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Abstract 

The chapter discusses the framework for developing a Digital Twin (DT) for the process safety 

management (PSM) of small-bore piping (SBP) on a typical offshore platform. One of the important 

problems during the PSM of SBP is that due to significantly large number of SBPs on a process 

facility it is very difficult to place sensors at small bore connection (SBC) for stress estimation. In 

absence of the stress values, it is difficult to estimate the remaining fatigue life (RFL) of SBC which 

further impedes the inspection planning. Thus, in this chapter, a methodology comprising of CFD, 

FEA and Machine Learning is sued to obtain a virtual sensor for stress estimation at the SBC. The 

input to the virtual sensor is process parameters such as pressure and flow velocity while output is 

the maximum Von-Mises stress at the SBC. Thereafter, probabilistic crack growth law coupled with 

Bayesian Network is used to develop a DT for RFL estimation of SBP, which in turn is used to 

obtain reliability curves and inspection plans. Online deployment of the developed DT will give an 

up-to-date RFL estimates and inspection plans which can be used then be used for PSM of the SBP. 
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1. Introduction to Digital Twin

In the past two decades, the concept of Digital Twin (DT) has found numerous applications across 

different industries such as aerospace, manufacturing, automotive, healthcare, process etc. The 

concept was first introduced in the field of aircraft and aerospace as an information mirroring model 

for spacecraft state simulation and to obtain accurate data for decision-making assistance (Glaessgen 

& Stargel, 2012). The first definition of the DT was postulated by Grieves as a "Physical product in 

real space, virtual product in virtual space and the connection of data and information that ties the 

two spaces together." Ever since then, numerous definitions of DT have existed in the literature 
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arising particularly due to the usage of DTs in different industries. In context to defense and 

aerospace industries DT is defined as “an integrated multiphysics, multiscale, probabilistic 

simulation of an as-built system, enabled by Digital Thread, that uses the best available models, 

sensor information, and input data to mirror and predict activities/performance over the life of its 

corresponding physical twin.” (West and Blacburn 2017). The main focus in the aforementioned 

definition was on core concepts of structural mechanics, material science, and estimating the long 

term behavior of the aircraft. However, for the manufacturing industry, besides system performance 

prediction, the DT also ensures continuous information transmission amongst various phases of 

product lifecycle, based on computer-aided simulations (Haag and Anderl 2018). The main goal of 

using DT in the process industry is for online operational monitoring, predictive maintenance, 

leakage detections and dynamic process optimization. Thus, in context to process industry DT can 

be defined as “as a virtual representation of a physical asset enabled through data and simulators 

for real-time prediction, optimization, monitoring, controlling, and improved decision making” 

(Rasheed et al., 2020). Irrespective of which industry DTs are used, the three main pillars of the DT 

are, physical system, virtual representation of the physical system (this could be 3D CAD model, 

ontologies or Simulink/Simscape/Modellica model) and a digital thread (continuous stream of data 

transfer between physical and virtual system). A common architecture of the DT is shown in Fig 1. 

 

Fig. 1: Common Architecture of a Digital Twin (Adapted from Ferreira et al., 2019) 

 

The concept of DT can be classified based upon its application area and also on how the dataflow 

occurs between physical system and its virtual representation. Based on the application area the 

different types of DTs are (Grieves and Vickers, 2017): 

1. Digital Twin Prototype (DTP):  A DTP consists of the informational sets (such as 3D 

models, Bills of Materials, Bills of Processes etc.) which is imperative for describing and 

producing a physical version that emulates the virtual version.  

2. Digital Twin Instance (DTI): A DT that represents its physical counterpart throughout its 

life cycle and is linked to a particular physical asset with the help of continuous digital 

thread (historical data, live data from sensors, tests and inspection).  



3. Digital Twin Aggregate (DTA): An aggregation of all the DTIs, of a particular system or 

system of systems.  

4. Digital Twin Environment: It refers to fully integrated, multi-disciplinary physics 

application space for operating a DT for predictive (to estimate the future behavior) or 

interrogative (to understand the historical or current state) purposes. 

 

Based upon how the dataflow occurs between physical system and its virtual representation, 

distinction can be made between digital model, digital generator, digital shadow and a digital twin, 

as highlighted in. Fig. 2. For the digital model, the data integration between the physical asset and 

its virtual representation is not automatic which implies any change either in physical asset or in a 

virtual model must be executed manually by analyst/engineer. A bit more advanced concept in terms 

of data integration is a digital shadow which allows unidirectional automatic information flow from 

the physical world to the virtual world. For e.g. a system where sensors measure information from 

the physical model and transfer signals to the virtual model is an example of the Digital Shadow. 

