
Vol.:(0123456789)1 3

Journal of Vibration Engineering & Technologies 
https://doi.org/10.1007/s42417-023-00995-5

ORIGINAL PAPER

Dynamic Response Analysis of High‑Speed Maglev‑Guideway System

Jian Dai1  · Joshua Guan Yi Lim2 · Kok Keng Ang2

Received: 31 December 2022 / Revised: 28 March 2023 / Accepted: 28 April 2023 
© The Author(s) 2023

Abstract
Purpose Maglev train travel is an efficient, modern and unconventional mode of transportation of passengers that has many 
advantages over the conventional railway transportation. In practice, maglev trains are primarily used for city transportation 
and connection with the airports. They often travel on elevated guideway bridges. This paper is concerned with developing a 
computationally efficient and accurate numerical method for the dynamic response of a maglev train traversing an “infinitely” 
long multi-span guideway bridge.
Methods This study is based on numerical analysis in the time domain. Each guideway span is modelled as a simply 
supported beam with rotational springs connecting to the adjacent spans. The maglev vehicle is modelled by employing the 
multi-body system. The vehicle and the guideway are coupled via the electromagnetic force. In the numerical analysis, a 
computational scheme in conjunction with the MEM is proposed for the global time-domain simulations.
Results The accuracy of the proposed computational model is validated by comparison with available data for a maglev 
test line in the literature. Thereafter, parametric studies are conducted to examine the effects of train speed, stiffness of the 
suspension system and the coupling connection between adjacent guideway beams, and guideway irregularity on the dynamic 
response of the train. Results show that a stiffer guideway coupling connection helps to reduce the vertical acceleration of 
the car body and the vertical displacement of the guideway for the parameters considered in the study.
Conclusions The computational model presented in this study in conjunction with the moving element method has the 
advantage of computationally efficient analysis and accurate prediction of the dynamic responses of a maglev train traversing 
an “infinitely” long multi-span guideway bridge over the conventional finite-element method, especially when the train is 
travelling at high speeds. The method can be extended to further consider more complex and practical cases.

Keywords Maglev train · Elevated guideway · Moving element method · Dynamic response

Introduction

Maglev train travel is an efficient modern mode of 
railway transportation. Unlike conventional wheel-on-rail 
systems, maglev trains often travel along a guideway by 
making use of the magnetic levitation technology. Such 
an unconventional mode of train travel offers a number of 
advantages over its wheeled counterparts. This includes the 
ability of achieving higher speeds owing to the elimination 

of physical wheel–rail contact and friction, much reduced 
wear and tear and thus lower levels of maintenance needs 
and cost, capability of climbing steeper grades and turning 
on smaller radii of curvature, emitting less noise, and being 
more environmentally friendly [1].

Owing to the advantages, maglev trains attracted great 
attention by researchers and engineers. Several testing 
and demonstration projects, including the Transrapid and 
SCMaglev developments, were successfully carried out 
after the technical concepts of the magnetic levitation 
and propulsion technologies were patented in the 1940s, 
following which commercial operations of maglev trains 
were realised. To date, there exists six commercially 
operating maglev lines in the world [2].

In railway transportation, travel comfort and safety are 
factors that are paramount to passengers. Even though the 
maglev technology enables safer and more comfort train 
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travels, the dynamic response of a maglev train traversing 
its sustaining guideway needs to be carefully examined to 
ensure that the vibrational levels are within the tolerable 
limits. In a maglev line, the guideway plays an important 
role in the dynamic responses of a passing train. A study 
of the Changsha maglev line examined the effect of the 
guideway weight and flexural rigidity [3, 4]. The study 
revealed that significantly higher levels of vibrational 
responses for both the electromagnets and the track when 
both the aforementioned parameters were reduced to two-
thirds or one-third of their original values, while heavier 
and stiffer guideways tend to be superior in the suppression 
of vibrational responses of the train. Besides, guideway 
irregularities arising from uneven surfaces on the guideway 
and the joints are an important source of dynamic excitations 
and thus ride discomfort. It was found that the vertical 
acceleration of a maglev train could be two times higher 
than the case without guideway irregularities [5]. Resonant 
response could also occur when the irregularity wavelength 
is one or two times of the length of the electromagnet [6]. 
Clearly, a careful design and maintenance of the guideway 
can help mitigate the dynamic response levels and thus 
improve the ride comfort of maglev train travel.

