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ABSTRACT. Seismic damage prediction can be effectively used in performance-based seismic design of 

structures. Predicting seismic damage spectra, capturing both structural and earthquake features, is useful in 

quantifying the potential seismic damage of structures. The objective of this paper is to accurately predict the 

seismic damage spectra using computational intelligence methods. For this purpose, an inelastic single-degree-

of-freedom system subjected to a set of earthquake ground motion records is used to compute the (exact) spectral 

damage. The Park-Ang damage index is used to quantify the seismic damage. Both structural and earthquake 

features are involved in the prediction models where multi-gene genetic programming (MGGP) and artificial 

neural networks (ANNs) are applied. Common performance metrics were used to assess the models developed 

for seismic damage spectra, and indicated that their accuracy was higher than a corresponding model in the 

literature. Although the performance metrics revealed that the ANN model is more accurate than the MGGP 

model, the explicit MGGP-based mathematical model renders it more practical in quantifying the potential 

seismic damage of structures. 

Keywords: Computational Intelligence; Genetic programming; Artificial neural networks; Regression analysis; 

Seismic damage spectra; Inelastic SDOF systems; Park-Ang damage index; Resiliency. 

1. INTRODUCTION

Today, predicting earthquake-induced damage is of crucial importance both when designing new 

resilient structures and to assess the resiliency of existing structures. The potential damage of a structure 

due to an earthquake, which is a qualitative problem, can be quantified using an index that captures 

both the main structural and the main earthquake characteristics. The peak demands, such as peak 

ductility and peak ground acceleration, typically used by seismic design codes, do not appropriately 

reflect the potential seismic damage of a structure. The deformation demands imposed on a structural 

component by an earthquake ground motion are cyclic in nature, and the associated results of the 

cumulative damage have a significant effect on the seismic resistance of a structure. Indeed, these 

demands include a conceptual limitation due to the fact that they do not explicitly capture the 

cumulative damage resulting from the number of response cycles, yield excursions, and energy 

dissipation [1-4]. Moreover, they do not take into account the duration and frequency content of a 

possible earthquake. Although these demands are essential, the sole reliance on such demands is 

inadequate, particularly for structures where the plastic deformations and energy dissipation are 

expected to be under the design-basis earthquakes. This inference is based on evidence and observations 

from past earthquake sequences, and it has also been confirmed by researchers (e.g. [5]). The design 

spectra currently included in most seismic design codes do not take these critical effects into account. 

As a result, the design base shear coefficient could be insufficient to control the structural damage of 

ductile structures subjected to ground motions exhibiting large energy content [6, 7]. The seismic design 

spectra obtained by means of spectral acceleration (known as elastic design spectra) and the response 

modification factor (known as ductility-based inelastic spectra) ignore the role of the chief factors 
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described above. Therefore, there is a need to estimate the potential damage in a way that considers the 

chief parameters of both structure and earthquake. A solution is to use an inelastic spectrum that 

captures the cumulative damage. This approach has been investigated by researchers, and some relevant 

works are presented in the next paragraph. 

Bozorgnia and Bertero [8] proposed damage spectra by combining the normalized hysteretic energy 

and deformation ductility. The damage spectra were computed by considering hundreds of horizontal 

ground motion records recorded during the Landers and Northridge earthquakes. Kunnath and Chai [9] 

proposed a simple procedure based on establishing a relation between seismic input energy and 

dissipated hysteretic energy to determine a damage-based inelastic cyclic demand spectrum able to be 

used in seismic analysis and the design of structures. Cosenza et al. [10] proposed a simple method 

incorporating the cumulative damage effect, which is applicable for seismic design and assessment of 

structures. An equivalent damage factor was introduced to determine the modified strength or 

displacement inelastic spectra capable of capturing the potential damage caused by an earthquake. Zhai 

et al. [11] proposed a mathematical model to estimate spectral damage for mainshock-aftershock 

sequence-type earthquake ground motions. They captured the influence of the fundamental vibration 

period of the structure, strength reduction factor, damping ratio, post-yield stiffness and site condition 

in the proposed spectral damage model. Greco et al. [12] proposed a stochastic approach to determine 

the seismic damage-based inelastic spectra, which incorporates the cumulative damage effects by using 

the Park-Ang damage model [13] and adopting the peak theory of random processes. Deng et al. [14] 

proposed a new and applicable damage indicator based on the response spectrum, which includes an 

intensity component and a spectral shape component. Based on the fact that the fundamental vibration 

period of the structure changes during an earthquake, they presented a circular rule to determine the 

critical period range of the response spectrum needed to calculate the spectral shape used. Wen et al. 