Irrespective of whether information flows is continuous or discretized, as long as it is automatic, the 

integration level can be determined as a digital shadow (Sanabria, et al., 2022). As can be seen from 

Fig. 2, for a DT, interaction and convergence are its two key aspects, meaning that autonomous bi-

directional data exchange between physical system and virtual system is a must. For a DT, the 

information flowing from the virtual world to the physical asset will instruct actuators to perform 

certain operation which will change the physical asset in some way. On the other hand, the data 

from the sensors on the physical asset generally changes the virtual twin automatically in such a 

way that it accurately represents the current state and the future evolution of its physical counterpart. 

Thus, A DT is something alive that changes, improves and evolves while maintaining the 

comparison between physical and virtual space (Sanabria, et al., 2022). 

 

 

Fig. 2 Difference Between Concepts Related to Digital Twin (Adapted from Tekinerdogan and 

Verdouw, 2020) 

 

In order to avoid confusion between DT and several other related concepts such as model, 

simulations, Cyber physical systems (CPSs) and Internet of things (IoT) it is important to create a 

clear distinction between these concepts. Engineering models (such as mathematical models, 

statistical models, 3D CAD, data driven etc.) generally consists of many idealizations and 

approximations and are used to understand the underlying physical phenomenon/system. For 

example, Paris law is an empirical crack growth model which is used in different industries in order 



to calculate remaining fatigue life of the component. Simulations on the other hand primarily 

involve computer-based models which are used during the design phase to perform what-if analysis 

for the underlying physical system. Simulation technology has changed considerably from single  

 

Fig. 3. Difference Between Simulation and a Digital Twin 

 

discipline software (1985) to CAD/CAM integrated multi-disciplinary software (2000) as shown in 

Fig 3. Nevertheless, simulation results depend upon the input given by the analyst and hence it is a 

static virtual representation of the physical system. DTs overcome this gap by coupling simulation 

modeling with IoT platform, and thus the input to the DT is the real-time data captured with the 

help of sensors on the physical system and thus enabling the analyst to virtually observe the 

operation of the physical system. Thus, simulation, models, IoT platform are combined to form the 

DT in order to enhance the value across the entire life cycle of the product. It must be mentioned 

there that many real assets (such as Wind Turbines) are cyber-physical systems, meaning that they 

consist of both the physical/hardware elements (such as Blades, tower, Nacelle, generator) and 

cyber/software elements (such as control system etc.). While building a DT of a CPS, the physical 

elements are represented by a virtual model (which are approximations of reality as discussed 

above), while the cyber elements, can be included directly in the DT, which can then be used for 

modeling, simulating, and optimizing the CPS. The DTs can be used during entire life cycle of the 

system, for example during design phase they can be used for virtual testing, while during 

manufacturing they can simulate the production process. From the process safety management point 

of view, application of DT during the operational phase, offers the maximum benefit as they can be 

utilized to continuously reflect the past, present and future health of the system/asset, which in turn 

can be used to formulate inspection and maintenance plans. Besides this, DTs also allow analyst to 

perform complex and safety critical simulations, in order to calculate the dynamic risk, before such 

an event happens in real life. The operators can then take necessary decisions in order to mitigate 

the dynamic risk estimated by the DT, and thus maintain process safety at the industry regulated 

levels. 

2. Process Safety Management of Small-Bore Piping 

On a typical process facility, the process piping can be categorized into mainline piping and Small 

Bore Piping (SBP), as shown in Fig.4. The SBP is a process piping having diameter of two inches 

or less which typically branches off the main process piping and is often used as relief lines, nozzles, 

instrumentation ports and drains. The connection of SBP with the mainline piping is called as Small-



Bore Connection (SBC). In the recent years the refining industry has had a history of failures 

occurring in Small-bore Connections (SBCs) (Baggett 2019). Likewise, both the petroleum and  

 

 

Fig. 4 Schematic of typical process piping 

 

maritime industry also report significant SBP failures leading to Hydrocarbon Release (HCR). 

Although all HCRs emanating from failed pipework are of concern, the main danger comes from 

gaseous releases, as the gas cloud produced has the potential to quickly spread across the OOG 

platform. For instance, a gas release from a 6-mm diameter hole in a piping system operating at 

about 150 bar (i.e. 15 MPa) has the potential to turn into a major HCR (i.e. greater than 300 kg) in 

approximately eight minutes (EI, 2013). If ignited, HCR can escalate into a major accident, resulting 

in significant economic losses and environmental damage, whilst causing a serious threat to the lives 

of personnel. Different degradation mechanisms (such as corrosion, erosion, stress corrosion 

cracking, corrosion under insulation and fatigue, etc.) are responsible for diminishing the health 

state of SBP, nevertheless fatigue (emanating due to vibrations) is attributed as the most prominent 

deterioration phenomenon causing failure of SBP as depicted in Fig. 5. 