In the analysis and design of guideway bridge systems 
under moving train loads, it is crucial to employ a 
computationally efficient and accurate analysis model. The 
coupled maglev train-guideway dynamics is essentially a 
moving load on beam problem, which has been extensively 
studied [7], especially for the conventional wheel-on-rail 
systems. Simplified studies often treat the trains as moving 
concentrated loads traversing the sustaining track/bridge 
structures [8, 9]. Although these models are computationally 
efficient and able to give some physical insights into the 
dynamics of the system, they fail to account for the inertia 
of vehicles which becomes important when the train mass-
to-bridge mass ratio is not small and the track irregularity 
is not smooth [10]. To capture this important parameter, 
different vehicle models have been employed in coupled 
train-bridge systems. The commonly used train models 
include the moving mass [11] and the moving sprung 
mass [12] models. In most studies, the train is modelled by 
applying multi-body theory in which the car body, bogies, 
and wheelsets are treated as rigid bodies and the suspension 
systems are represented by spring–dashpot units. There also 
exist studies employing detailed vehicle modelling using the 
finite-element method which can predict both global and 
local dynamic responses of the train in detail but at the cost 
of high computational efforts [13].

On the other hand, bridge structures are often modelled 
by employing the Euler–Bernoulli beam theory owing to 
their slenderness [14–16]. Although such models have been 
proven to be accurate enough for applications involving 
slender structures and low-frequency vibration problems, 

they tend to overestimate the natural frequencies of deep 
beams and their higher vibrational modes [17]. The Rayleigh 
beam theory improves the Euler–Bernoulli by taking into 
account the effect of rotation of the cross-section. Results 
show that although the Rayleigh model partially corrects 
the overestimation of natural frequencies suffered by the 
Euler–Bernoulli models, its improvement is found to 
be limited [18]. The Timoshenko beam theory [19–21], 
which takes into account both the shear deformation and 
rotary inertia of the cross-section, is found to significantly 
improve the analysis accuracy, particularly for non-slender 
beams undergoing high-frequency vibrations. Besides beam 
models, plate [22], grillage [23], and sophisticated solid 
spatial element [24] bridge models have also been developed 
and employed to account for the spatial behaviour of bridge 
structures.

When it comes to the solutions to the coupled train-
bridge systems, analytical approaches such as the Fourier 
transform method [25] and mode superposition method [9] 
for the conventional wheel-on-rail systems are applicable. 
Semi-analytical solutions also found their applications in 
more sophisticated moving load problems considering, 
e.g., the critical velocity and instability of two moving 
proximate masses [26] and the nonlinearity of the track 
structure [27]. Besides, numerical solutions such as the 
finite-element method (FEM) are often employed [28, 29] 
owing to their versatility and superiority than analytical 
solutions when dealing with complex train-track dynamics. 
It should be highlighted; however, the conventional FEM 
utilising a land-fixed coordinate system encounters two main 
complications in the treatment of moving load problems. 
The first complication is associated with the artificial 
boundary effects when adopting a truncated domain to 
represent a nearly infinitely long guideway for the sake 
of computational efficiency. Furthermore, the train will 
soon move out of the truncated domain, especially at high 
speeds. When the domain size is enlarged to mitigate the 
aforementioned complication, the second complication 
of increased computational cost arises. An accurate and 
computationally efficient method for the dynamic response 
analysis of the coupled maglev train-guideway system is 
thus highly desirable. In this regard, the moving element 
method (MEM) which employs a convected moving 
coordinate system attached to the moving source may be 
superior. Such a method overcomes the aforementioned two 
complications faced by the conventional FEM and has been 
successfully applied to various train-track problems [30–35]. 
In the treatment of an “infinitely” long guideway considering 
mechanical connections between neighbouring girders under 
a moving maglev train; however, the applicability and 
accuracy of the MEM need examination. Besides, structure-
preserving numerical methods for accurate simulation 
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of dynamical systems [36–45] may be considered and 
employed.