[15] proposed damage spectra for mainshock-aftershock sequence-type for soft soil sites. It was found 

that the influence of soft soil on the damage spectra could account for more than 40%. Wen et al. [16] 

also investigated the damage spectra of global crustal mainshock-aftershock sequences and proposed a 

mathematical model to estimate the damage spectra. They also looked at the effects of degradation and 

pinching behavior of the single-degree-of-freedom system, as well as the scale factor of aftershock 

sequences.  

As described, predicting the potential damage for a broad range of structures, which can be provided 

by damage spectra directly, can be used in the design of new resilient structures and/or to assess the 

seismic resiliency of existing structures. Most of the works carried out so far have aimed to determine 

the potential damage indirectly by modifying the inelastic deformation-based spectra, while only a few 

works have computed the damage spectra directly. Moreover, although the former are well-studied and 

useful, the researchers have dealt with a limited number of variables in determining the damage spectra, 

while the main contribution of their work concerns mainshock-aftershock effects. In addition, all the 

previously mentioned works have used conventional regression methods to estimate the inelastic 

(and/or damage) spectra of interest. 

The recent advances in computational intelligence methods render them suitable for solving 

challenging problems in science and engineering. It has been proven that they could reliably solve 

complex and highly nonlinear problems where conventional methods, such as regression analysis, fail 

or perform poorly [17, 18]. One of the most renowned computational intelligence-based predictive 

methods is Artificial Neural Networks (ANNs). ANNs belong inherently to the class of artificial 

intelligence methods, being inspired by the biological neural networks of the human brain. Although 

ANNs typically build black-box models and do not represent a governing equation of a predicted 

relation directly, they are capable of accurately predicting the outputs of complex problems. ANNs 

require the user to predefine the network architecture and some network parameters. Another well-

known predictive method is Genetic Programming (GP), which is a learning algorithm that originated 

from genetic algorithms. GP, which lies in the class of evolutionary computation algorithms, is a 

method commonly used for developing nonlinear mathematical models to solve complicated problems. 

The standard GP was extended, and its variants such as gene expression programming [19] and multi-

stage genetic programming [20] have been used in the literature. Multi-gene genetic programming 

(MGGP), one of the most robust variants of GP, has an additional capability of conventional regression 

in parameter estimation with respect to the standard GP. The effectiveness of MGGP over other GP 
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approaches and ANNs has been proven in the works conducted by Gandomi et al. (e.g. [21-25]). Unlike 

ANNs, MGGP is capable of constructing the predicted relations between inputs and outputs as an 

analytic equation. The literature shows various successful applications of computational intelligence 

methods (e.g. ANNs and GP) in solving different problems in the field of structural and earthquake 

engineering, exhibiting its suitability for handling such problems. Some of these works are described 

in the paragraph below. 

Lagaros and Papadrakakis [26] proposed a framework to predict the inelastic time-history responses 

of three-dimensional structures by using ANNs. Alavi and Gandomi [27] predicted some principal 

ground-motion parameters by using a hybrid method coupling ANNs and simulated annealing. 

Gholizadeh and Fattahi [28] used ANNs to predict the inelastic response of steel structures needed 

during the performance-based design optimization process. Gharehbaghi et al. [29] used ANNs to 

predict the inelastic seismic response of a high-rise reinforced concrete framed structure. Lagaros et al. 

[30] used ANNs to solve reliability-robust design optimization problems. Plevris and Asteris [31] 

proposed the modelling of masonry failure surface under biaxial compressive stress by using ANNs. 