In a process piping system, cyclic loads emanate due to the excitation of the mainline piping carrying 

the hydrocarbons. This consequently leads to the magnified vibrations in small bore piping and 

ultimately causing the fatigue failure of the SBCs leading to HCR. Hence, from process safety 

perspective it is necessary to comprehend the chain of actions causing the fatigue failure of the 

SBCs. Fig. 6 depicts the failure chain due to the Vibration Induced Fatigue (VIF). It can be seen 

from the Fig. 6, that the excitation forces responsible for vibrating the mainline piping are classified 

as steady state or transient. The former occurs during the normal operating conditions and emanates 

due to phenomenon such as flow-induced turbulence, flow-induced pulsations, pulsations from 

pumps/compressors, etc. (EI Guidelines, 2007). On the contrary the latter originate during events 

such as changing operating conditions, additional units coming online, normal start-up and 

shutdown, emergency shutdown, valve operation, etc. (HSE-OTR-028, 2002).  In order to mitigate 

the likelihood of the HCR from the process piping on the offshore platforms, it is necessary to deeply 

understand the excitation mechanisms depicted in Fig. 6. The taxonomy of the fatigue originating 

in process piping is illustrated in Fig. 7. Process piping especially near rotary equipment is subjected 

to High Cycle Fatigue (HCF) and VIF is the major reason for it’s failure. Although piping vibration 
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is seldomly detected visually, nevertheless, expert knowledge (from standards such as EI Guidelines 

and from practicing engineers) coupled with condition monitoring data can help to frame effective 

inspection and maintenance (I&M) strategies for preventing unwanted piping breakdown due to 

fatigue. In order to cater for better understanding of the fatigue loading of SBP, EI guidelines suggest 

a more detailed analysis of SBP using advanced simulation techniques, such as Computational Fluid 

Dynamics (CFD), Finite Element Analysis (FEA), as these techniques allow, analyst to perform the 

dynamic simulation of pressure, temperature and flow characteristics in process facilities, which in 

turn are used to compute risk and reliability of the SBP (EI, 2007). 

 

Fig. 5 Most Dominant degradation Mechanisms (adopted from DNV, 2020). 

 

Fig. 6. Vibration Induced Fatigue Failure Chain (adapted from Swindell, 2003). 
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Fig. 7. Taxonomy of the piping fatigue.      

3. Digital Twin for Small Bore Piping 

As discussed, a DT is the most realistic representation of a physical asset, which incorporates models 

and all necessary available information (operational, organizational, and technical) of the asset. 

Some of the areas where a DT can be used effectively in the process industry is for the early anomaly 

detection of production process parameters, prognostics and health management (PHM) of assets, 

support for decision-making on process safety management (PSM) (EL Saddik, 2018; Tao et al., 

2019). Lately, in the process industry the concept of DT is being applied for predictive maintenance 

of the various assets such as pumps, heat exchangers, etc. (Min, et al, 2019). However, when it 

comes to usage of DT technology for SBP, very little work has been done in this direction although 

SBP is the most commonly failed equipment. The primary challenge for the implementation of the 

DT for PHM of SBP is due to lack of sensor data and the current industry practice of selecting 

fatigue critical inspection location based on ad-hoc basis. The lack of sensor data stems from the 

fact that on a typical offshore platform there could be more than 100,000 SBPs, hence placing a 

physical sensor for all these SBPs would be practically impossible. Thus, if a DT needs to be built 

for the SBP, then it is vital to forge a connection between the real-world observations (for example 

from experiments, inspections) and the information obtained from the virtual sensors (data driven 

models) on the virtual model (CAD model or Simulink model). An analogy that fits this scenario is 

the one given by Allen and Tildesley (1987) in the book Computer Simulations of Liquids, where 

they demonstrate how coupling experiments (and experience), with theory and computer 

simulations, can enhance the up-to-date knowledge of a real system (See Fig. 8). Similar 

connections between real-world observations and data-driven models are equally relevant while 

making a DT for the SBP, so that an analyst /inspection engineer can get an up-to date health state 

of the asset which could then be used to estimate risk and frame I&M strategies. Hence, while 

building a DT for the SBP, it is necessary to combine the expert knowledge (either given in the 

standards or available from the practicing engineers), the data (coming from inspection, 

experiments) and the virtual models. 
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Fig. 8. Coupling real world observations with information from virtual model (Adapted from Allen 

and Tidesley, 1987) 

 

Modeling methods can either be physics-based (they try to capture the actual physics of the process 

e.g., CFD, FEA) or data-driven models (they try to find trend based upon the data e.g., machine 

learning, deep learning). It is a common practice in process industry to perform risk analysis of 

engineering assets by leveraging the results from CFD and FEA techniques owing to its ability to 

simulate the physical phenomenon with great accuracy. For example., using CFD dispersion 

modelling, Fiates and Vianna (2016) performed risk assessment of gas leakage on a typical offshore 

topside plant. Kumaresh et al. (2016) calculated transient ignition probability of gas leaks in 

enclosure using CFD, Li et al. (2019) presented a CFD based approach to describe the behavior of 

underwater gas release and dispersion from subsea gas pipelines leak. However, as argued by 