This paper is concerned with the response analysis of a 
maglev train traversing a multiple-span guideway bridge. 
Each guideway span is modelled as simply supported beam 
with rotational springs connecting to the adjacent spans. 
The maglev vehicle is modelled by employing the multi-
body system. The vehicle and the guideway are coupled 
via the electromagnetic force. In the numerical analysis, 
a computational scheme in conjunction with the MEM is 
proposed. The accuracy of the proposed numerical model 
is examined by comparison with results obtained using the 
equivalent finite-element model. Parametric studies are 
carried out to investigate the effect of various factors on the 
dynamic response of the coupled system. These include the 
speed of the train, stiffness of vehicle suspension systems, 
guideway support stiffness, coupling connection stiffness, 
and guideway irregularities.

The remainder of the paper is organised as follows: The 
section “Numerical models and methodology” presents the 
problem definition and describes the mathematical models 
for the coupled maglev train-guideway bridge system. The 
accuracy of the proposed numerical model is verified in the 
section “Numerical verification”. The section “Response 
of coupled maglev-multiple-span guideway system” 
investigates the effects of various parameters on the dynamic 

response of the coupled train-track system. Finally, the 
section “Conclusions” concludes the findings of the study.

Numerical Models and Methodology

This study investigates the dynamic response of a maglev 
train traversing a multiple-span guideway bridge. Figure 1 
shows a schematic view of the coupled maglev-guideway 
system. This section presents the mathematical models for 
each component of the coupled system together with the 
numerical solution for the time-domain analysis.

Train Model

The train model employed in this study is based on the 
Shanghai Transrapid 08 model. A maglev vehicle is idealised 
as a multi-body system comprising a car body of mass mc 
and pitch moment of inertia Jc, four levitation bogies of mass 
mb and pitch moment of inertia Jb each, and eight magnets 
of mass mm each, as shown in Fig. 2. The magnets are 
spaced apart uniformly at an interval of 3.1 m. Each bogie 
is connected to two magnets by the primary suspensions 
with stiffness kp and damping cp. The car body is resting 
on four bogies by the secondary suspension with stiffness 
ks and damping cs. The car body and levitation bogies have 
vertical and rotational degrees of freedom (DOFs), while 

Fig. 1  Coupled maglev-multiple-span guideway system

Fig. 2  Maglev train model
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the magnets have only a vertical degree of freedom. In total, 
there are 18 DOFs. According to Newton’s second law of 
motion, the governing equations of motion can be written 
in a compact matrix form as

where Mt, Ct, Kt, and Ft denote the mass, damping and 
stiffness matrices, and external force vector of the train 
model, respectively. ÿt, y ̇t, and yt denote the acceleration, 
velocity, and displacement vector of the train, respectively. 
Note that the external force vector contains both the 
gravitational forces and the electromagnet forces acting 
between the train and the guideway. Table  1 lists the 
parameters of the maglev train [46].

Guideway Model

The guideway used in the Shanghai Transrapid line consists 
of I-shaped concrete girders with rails mounted on the two 
ends of the top flange. Figure 3 schematically illustrates 
a two-span guideway bridge model for sake of simplicity. 
Note that, in this study, a multi-span bridge representing 
an infinitely long guideway is considered. In view of the 
relatively large span-to-width ratio of the guideway, it is 
justifiable to model it according to the Euler–Bernoulli beam 
theory. The guideway girders with mass per unit length ρA, 
length L, and flexural rigidity EI rest on bearing supports 
with stiffness kb at their two ends. The adjacent spans are 
connected through coupling connections with rotational 
stiffness kc. Table 2 lists the guideway parameters [46].

