensile strength governs the in-plane lateral resistance of the system; and hence, the 
associated collapse mechanism. However, it would be better to be cautious at this point since it may also be overlooking the effects of 

Fig. 14. Illustration of FM-5: Typical force-displacement behavior and progressive tensile failure at the joints: (a) Left: Force vs. displacement response; Right: Near- 
collapse mechanism (computational model) – (b) Progressive joint opening (from left to right); 10, 20 and 40 mm. 

Fig. 15. Influence of the joint tensile strength on the lateral load capacity of the pier-spandrel system.  
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joint friction angle due to specified vertical stress and boundary conditions, as the joint friction angle was found to be very influential 
on the lateral resistance of single URM walls in previous studies [10,35,54,64]. In addition, the load-carrying capacity of the system is 
found to be correlated above 95% with compressive strength for FM-5. This observation also makes sense as compression failure of the 
pier occurs in FM-5. It is important to note that toe crushing was observed during testing, effectively simulated via the proposed 
non-linear modeling strategy. 

In terms of correlation among material properties and the displacement capacity of the pier-spandrel system, no inference could be 
made except for FM-5. As illustrated in Fig. 16, only FM-5 provides correlations between the displacement capacity and the joint tensile 
strength, and the compressive strength of masonry. 

6. Simplified macro block analysis vs. DRBA 

In this section, the two most obtained failure modes (FM-1 and FM-4) are revisited and analyzed according to the displacement- 
based approach defined by the Italian building code [65]. In contrast to the classical force-displacement approach [66], which only 
provides the load multiplier that activates the failure mechanism, the displacement-based approach considers varied kinematic 
configurations to evaluate the curve descending branch [67,68,69]. 

The analyses involve as parent mechanisms both FM-1 and FM-4 that are investigated under different hypotheses, i.e., considering 
infinite or finite compressive strength of the masonry. According to Refs. [70,71], when infinite compressive strength is considered, the 
interface is called impenetrable, and the hinges (centres of rotation) can form only at the end-points of the interface, as shown in 
Fig. 17a. On the other hand, when the compressive strength of the masonry is finite, crushing occurs, and a suitable model should be 
used to schematize the crushing phenomenon, revealed in Fig. 17b. Thus, the position of the hinge must be moved over a distance th 
that defines the resultant location of the constant compressive stress at the interface between the macroblock and the support (see 
Fig. 17b). It is computed by equating the resultant of the rectangular compressive stress with the total axial load actions that reads: 

th =
ΣWi

2 · 0.85 · fc,m · t
(13) 

Fig. 16. Percent change in the load and displacement capacity of the pier-spandrel system for the joint tensile strength and compressive strength of masonry – FM5: 
(a) Load – (b) Displacement Capacity. 

Fig. 17. (a) Kinematic of the single block: infinite compressive strength; (b) kinematic of the single block: finite compressive strength; (c) kinematic of FM-4: finite 
compressive strength. 
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where Wi are the vertical forces arising from the self-weight and the dead load acting of the top of the spandrel, t is the thickness of the 
wall and fc,m is the compressive strength of the masonry. The Italian standard [65] suggests this formulation in particular when the 
mechanism involves only one macroblock, and thus the kinematic chain has only an external hinge connected to the ground. In order to 
apply such formulation for a pier-spandrel system, i.e., a system constituted by three parts having two rotational hinges constrained to 
the ground and two internal hinges, it is required to consider an additional hypothesis that consists in distributing the axial vertical 
loads to the hinges C1 and C3. The axial actions are measured according to the influence area defined from the mid-axis that passes 
from the spandrel to the left or right edge for the hinge C1 and C3, respectively. As illustrated in Fig. 17c, rotational hinges C1 and C3 
are slightly moved of a quantity th. 

A further hypothesis is to consider the position of the internal hinges, namely C12 and C23, not coincident with the corner but 
slightly moved to consider the crushing of the masonry in those locations (see Fig. 18). To this end, a further configuration has been 
considered, i.e., Macro-Block 2, just by moving the position of the hinges C12 and C23 below and above, respectively, of a distance 
equal to one block height. The adopted kinematic configurations are summarized in Fig. 18. 

The considered kinematic configurations (FM-1 and FM-4) may be described by adopting only one degree of freedom, even though 
three parts form the kinematic chain. As a consequence, the virtual rotation of each block may be defined by multiplying a constant for 
the chosen degree of freedom, where the constants are computed by respecting geometrical compatibility rules. Once the kinematic of 
each part is mathematically defined, the principle of the virtual work may be adopted to calculate the value of the horizontal force that 
guarantees the equilibrium between stabilizing and destabilizing work. 