Keprate et al. (2019) the higher accuracy of the advanced dynamic simulation techniques is achieved 

at the expense of the greater time required for simulations to run, which makes these techniques 

computationally expensive and time-consuming. In order to overcome the aforementioned 

shortcomings of CFD and FEA, recently engineering community has resorted to surrogate models 

(SMs) as they are faster than the main simulation code (i.e. FEA, CFD), while still being usefully 

accurate (Keane, Forrester et al. 2008). Many researchers such as Forrester et al. (2006), Moore et 

al. (2016), Wilson et al. (2017), Loy et al. (2018), Jeon et al. (2019), and Keprate et al. (2017), 

Bagalkot et al. (2021) have used SMs to replace CFD simulations for various engineering 

applications and demonstrated the accuracy and reduced computational expense of SMs. Thus, 

while building a DT for the SBP, a hybrid method which consists of physical modeling (using CFD 

and FEA) and data driven modeling (consisting of machine learning models) can be used. 

Furthermore, when the DT is to be used for risk assessment of safety critical equipment, it is 

necessary to account for uncertainty in the physical phenomenon and thus combine the above two 

modelling methods with the probabilistic graphical models such as Bayesian Networks (Hafver et 

al., 2017). Fig. 9 demonstrates the components used for building DT for estimating the RFL for the 

SBP. As can be seen the process flow parameters such as pressure, flow velocity serves as an input 

to the DT model. In reality the value of these parameters can be continuously communicated to the 

DT using principles of IoT, however, for the sake of illustration, in the case study, authors shall use 



discrete values of these parameters. The next step is to build a virtual sensor for stress estimation 

using CFD and FEA coupled with Machine learning models. The input to the virtual sensor is 

pressure and flow velocity and the output is stress value at the SBC. Thereafter, the calculated stress 

acts as one of the inputs (along with initial crack size, critical crack size and material parameters) 

to the empirical crack growth model (Paris law) which is then coupled with a Bayesian Network 

model to estimate the probability density function (PDF) of the RFL of the SBP. Finally, the 

Cumulative Density Function (CDF) is used to establish the reliability curve which in turn is used 

to frame inspection intervals for SBP. 

 

Fig. 9. Digital Twin Framework for Estimating RFL of SBP 

 

4. Illustrative Case Study 

4.1 General 

For this case study, a DT for estimating the Remaining Fatigue Life (RFL) of SBP shall be 

developed using hybrid approach which includes physics based modeling (captured by CFD/FEA 

and analytical crack growth model), the surrogate models (using machine learning models) and 

logical models (Bayesian Newtork). AISI Type 304 Stainless Steel (SUS 304) having yield strength 

of 215MPa, is chosen as the material of the process piping. A semi-elliptical surface crack (having 

crack depth of a, and crack length of 2c) is assumed to be initiated at the weld toe of the SBC, which 

shall propagate under the influence of the stress acting at the weld toe interface. A total of 4 small 

bore sizes have been used for a fixed size of main pipe. For a 10-inch (Nominal 80S) size main pipe, 

four small bore size 0.5-inch, 1-inch, 1.5-inch, and 2-inch (all Nominal 80S) have been used as 

shown in Table 1.  

Table 1: Details of the size of the main pipe and small bore 

DN (inch) DN (mm) OD (mm) ID (mmm) Thickness(mm) 

0.5 (small-bore) 15 21.3 13.84 3.73 

1 (small-bore) 25 33.4 24.3 4.55 

1.5 (small-bore) 40 48.3 38.14 5.08 

2 (small-bore) 50 60.3 49.22 5.54 

10 (main pipe) 250 273.1 247.7 12.7 

 



The first step in creation of the DT is to create a virtual representation of the piping system and use 

this virtual model for FEA and CFD analysis to estimate the stress acting on the SBC. Since CFD 

and FEA simulations are computationally expensive, so a surrogate model is used as a virtual model, 

for estimating stress. The detailed methodology for stress prediction using CFD, FEA, and ML 

approach as shown in the Figure 3 is discussed. ANSYS software is used to perform Fluid Structure 

Interaction (FSI) by coupling CFD and FEA analysis. The details of each step in the methodology 

shall be presented in the upcoming sections. As shown in Fig 10, first the CFD analysis shall be 

carried out, the results of this analysis are then transferred to a FE analysis tool, which will estimate 

the stress distribution on the weld toe of the SBP. Thereafter nineteen different Machine Learning 

(ML) algorithm are trained, tested and validated using the data generated from the CFD/FEA 

analysis. The most accurate ML algorithm (Optimizable Gaussian Process Regression in our case) 

is then utilized to predict value of the stress for 10000 samples (of pressure and velocity variables) 

generated using Latin Hypercubic Sampling (LHS). Thereafter, different distributions are fitted on 

the predicted maximum stress value and the Akaike Information Criterion (AIC) value is calculated 

to determine the best distribution fit for the stress acting on SBP.    