Let u be the displacement of the guideway girder at 
distance X along the longitudinal direction of the guideway 
and time T. The governing equations of motion of a 
guideway considering Rayleigh damping are given by

(1)�tÿt + �tẏt +�tyt =�t,

where α0 is the mass proportional Rayleigh damping 
coefficient, α1 is the stiffness proportional Rayleigh damping 
coefficient, Fen is the electromagnet force between the nth 
magnet and the guideway, Xn is the location of the nth 
magnet, δ is the Dirac delta function, and nm is the total 
number of magnets on the incident guideway girder. Based 
on the modal parameters obtained from the field tests [29], 
the first two modal circular frequencies of the guideway are 
9.3 Hz and 12.5 Hz, respectively. The corresponding modal 
damping ratios are 2.67% and 3.51%, respectively. Based on 
this, the Rayleigh damping coefficients can be calculated.

(2)
EI

�4u

�X4
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+ �0�A

�u

�T
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)

,

Table 1  Train parameters

Parameter Value Parameter Value

mc 39,000 kg mb 1500 kg
mm 1000 kg Jc 2 ×  106  kgm2

Jb 1200  kgm2 kp 4 ×  107 N/m
cp 1 ×  104 Ns/m ks 4 ×  105 N/m
cs 1 ×  104 Ns/m

Fig. 3  Guideway model

Table 2  Guideway parameters

Parameter Value Parameter Value

L 25 m ρA 6000 kg/m
EI 8.58 ×  1010  Nm2 kb 3.2 ×  1010 N/m
kc 1 ×  107 Nm/rad

Fig. 4  Electromagnet model
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Electromagnetic Force Model

For the Shanghai Transrapid line, the train (Eq. (1)) and the 
guideway (Eq. (2)) are coupled via the electromagnet forces. 
Figure 4 schematically illustrates a magnet suspended beneath 
the guideway during operation. The electromagnet force Fen 
between the nth magnet and the guideway is a nonlinear 
function of the electric current I and the air gap hn, which is 
given by

where μ0 = 4π ×  10–7 H/m is the magnetic permeability 
of vacuum, N is the number of turns of the coil, A is the 
magnetic pole area, and K0 = (μ0N2A)/4 is the coupling 
factor.

Considering i0 = 25 A and h0 = 0.01 m as the nominal 
current and air gap, respectively [46], the electromagnetic 
force at static equilibrium state Fe0 is

A reasonable simplification can be made by linearizing the 
electromagnetic force about the nominal static equilibrium 
state. Then, the electromagnetic force Fen can be rewritten as

where Ci = 2K0i0/(h0)2, Ch = 2K0i02/(h0)3, Δi = in – i0, and 
Δhn = hn – h0. According to the current control law [47], 
Δi = khΔhn + kvy ̇mn + kaÿmn, where kh = 6500, kv = 40, and 
ka = 0.2 are the feedback gains corresponding to the air 
gap change, velocity, and acceleration of the magnet, 
respectively [46].

Moving Element Method

The moving element method (MEM) is a computationally 
efficient numerical method for solving moving load-related 
problems such as train-track dynamics. Contrary to the 
conventional finite-element method (FEM) that employs a 
land-fixed coordinate system (X, T), the MEM formulates 
the governing equations of motion for the guideway bridge 
using a moving coordinate (x, t) whose origin is attached to the 
moving train travelling at speed V. The relationship between 
the two coordinates is defined by the Galilean transformation 
as

(3)Fen =
�0N

2A

4

(

i

hn

)2

= K0

(

i

hn

)2

,

(4)Fe0 = K0

(

i0

h0

)2

=
1

8

(

mc + 4mb + 8mm

)

g.

(5)Fen = Fe0 + CiΔi − ChΔhn,

(6)x = X − VT ,

(7)t = T .

By employing the moving coordinate system, the MEM 
overcomes the complication faced by a conventional FEM 
model that a large domain size is needed to allow for a high-
speed train to travel a sufficient amount of time needed for 
realistic analysis. Besides, the train loads are stationary in 
the moving coordinate x, and thus, they are always located at 
the same nodal points regardless of the train speed, thereby 
avoiding the necessity of tracking the position of the train 
loads at each time speed as needed in a conventional FEM 
analysis.