Fig. 18. Kinematic chains of the investigated failure mechanisms (FM-1 and FM-4).  

Fig. 19. Comparison of different macro-block solutions and overall (envelope) D-RBA for two failure mechanisms: (a) FM-1 and (b) FM-4.  
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Thus, such an approach is adopted for varied kinematic configurations to evaluate the curve descending branch by using as a 
control point the place where is applied the horizontal force. Fig. 19 reveals the comparison of three macro-block configurations and an 
envelope of the DRBA. While the results obtained from infinite crushing strength in macro-block representation overshoot the capacity 
of the analyzed masonry pier-spandrel system, macro block-1 and macro block-2 configurations (including limited compressive 
strength and modified hinge locations) provide similar results with DRBA for both failure mechanisms, FM-1, and FM-4 (see Fig. 19). 
This outcome exemplifies that simplified solutions can be refined and practically modified in the light of advanced modeling tech
niques, suggesting a compromise among the employed computations. 

7. Discussion on collapse mechanisms and drift limits 

Post-earthquake reconnaissance and experimental results have shown three distinct behavior patterns for spandrels: (i) shear 
cracks forming due to shear dominated behavior of the spandrel, (ii) flexural cracks observed as nearly vertical cracks due to bending of 
piers, and (iii) a combination of these two types, also called mixed-type behavior [16]. The distinct failure mechanisms obtained 
through the probabilistic analysis highlight the complexity of the problem and the piers-spandrel interaction. Both piers and spandrels 
contribute to the stiffness, strength, and macro-behavior of the pier-spandrel system, making it difficult to predict the failure mode of a 
pier-spandrel system under seismic loading. 

In Fig. 20, force-displacement curves for 250 simulations are presented. Specifically, Fig. 20a shows full curves, where the lateral 
forces are applied up to 50 mm displacement, whereas, in Fig. 20b, the same force-displacement curves are truncated at 80% of the 
maximum lateral force once the degradation has started. It is evident that the ultimate displacement capacity can be remarkably 
different based on the decision where the post-peak strength value is determined. The ultimate deformation capacity of URM walls is 
generally defined as the point at which the strength drops to 80% of its value [13]. For most spandrel configurations, however, the 
decrease in lateral strength exceeds 20% after attaining the peak strength, but spandrel could sustain higher deformations without the 
complete loss of load carrying capacity. Therefore, if the same definition is applied to the spandrels to determine their ultimate 
displacement, it would be a conservative assumption, and we may underestimate the deformation capacity. In this regard, the residual 
shear strength of masonry spandrels is explicitly taken into account in various standards. It might be presumed that all failure modes 
are significantly affected by the constraint on the ultimate displacement, as shown in Table 3, confirming Beyer’s remark in Ref. [13]. 
Furthermore, for all failure modes (FM-1 to 5), the coefficient of variation of the peak lateral resisting force is less than or equal to 5%. 
On the other hand, the ultimate displacements (considered at 0.8Fmax) have significantly higher CoV, ranging between 16 and 32%, 
which highlights the noticeable variation in the displacement capacities. 

The first and second failure mechanisms represent weak pier-strong spandrel systems, which yield premature collapse at relatively 
small lateral deformations (hence drift ratios). As shown in Fig. 21, FM-1 and FM-2 result in lower strength and displacement capacities 

Fig. 20. All force-displacement curves: (a) complete behavior, (b) curves truncated at 0.8Fmax.  

Table 3 
Average maximum force and displacement for each failure mode.    

FM1 FM2 FM3 FM4 FM5 All Data 

Fmax Mean (kN) 157.6 146.5 165.3 168.3 179.5 163.25 
CoV 0.03 0.04 0.05 0.04 0.05 0.07 