4.2 Physics Based Modeling 

4.2.1 Creation of the Model: 

A single small-bore attached to the main pipe configuration is used to carry out the analysis in the 

current study. The dimensions of the main pipe and small-bore is adopted from Energy Institute (EI, 

2008). Fig. 11 shows the 3D CAD model with a small-bore and main pipe used to carry out both 

CFD and finite element (FE) analysis. The 3D CAD model is segmented into a fluid region 

representing the fluid flow and a solid region representing the pipe body.  

 

Fig 10. Methodology used for stress estimation (Using Virtual Sensor)  



 

Fig 11. CAD model of mainline piping and SBP 

 

4.2.2 Model Meshing 

For creating high fidelity physics based model using CFD/FEA, meshing plays a very important 

role. Too coarse mesh can lead to lowering the accuracy of the model, while too fine mesh can 

significantly increase the computation time. Thus a mesh sensitivity study was performed for this 

work. The 3D model shown in the Fig 11 was meshed using ANSYS Meshing Tool. Since there are 

two modes of simulation CFD and FEA, there will be two types of meshing finite volume and finite 

element. For the CFD analysis a finite volume mesh was created on the fluid flow region. Fig 12b 

shows the mesh distribution at the junction of small bore and main pipe, the distribution of inflation 

layers as shown in Fig 12c, along with mesh details. The mesh size was selected after a 

comprehensive mesh sensitivity study. The size of the first layer of the inflation was based on the 

Y+ < 1 criteria, a total of 12 layers of inflation with growth rate of 1.15 was used for CFD meshing. 

The minimum face size of the mesh was selected to be 8*10-5 m and max face size was restricted to 

2*10-3 m, the increment in the size is based on the growth rate of 1.15. For the region represented 

by the structure of the main pipe and small bore, a finite element mesh is implemented. The nodes 

of the mesh on the pipes will be able to transfer the pressure loads arising from fluid flow and impact 

and transfer is as stresses within the pipe structure. The element distribution at the main pipe and 

small bore is shown in Fig. 13. Similar to CFD mesh the mesh size for stress analysis was selected 

after a comprehensive mesh sensitivity analysis. The supports were provided at the either ends of 

the main pipe. 

4.2.3 CFD and FEA Analysis: 

After the model is meshed, ANSYS FLUENT 2021 R2 is used to carry out a comprehensive CFD 

analysis. For each size of bore the CFD analysis is carried out range of operational pressure and 

velocity. Due to limited time availability for illustration purposes, the analysis was carried out for 

four operating pressures 5, 15, 25, and 35 bar, for each of these operating pressures, the analysis 



was carried out for 7 operating flow rates, the flow rates are represented as velocity (keeping the 

inlet density and area constant) in the range of 1.5 m/s to 8.4 m/s. From the boundary condition 

perspective, a velocity inlet with inlet gauge pressure is used as inlet boundary condition, and 

pressure outlet is implemented at the exit to the main pipe. The small bore acts a dead-leg and has 

no flow exiting it. Compressible air is used for the simulation with Peng Robinson model. A two-

equation k-epsilon, with scalable wall function turbulence model option was implemented. The 

pressure force applied by the fluid on the internal walls of the pipe calculated by the FLUENT 

software is transferred to the FEA software, to estimate the mechanical stress on the structure arising 

due to the pressure loads. The software is setup to estimate the Equivalent Von-Mises stress at the 

junction of main pipe and small bore. The stress on the internal and external wall of the SBP is 

estimated. The boundary condition includes fixed support at the end of the main pipe, and gravity 

effect, the influence of the weight of equipment at the end of small bore like check valves, pressure 

or temperature sensors, was neglected.  

All the results of the simulation are of similar nature except from change in magnitude, therefore as 

a representative case the FSI (CFD and FEA) results for the case study of 1.0- inch small bore at 

fixed pressure of 5 bar and at three different flow rates will be presented in detail. For the rest of the 

cases the output FSI result (Von-Mises stress) will be reported, which will later be used to build the 

surrogate model for stress prediction.  

 

Fig. 12 Mesh distribution and mesh details for CFD analysis. 

 

Fig. 13 Mesh distribution and mesh details for FE analysis. 