A segment of the guideway in the moving coordinate is next 
truncated and discretised into a series of finite elements. Such a 
mesh and the train appear to be stationary, while the guideway 
material and supports flow in the opposite direction of the 
heading of the train. With the moving coordinate system, the 
governing equations of motion expressed in Eq. (2) are now 
rewritten as

Next, Galerkin’s approach is adopted to derive the weak 
form of the equation. In this study, the Hermitian cubic 
polynomials are employed as the shape and weighting 
functions, following which the element matrices and load 
vectors for the guideway can be derived. In addition, the 
guideway bridge supports idealised by springs move in the 
opposite direction of the maglev train, whose effects need 
to be taken into account. This study employs the numerical 
scheme proposed by the first author that takes advantage 
of the periodic nature of the guideway supports [32, 33]. 
Figure 5 schematically illustrates a truncated multi-span 
guideway model under a train load. The domain size is 
assumed to be sufficient, such that the artificial boundary 
effects are negligible such that fixed boundary conditions 
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Fig. 5  Motion of discrete supports in moving coordinate
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are employed. In this study, the guideway has uniform 
spans. Therefore, the motion of the guideway supports 
is completely periodic. Under such a circumstance, the 
dynamic guideway element matrices for the duration when 
the train travels across one span can be stored and retrieved 
conveniently for the computation for subsequent periods.

After assembling the element matrices and load vectors 
for the guideway model in the moving coordinate system, 
the maglev train model, and the electromagnetic force 
model, the global equations of motion for the coupled 
maglev-guideway system can be written in the following 
matrix form as:

where M, C, K, and F denote the global mass, damping and 
stiffness matrices, and external force vector of the coupled 
system, respectively, and ÿ, y,̇ and y denote the acceleration, 
velocity, and displacement vectors, respectively.

For the numerical analysis of the coupled maglev-
guideway system in the time-domain, the Newmark’s 
constant acceleration method which is unconditionally 
stable is employed.

Numerical Verification

In an attempt to examine the accuracy of the proposed 
model, the case of a single train travelling across a single 
span guideway on the test line at a speed of 25 km/h at 
Tongji University [29] was considered. In this case, a 
simplified 10-DOF train model was employed, as shown in 
Fig. 6, where the levitation bogies are neglected, but their 
mass are evenly distributed to the magnets underneath. 

(9)𝐌�̈� + 𝐂�̇� +𝐊𝐲 = 𝐅, Table 3 lists the parameters for the test line guideway. 
According to the study by Zhang and Huang [29], the first 
two modal frequencies were obtained from the measured 
responses, which are found to be 18.92 Hz and 74.61 Hz, 
respectively. The corresponding modal damping ratios are 
3.43% and 0.29%. Based on this, the Rayleigh damping 
coefficients presented in the section “Guideway model” 
can be derived.

Figure 7 shows the vertical displacement time history 
of the guideway at its mid-span by the passage of a 
maglev train at a speed of 25 km/h obtained using the 
proposed MEM model. In the employed MEM model, each 
guideway girder is discretised into 50 elements of 0.247 m 
each and a time step size of 0.036  s is adopted. Also 
shown in the figure are the results reported in [29] using 
a detailed FEM model made of 3D solid elements. Note 
that the FEM model properties were updated according to 
the field measurement results on the test line. It is clear 
that both results agree with each other quite well, despite 
some minor discrepancies due to the differences in the 

Fig. 6  Simplified maglev-guideway model

Table 3  Test line guideway parameters

Parameter Value Parameter Value

L 12.368 m ρA 4500 kg/m
EI 1.62 ×  1010  Nm2 kb 1 ×  1020 N/m
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Fig. 7  Simplified maglev-guideway model
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numerical models. This shows that the proposed MEM 
model of idealised guideway is able to generate reasonably 
good results even with an idealised model when compared 
with a sophisticated FEM model.