Dmax Mean (mm) 44.7 42.2 48.8 48.8 50.0 47.30 
CoV 0.05 0.05 0.05 0.07 0.02 0.09 

Dmax @ 0.8 Fmax Mean (mm) 16.3 18.5 36.2 41.9 42.6 32.11 
CoV 0.25 0.32 0.26 0.17 0.16 0.43  
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compared to others. Therefore, they can be grouped as pier failure, where diagonal tensile cracks accompanied by flexural failure of the 
piers control these two failure modes, and the ultimate drifts are between 0.8 and 1%. These ultimate drifts are in line with the drift 
limits given in many structural codes, even though stone masonry is not in the scope of such standards. FM-3 and FM-4 can be grouped 
as the mixed-type failure of the spandrel, including shear and flexural cracks. Due to the initial rotation of the piers, flexural cracks 
develop first. As the axial force increases due to the increasing deformations, shear cracks form due to a diagonal compression strut, 
and the shear behavior controls the residual strength. It is seen that these failure modes have the highest ductility and drift capacity 
(>1.5%), making it a satisfactory behavior sought during seismic events. Finally, FM-5 is a combination of flexural spandrel failure and 
excessive rotations of the piers causing toe crushing. That behavior mode is associated with the highest strength and a significant drift 
capacity, over 1%, which agrees well with Italian code assumptions on masonry structures in case of flexural failure. It is important to 
note that in Fig. 21, the moving average (i.e., the average of forces corresponding to each data point on the displacement axis) is used to 
show the force-displacement curves, whereas, in Table 3, the mean values of the maximum displacement are considered. 

8. Conclusions 

This research presents an alternative discontinuum-based computational modeling framework to simulate unreinforced masonry 
systems considering material uncertainties based on the discrete element method. Particularly, the nonlinear behavior of URM pier- 
spandrel systems under lateral forces and the mechanical properties affecting the behavior are investigated. The proposed modeling 
strategy captures experimentally observed damage patterns and replicates the force-displacement relationship of the pier-spandrel 
systems. Rigid blocks are used to replicate the URM skeleton, and non-linear material laws are implemented at the joints through 
fracture energy-based contact constitutive models. The accuracy and computational efficiency of the proposed modeling approach 
enabled conducting probabilistic discontinuum analysis incorporating uncertainties in material properties. A total of 250 Monte Carlo 
simulations yielded various failure modes that occurred due to shear cracks in the piers, flexural and/or shear cracking of the spandrel, 
or a combination of both. Out of the five failure modes presented, the first two (denoted as FM-1 and FM-2) consist of pier failure and 
flexural cracks in the spandrel, resulting in the lowest strength and displacement capacities amongst all. Another couple of failure 
modes (FM-3 and FM-4) are associated with a mixed-type spandrel behavior characterized by both flexural and shear cracks. Those two 
failure modes show satisfactory behavior of the pier-spandrel system under in-plane lateral loading with a ductile response and 
considerable lateral strength. The last failure mode, FM-5, consists of the rocking behavior of the piers and the flexural tensile cracks at 
the pier-spandrel connections, highlighting the inevitable collapse of the wall system due to toe crushing at the base of the piers. The 
variability of the failure modes for this specific set-up calls attention to considering the material uncertainty in computational 
modeling. 

The results show that the joint tensile strength of masonry considerably affects the failure type and capacity. In contrast, negligible 
or no correlation is obtained for other parameters (demonstrated through the reference URM wall system, given its geometric features 
and boundary conditions (restraints and forces)). Specifically for FM-5, the influence of the masonry compressive strength is found to 
be highly correlated with the lateral strength and displacement capacity of the pier-spandrel system. FM-3 and FM-4 provide the 
highest ultimate displacements in terms of drift ratios, whereas relatively more brittle and sudden collapse mechanisms are noted for 
FM-1 and FM-2, indicating lower drift ratios than the other failure mechanisms. The results clearly show the full picture of the possible 
collapse mechanisms of URM pier-spandrel systems and underline the lack of deformation capacities of weak-pier strong-spandrel 
systems, which should be avoided to mitigate seismic vulnerability. 

Additionally, practical macro-block configurations are presented to compare against discontinuum-based solutions. It is worth 
underlining how the simplified macro-block approach tends to match the DRBA results, suggesting the adoption of a macro-block 
model able to take into account the crushing phenomenon of both internal and external hinges. This outcome exhibits a potential 
bridge between the practical calculations and advanced models, where observations derived in the latter may help prepare a refined 
simplified solution. 

Fig. 21. Moving average of the lateral force vs. drift curves for each failure mode.  
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The results of this study may be limited to the examined pier-spandrel system. Thus, similar studies are recommended for various 
lintel types (e.g., arch, reinforced concrete, timber, etc.). A detailed discussion regarding the floor slab – spandrel wall interactions 
would also be beneficial. Additionally, future studies may focus on the change in vertical stress levels and the geometry of the system, 
such as the number of piers or the aspect ratios of the spandrel and piers. Finally, probabilistic analysis of such systems can be 
investigated to account for the spatial variability of the masonry properties. 
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