Fig 14 shows the velocity vector at the junction of the main pipe and small-bore for 5 bar (1inch 

small bore, operational velocity 8.5 m/s). Fig 14a is along a central plane parallel to the flow 

direction (positive x-axis) and Fig 14b is along the plane perpendicular to the flow direction.  The 

velocity vector gives a clear picture of where the stress might get induced in the pipe due to the 

flow. As can be seen a major turbulence region is created in the vicinity of junction, this turbulence 

gives rise to region of pressure fluctuations or uneven pressures as shown in Fig 15  

 

Fig. 14 Velocity vector at the SBC 

 

Fig. 15 Pressure Concentration at the SBC 

Fig 16 shows the Von-Mises stress estimated by the ANSYS Mechanical software using the pressure 

loads from the ANSYS FLUENT software for flow condition mentioned in description of above 

CFD results. Fig 16a and Fig 16b show the stress distribution at the external and internal surface of 

the junction respectively and flow direction is in the positive X-direction. It may be observed that 

the maximum stress concentration, as well as stress distribution (regions of low and high stresses) 

stress is at SBC. The observations made in Fig 16 is supported from the flow and force results shown 

in Fig 14 and Fig 15. Furthermore, the stress is slightly higher on the inner diameter of the pipe 



compared to outer diameter. Similarly, for a fixed size, the larger the flow rate, the greater is the 

stress at the junction of small bore and main pipe as can be seen in Fig. 16.  

 

Fig. 16 Stress distribution at SBC at different velocity (1-inch small bore, 5 bar) 

 

Although FEA/CFD is a good approach for emulating the physical phenomenon, but is can be seen 

that it is practically impossible to estimate stress at SBC for different values of parameters (pressure 

and volume flow rate). Thus, we shall employ surrogate model which once trained and tested can 

act as a replacement to the computationally expensive and/or time-consuming CFD/FEA 

simulations, without compromising the accuracy of the output.   

 



4.3 Surrogate Modelling 

   The most commonly used SMs in the engineering domain are linear regression, Tree based 

methods, Ensemble methods, Boosting methods, Support Vector Machine and GPR. The 

mathematical background and theory of the various SMs used in this manuscript are discussed 

briefly (Keprate et al. 2017). The data generated from CFD/FSI simulations was used for training, 

testing and validation of these SMs. Eighty-Four data points are used to train the aforementioned 

SMs, while Twenty-Eight data points are used as for the validation purpose. Nineteen different SMs 

(consisting of linear regression, Tree based methods, Ensemble methods, Boosting methods, 

Support Vector Machine and GPR) are evaluated using 4 metrics, namely, Root Mean Square Error 

(RMSE), Maximum Absolute Error (MAE), Coefficient of Determination (R2) and training time. 

Thereafter, using the flowchart shown in Fig. 17, different SMs are constructed to predict the value 

of the Maximum Stress. K-fold (10 folds in our case) cross validation is used during the training of 

the surrogate models. Afterwards, the most accurate SM is further optimized using Bayesian 

Optimization to further improve its accuracy. Finally, the optimized SM is trained on validation 

dataset and the predicted values of maximum stress are compared to the values obtained from CFD 

and FEA.  

 

Fig. 17 Flowchart to build Surrogate models for Maximum Stress prediction 

 

In order to compare the performance of the SMs, four metrics, namely, Root Mean Square 

Error (RMSE), Maximum Absolute Error (MAE), coefficient-of-determination (R2) and training 

time are used. Mathematically, these are written as: 



𝑅𝑀𝑆𝐸 = (∑ (𝑦𝑖 − 𝑦̂𝑖)2)𝑛
𝑖=1

0.5
  

𝑀𝐴𝐸 = max(|𝑦1 − 𝑦̂1|, |𝑦2 − 𝑦̂2|, . . , |𝑦𝑛 − 𝑦̂𝑛|)                           (1) 

R2 = 1 −
𝑆𝑆𝐸𝑟𝑟𝑜𝑟

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
  

Generally, the most efficient algorithm should have minimum value of RMSE, MAE and training 

time, and the value of R2 should be closer to 1. The comparison of different SMs is presented in 

Table 2 and it can be seen that Ensemble Bagged trees is the worst performing algorithm while, 

Gaussian Process Regression (GPR) having a squared exponential kernel function is the best 

performing algorithm.  

Table 2. Comparison of different Surrogate Models 

Surrogate Model RMSE (MPa) MAE (MPa) 𝐑𝟐 Training 

Time (s) 

Linear Regression 7.91 5.87 0.9 2.41 

Linear Regression with Interaction 3.99 5.71 0.97 0.50 

Robust Linear Regression 7.97 7.87 0.89 0.58 

Stepwise Linear Regression 3.99 3.03 0.97 2.06 

Fine Tree Algorithm 13.99 11.26 0.68 0.69 

Medium Tree Algorithm 16.81 12.86 0.53 0.17 

Coarse Tree Algorithm 19.01 14.85 0.4 0.17 

Ensemble Boosted Trees 7.54 4.9 0.91 2.05 

Ensemble Bagged Trees 24.41 19.76 0.01 1.65 

Linear SVM 8.00 5.63 0.89 0.84 

Quadratic SVM 3.08 2.46 0.98 0.30 

Cubic SVM 2.21 1.83 0.99 0.24 

Fine Gaussian SVM 18.17 13.86 0.45 0.29 

Medium Gaussian SVM 5.51 3.65 0.95 0.21 

Coarse Gaussian SVM 7.67 5.03 0.90 0.28 

Rational Quadratic GPR 2.02 1.40 0.99 0.98 

Squared Exponential GPR 2.01 1.39 0.99 0.46 

Matern 5/2 GPR 2.04 1.42 0.99 0.53 

Exponential GPR 3.31 2.12 0.98 0.46 

 