Response of Coupled Maglev‑Multiple‑Span 
Guideway System

The coupled maglev-multiple-span guideway model 
presented in the section  “Numerical models and 
methodology” is next employed to investigate the effect 
of various parameters on the dynamic response of the 
system. These include the maglev train speed, stiffness of 
train suspension system, stiffness of guideway coupling 
connections, and guideway irregularities. As the passengers’ 
comfort is of great significance, this study will focus on the 
vehicle acceleration responses under the influence of various 
parameters.

Train Speed

Maglev trains have the advantage of being able to travel at 
high speeds thanks to the magnetic levitation that removes 
physical contact and friction between the train and the 
track. However, resonant responses of the vehicle body can 
still occur when the frequency of excitation coincides with 
the natural frequency of the train. The nth natural angular 
frequencies of the train ωtn can be evaluated according to 
the equation below

where det() denotes the determinant of a matrix.

(10)det
(

�t − �2
tn
�t

)

= 0,

By solving Eq.  (1), one gets a series of natural 
frequencies where the fundamental natural frequency is 
found to be ωt1 = 8.84 rad/s. This mode corresponds to 
a pitching rotation of the train body about its centre of 
gravity.

As the train travels along the guideway, the vertical 
motion of the guideway gives an excitation to the train at 
a circular frequency of V/L. Consequently, the first critical 
train speed Vc1 that leads to resonant responses is given by

Figure  8 shows the effect of train speed on the 
maximum vertical acceleration of the train over a practical 
operational speed range between 100 and 600  km/h. 
Clearly, the proposed MEM model is able to capture the 

(11)Vc1 =
�t1

2�
L.
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Fig. 8  Effect of train speed on maximum train vertical acceleration
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resonant response of the train when the train is operating at 
the critical speed Vc1. After this critical speed, a minimum 
vertical acceleration is observed when the train speed is 
increased to 250 km/h, after which a generally increasing 
train acceleration with the increase in the train speed is 
observed. As can be seen in Fig. 8, the optimal operational 
speed for Transrapid Shanghai line is between 200 and 
400 km/h. In any case, the maximum vertical acceleration 
of the train when operated outside the critical speed is 
found to be below the limit of 0.6 m/s2 according to the 
German maglev design guide [48], which indicates that 
the commercial maglev train fulfils the designed comfort 
level for its practical operational speed range.

Stiffness of Train Suspension System

The suspension system of a train plays an important role in 
mitigating the amount of vibration that propagates to the 
car body. As such, it is worth examining the effect that the 
suspension system has on the acceleration of the train body.

In this sub-section, the effect of the stiffness of the 
primary suspension system kp varied from 1 ×  102  to 1 ×  108 
N/m is examined. The maximum vertical acceleration of 
the train body at various values of kp is shown in the plot 
in Fig. 9(a). Similarly, the effect of the stiffness of the 
secondary suspension system ks varied from 1 ×  102  to 
1 ×  108 N/m on the maximum train vertical acceleration is 
shown in Fig. 9(b). For both cases, the train is assumed to 
travel at a constant speed of 300 km/h.

For both the primary and secondary suspension systems, 
the relationship between the stiffness and train acceleration 
takes the form of an “S”-shaped curve graphically. At 
lower stiffnesses (kp < 1 ×  104 N/m or ks < 1 ×  105 N/m), the 
maximum acceleration of the train body is approximately 
constant at 0.01 m/s2. At higher stiffnesses, there is also 
little variation in the maximum vertical acceleration of the 
train body. When kp > 1 ×  106 N/m, the maximum vertical 
acceleration of the train body just exceeds 0.03 m/s2. When 
ks > 1 ×  108 N/m, the maximum vertical acceleration of 
the train car body is around 0.15 m/s2. This shows that the 
secondary suspension system exerts a greater influence 
on the motion of the train body, which is expected as 
it is directly connected to the car body of the train. At 
intermediate levels of the suspension stiffnesses, the vertical 
acceleration of the train body is more sensitive to small 
changes in the stiffnesses of the suspension system.

At present, the stiffness of the primary suspension of 
the Shanghai Transrapid is kp = 4 ×  107 N/m. As evident 
from Fig. 9(a), this corresponds to high stiffness and may 
lead to higher acceleration levels of the car body. It is 
thus recommended to replace this suspension with those 
that have a lower stiffness if a reduction in the vertical 
acceleration of the train body is desired. The current stiffness 

of the secondary suspension of the Shanghai Transrapid is 
ks = 4 ×  105 N/m. Since the value of this stiffness is towards 
the lower end, the secondary suspension is considered to be 
effective in reducing the acceleration of the car body.

Stiffness of Guideway Coupling Connection

In addition to the train suspension stiffness, it is also 
worthwhile to examine the effect of guideway parameters 
on the dynamic responses of the coupled system. This 
parametric study involves the stiffness of the coupling 
connection. By varying the stiffness of the coupling 
connection kc from 1 ×  104 to 1 ×  1014 N m/rad, the 
corresponding maximum vertical acceleration of the train 
body and the maximum mid-span displacement of the 
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guideway can be evaluated. The results corresponding to 
a train speed of 300 km/h are presented in Figs. 10(a) and 
(b), respectively.

Similar to the effect of the train suspension stiffness on the 
dynamic responses, an “S”-shaped curved is again exhibited 
for the guideway coupling connection stiffness. However, 
a key difference is that the maximum vertical acceleration 
of the train body and the maximum mid-span displacement 
of the guideway are found to be lowered when the stiffness 
of the coupling connection is increased. Apparently, higher 
stiffness of the coupling connection enhances the ability of 
the guideway to mitigate the vibrational level of the train 
system.

For coupling connection stiffness kc < 1 ×  108 N m/
rad, the coupling connection may be considered as a 
hinged connection, whereas when kc > 1 ×  1011 N m/rad, 
the coupling connection may be considered as a fixed 
connection. In between these two values, the coupling 
connection appears to be semi-rigid. The stiffness of 
the coupling connection in the Shanghai Transrapid 
is presently kc = 1 ×  107 N m/rad, which implies that 
it is closer to a hinged connection. A stiffer coupling 
connection in the rigid zone will enhance the travel 
performance, and thus, the passenger comfort level of the 
maglev train travel as the parametric study shows that the 
maximum vertical acceleration of the train body and the 
maximum mid-span vertical displacement of the guideway 
can be reduced by almost 30% and 50%, respectively.

Guideway Irregularities

Thus far, the analysis of the maglev train system had been 
limited to the idealistic case of a perfectly smooth guideway. 
However, irregularities of the guideway can amplify the 
acceleration of the train car body, thereby affecting ride 
comfort. It is suggested that irregularities of wavelengths of 
less than one span length (25 m) are caused by misalignment 
of the stator and functional components, while those of 
longer wavelengths that are integer multiples of the span 
length may be attributed to subsidence of the foundation 
[49].

For simplicity, it shall be assumed that the guideway 
irregularity follows a sinusoidal profile with amplitude Az 
and wavelength λz. Hence, the height of the irregularity z at 
position X along the guideway in fixed coordinates can be 
expressed as

(12)z = Az sin

(

2�X

�z

)

. Resonant response occurs when the frequency of 
excitation is an integer multiple of the natural frequency of 
the train [20]. Therefore, the resonant train speed Vres for a 
given irregularity of wavelength λz can be determined by
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Fig. 11  Effect of irregularity wavelength on maximum train vertical 
acceleration: a V = 200 km/h, b V = 300 km/h, and c V = 400 km/h
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where n is integer. Accordingly, resonant train speeds 
of 200  km/h, 300  km/h, and 400  km/h correspond to 
irregularities of wavelength 39.5 m, 59.2 m, and 78.9 m, 
respectively.