It is further possible to enhance the accuracy of GPR, by performing Bayesian optimization.  In 

total 30 iterations are performed across the entire hyperparameter space (such as Basis Function, 

kernel function, kernel scale etc.) of the GPR to arrive at the optimized parameters (which are 

constant basis function, non-isotropic matern 5/2 kernel function, 34.89 kernel scale). The value of 

evaluation metrics for optimized GPR are RMSE of 1.81MPa, MAE of 1.28MPa and R2 of 0.99. 

However, the training time increased to 102.99 seconds, which is logical as 30 iterations were 



performed with different values of hyperparameters, to arrive at the optimized parameter values. 

Furthermore, the plot comparing the stress values predicted by CFD/FEA and GPR are shown in 

Fig. 18, in which true response represents the former stress values while the predicted response 

represents the stress value estimated by optimized GPR. It is seen that for most of observations GPR 

predicts accurately the value of stress. However, it is vital to check the optimized GPR performance 

on the validation dataset. As can be seen from Fig. 19 and also inferred from the value of RMSE 

which is 3.012MPa, and R2 which is 0.974, thus performance of optimized GPR is good even on 

validation dataset. The, trained optimized GPR shall now serve as a virtual/soft sensor which can 

be used to predict maximum stress for SBP for the given flow conditions.  

 

Fig. 18 True vs. predicted stress values for training dataset 

 

Fig. 19 Maximum stress values predicted for validation dataset 



If the flow data and pressure readings are obtained in real time from the process facility, then they 

can serve as in out data to the developed soft sensor. However, if it is not possible then we can 

utilize various sampling techniques to generate the input data. For illustrative purpose, Latin 

Hypercubic Sampling (LHS) is utilized to obtain 10000 samples of pressure variable (between 5bar 

and 35 bar), and of velocity variable between 1.5m/s and 8.7m/s, which act as input to the virtual 

sensor, which in turn estimates the value of max stress for these 10000 samples for a 2inch (50mm 

Nominal Diameter) SBP. Thereafter, different distributions are fitted on predicted maximum stress 

value. The two best fitted distributions are lognormal (log location = 3.37 and log scale = 0.388) 

and 2-parameter Weibull distribution (scale = 35.23, shape r = 2.86) as can be seen in Fig.20. The 

Akaike information criterion (AIC) value was calculated to determine of the quality of the 

distribution fit.  Generally, the distribution with the low AIC value is usually the preferred 

distribution. Amongst the two distributions, lognormal distribution was the best fit for the given, as 

its AIC value was lower than Weibull distribution (AIC_LN = 76939, while AIC_Wbl = 77113). 

 

 

Fig. 20 Distribution fitting on stress values estimated from the Virtual Sensor 

 

4.4 Bayesian Network Modeling for Estimating RFL 

 The next step is to use probabilistic graphical model i.e. Bayesian Network (BN) to build a DT for 

estimating the RFL of SBP. The main component of the BN is the empirical Paris crack growth law, 

which captures the physics behind the crack propagation. Paris law is stated as: 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚    𝑓𝑜𝑟 ∆𝐾𝑡ℎ  ≤  ∆𝐾 ≤ 𝐾𝑚𝑎𝑡                                (1) 

where a is the crack size in m, N is the number of cycles, 
𝑑𝑎

𝑑𝑁
 is the increment in the crack growth 

rate in m/cycle, ∆𝐾 is the stress intensity factor (SIF) range in MPa√𝑚, ∆𝐾𝑡ℎ is the threshold 

value of the SIF, 𝐾𝑚𝑎𝑡is the material fracture toughness, and m and C are the material parameters. 

The range of the SIF depends upon the parameters such as the range of the remote stress (∆𝜎) , 

crack size (a) and the geometric function (Y).  The number of fatigue loading cycles (RFL) 



required to grow a crack from the (ICS), 𝑎𝑖, to the final crack size, 𝑎𝑁, can be determined by 

integrating Eq. 2. 