The maximum vertical acceleration of the train car body 
for irregularities of wavelength λz in the range of 10–100 m 
with a constant amplitude Az = 0.1 mm is shown in Fig. 11. 
Peaks in the maximum vertical acceleration of the train 
body around the above-mentioned resonant wavelengths are 
observed for the three train speeds V = 200 km/h, 300 km/h, 
and 400 km/h. In all cases, the maximum acceleration of 
the train car body at the resonant wavelength is found to be 
approximately doubled as compared to that of the case of a 
smooth guideway without irregularities.

Next, the effect of the amplitude of irregularity on the 
maximum vertical acceleration of the car body when the 
train is travelling at a speed of 300 km/h is investigated. The 
results corresponding to the irregularities of four different 
wavelengths (λz = 1 m, 5 m, 25 m, and 50 m) are shown in 
Fig. 12. As can be seen, the maximum vertical acceleration 
of the train body is linearly proportionally related to the 
amplitude of guideway irregularity. Of the four wavelengths 
investigated, the highest acceleration stems from λz = 50 m, 
which is close to the resonant velocity Vres = 59.2 m/s. Under 
such a condition, it is recommended that the amplitude 
of irregularity be limited to Az < 2  mm to prevent the 
acceleration of the train car body from exceeding the limit 
of 0.6 m/s2 [48].

(13)Vres = n
�t1

2�
�z,

Conclusions

This paper is concerned with a numerical study of the 
dynamic response of a coupled maglev train-multiple-span 
guideway bridge system. The maglev train is idealised 
as an 18-degree-of-freedom model by employing the 
multi-body system, while the guideway is modelled as 
Euler–Bernoulli beams that are interconnected via coupling 
connections. The train and the guideway are coupled via the 
electromagnetic forces. For the numerical analysis in the 
time-domain, a computational scheme in conjunction with 
the moving element method is proposed. The accuracy of the 
proposed computational model is validated by comparison 
with available data for a maglev test line in the literature. 
Next, the proposed numerical maglev-guideway model is 
put forward to examine the effect of various factors on the 
dynamic response of a Shanghai Transrapid train. The main 
findings from this study are summarised as follows:

1. The resonant response of the train in the gravitational 
direction is observed at a train speed of 127 km/h. When 
the train is operated away from the critical speed, the 
vertical accelerations are within the design limits. The 
optimal operational speed range is between 200 and 
400 km/h.

2. A lower stiffness of the train suspension system helps 
reduce the vertical acceleration of the car body, with 
the optimal range being kp < 1 ×  104 N/m for the primary 
suspension and ks < 1 ×  105 N/m for the secondary 
suspension.

3. A stiffer guideway coupling connection helps reduce 
the vertical acceleration of the car body and the vertical 
displacement of the guideway, with the optimal range 
being kc > 1 ×  1011 N m/rad.

4. The presence of guideway irregularities can induce 
resonant responses in the train for certain combinations 
of the train speed and the wavelength of irregularity. 
Additionally, the maximum vertical acceleration of the 
car body is found to increase linearly with the amplitude 
of guideway irregularity.

The computational model presented in this study in 
conjunction with the moving element method has the 
advantage of computationally efficient analysis and accurate 
prediction of the dynamic responses of a maglev train 
traversing an “infinitely” long multi-span guideway bridge 
over the conventional finite-element method, especially 
when the train is travelling at high speeds. The numerical 
verification study also showed that the employment of the 
Euler–Bernoulli beam theory to model the guideway girders 
is sufficient for the parameters considered in the case study. 
For other types of guideway bridges with shorter and deeper 
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spans and/or scenarios where high-frequency vibrations need 
to be accurately captured, it may be necessary to employ 
the Timoshenko beam theory or more sophisticated bridge 
models with e.g., solid elements. Furthermore, 3-D train 
models are needed when studying the dynamic responses of 
a train negotiating horizontally curved guideway or under 
horizontal excitations due to crosswind or seismic attack. 
The consideration of flexural modes of the vehicle body 
is also important when investigating the travel comfort 
of passengers during the journey. The methodology and 
models presented in this study may be further extended 
with appropriate modifications to consider more complex 
and practical cases such as the above-mentioned examples.
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