𝑅𝐹𝐿 =  
𝑎𝑁

1−
𝑚
2 − 𝑎

𝑖

1−
𝑚
2

𝐶(1−
𝑚

2
)(∆𝜎 𝑌 √𝜋)

𝑚             (2)          

The various parameters of the Paris model are considered as random variables, and are represented 

by a suitable probability distribution and associated parameters as shown in Table 3.  For our 

analysis we consider the uncertainty only in three parameters namely, initial crack size (𝑎𝑖), material 

parameter (C) and the remote stress range (∆𝜎 ), while other parameters (critical crack size and 

material parameter (m)) are treated as non-random variables. The value of initial crack size is 

calculated using Equivalent Initial Flaw Size (EIFS) concept given in (Sankararaman et al., 2011), 

while the value of parameter C is taken from the literature. Furthermore, since Paris model is an 

empirical law, hence it is also subjected to uncertainty which is represented by a modelling error 𝜀𝑟  

whose value in practice is obtained from the experiments.  However, in this chapter for the sake of 

illustration,  𝜀𝑟 is represented by a 5% Gaussian white noise. The value of remote stress range (∆𝜎) 

is obtained from the distribution fitting to the data obtained from the virtual sensor developed earlier 

in the chapter, while the value of geometric function Y is calculated using suitable industrial 

standards. All the yellow color nodes are input to the BN, while orange color node represents the 

crack size evolution with time. The BN can finally generate the distribution of RFL (using 10000 

samples) which is shown in Fig. 21. It must be mentioned here that for the sale of illustration, 

authors are manually assigning values to the various parameters of the BN, however, in real 

world implementation of the DT, the entire data input can be automated. 

Table 3.  Uncertainty Quantification for RFL estimation 

Uncertainty Source Random Variable Parameter Value 

Initial crack size 

Material parameter 

Material parameter 

Remote stress range 

Critical crack size 

Geometric function 

𝑎0 (mm) 

C 

m 

∆𝜎 (MPa) 

 𝑎𝑐(mm) 

Y 

           LN (0.47, 0.0333) 

        LN (-21.9, 0.3708) 

3.5 

LN (3.37, 0.388)  

12.7 

0.952 

 

A closer look at the Probability Density Function (PDF) of the RFL tells us that the mean value of 

the RFL equals to 2.7492e06 cycles, while the 95% confidence interval (CI) is calculated as 

[6.1557e04 and 1.68e07] cycles. The estimated RFL can be used to estimate the reliability (in the 

form of reliability curve as shown in Fig 22) of SBP, which in turn can be used to frame the future 

inspection intervals. In this method the operator sets the target reliability depending upon the limit 

states and the safety class. For example, if we consider fatigue limit state and high safety class then 

the target reliability level for the piping system should be 0.9999.  From Fig. 23, the corresponding 

number of cycles for a target reliability of 0.9999 approximately equals to 20000 cycles (as shown 

by red colored line on the figure). Thus, the first inspection of 2inch SBP must be done after 20000 

cycles. The same DT concept can be used to frame inspection intervals of different sizes of SBPs 

(0.5-inch, 1 inch etc.) and in this way the inspection plan of SBPs for entire process plant can be 



generated in a short period of time. Such a proactive strategy would help inspection engineers to 

timely inspect the SBP and thus help in preventing unwanted breakdown due to fatigue, thus 

enhancing process safety.                      

 

Fig. 21 Bayesian Network Enabled DT for RFL Estimation of SBP 

 

 

Fig. 22 Probability density function of RFL of SBP (10000 samples) 

 



 

Fig. 23 Reliability Curve for the 2inch SBP (10000 samples) 

 

Conclusion: 

In this chapter, a Digital Twin Framework for estimating the Remaining Fatigue Life of Small Bore 

Piping was developed. Due to large number of SBPs on a typical process facility, the problem of placing 

a physical sernsor was also discussed. As a solution to the aofrementioned problem, a virtual sensor for 

utilizing CFD/FEA and Surroagte model was developed.  The input to the virtual sensor were process 

parameters (i.e. presure and flow velocity) while maxium Von-Mises stress at Small Bore Connection 

(SBC) was the output. The unceratinty in the estimated stress was catered by fitting the most suitable 

probability disribution (logormal distrubtion for our case) to the stress value. Thereafter, crack 

propagation in the piping was modeled using Probabilistic Paris Law, which had input parameters such 

as intial crack size, critical crack size, material parameters and sress. A Bayesian Newtork was developed 

for representing the probabilistic crack growth phenomenon and estimating the RFL. Finally, reliability 

curve coupledwith threshold reliability value, was utilized to arrive at the inspection plan of the SBP. In 

this chapter the input values to the virtual ensors were entered manually for the sake of demonstration, 

howver, if the DT is deployed on cloud, it is also possible to direlty feed real time process parameters int 

the DT and estimate RFL. Likewise, more input process parameters such as tempterature, pH etc. can 

aslo act as input to the DT. Although the DT framework has been deeloped for RFL estimation of SBPonly, 

it can easily be extended to other assets on a praocess faiclity and also for other degradation mechanisms 

such as corssion, erosion etc.   
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