They have also proposed the use of ANNs to approximate the failure surface of masonry materials in a 

dimensionless form [32]. An ANN model was proposed by Rizzo and Caracoglia [33] to the flutter 

velocity of suspension bridges. Gholizadeh et al. [34-36] used ANNs to predict the seismic response 

required in design optimization process of both steel and reinforced concrete structures. Alavi et al. [37] 

used multi expression programming to propose a set of attenuation models to derive some important 

parameters in earthquake engineering. Lim et al. [38] assessed the ultimate conditions of FRP-confined 

concrete columns using GP. Gharehbaghi et al. [25] proposed some efficient formulations to predict 

the seismic spectral energy by using MGGP. Kiani et al. [39] presented a work describing the 

application of machine learning techniques such as ANNs to derive seismic fragility curves. 

In this paper, two computational intelligence methods, namely ANN and MGGP, are used to predict 

the seismic damage spectra when considering both main structural and main earthquake features. To 

achieve this, several single-degree-of-freedom (SDOF) systems with the structural properties of 

different hardening ratios of a bilinear hysteretic behavior model, damping ratio, response modification 

factor, ultimate ductility, and a constant related to the damage model, were used to determine the 

seismic damage spectra. Moreover, four different sets of earthquake ground motion records based on 

different soil types (soft, firm, stiff and rock) with magnitudes greater than 5.5 and source-to-site 

distances of more than 17.5 km were considered. Finally, the spectral damage was predicted using both 

ANN and MGGP predictive models. In the case of MGGP, a mathematical equation is also proposed 

for predicting the spectral damage. The effectiveness of the models is then assessed using six well-

known performance metrics in comparison with another model available in the literature. 

In the present study, the seismic damage analysis is described in Section 2. This section also 

introduces the Park-Ang damage index, which is appropriate for quantifying the earthquake-induced 

damage of structures. Section 3 presents ANN and MGGP, the two computational intelligence methods 

employed, while Section 4 describes a framework for the prediction of seismic damage spectra. In 

Section 5, the predictive models of seismic damage spectra are proposed, discussed and benchmarked 

in relation to a model recently proposed in the literature.  

 

2. SEISMIC DAMAGE SPECTRUM 

 

Computing potential seismic damage is of great importance in the damage-based seismic assessment 

and design of structures in earthquake-prone areas. The degree of structural damage could be used for 

assessments of structure functionality and robustness, which are key parameters in structural resilience 

[40]. In effect, computing the level of damage could be significant in estimating the resiliency of both 

existing and new structures. The deformation demand of a structure subjected to an earthquake is 

inherently cyclic. Hence, the effects of cumulative damage resulting from a number of response cycles, 

yield excursions, and energy dissipation should be considered when computing the seismic structural 

damage. Moreover, the use of peak displacement and ductility does not consider the effects of the 

duration and frequency content of a possible earthquake. 

The seismic damage of structures is mostly a qualitative problem in nature. However, the seismic 

damage index can be used to quantify the extent of damage of a structure during an earthquake. Several 
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damage models have been proposed in the literature, and among them, the Park-Ang damage index [13] 

has been widely used to quantify the seismic damage of structures [4, 8, 10, 15]. The index is the linear 

combination of the maximum displacement and the hysteretic energy dissipation of a structure, and is 

expressed mathematically as follows: 

where xm is the maximum displacement during an earthquake; xy is the yield displacement; u is the 

ultimate ductility capacity based on monotonic loading; Fy is the yield strength; EH is the cumulative 

hysteretic energy at the end of an earthquake; and  is a positive empirical constant that depends on 

structural features that contribute to the rate of damage through hysteretic energy. The constant 

parameter  is commonly considered with values between 0.05 and 0.3 [41]. As presented in Table 1, 

Park et al. [42] calibrated the overall damage index with the observed damage states in different 

statuses. 

The seismic damage could be estimated for a broad range of structures by computing the seismic 

damage spectrum. The spectral damage index is a function of both structural and earthquake 

characteristics. The most important features are arguably the fundamental period of vibration T, elastic 

spectral acceleration Sa, yield strength Fy, ultimate ductility capacity ratio u, damping ratio , post-

yield stiffness ratio , the positive constant of the Park-Ang damage index  and soil class S. 

Mathematically, the spectral damage can be written as: 

in which Ru is the response modification factor (known as R-factor) which is determined using the 

following relationship: 

where m is the seismic mass of the structure of interest. Despite the ductility and elastic response and 

design spectra, because of computing the potential seismic damage using the Park-Ang damage index 

directly, the effect of the cumulative effects of damage is made available in the damage spectrum. 

 

Table 1. Interpretation of structural damage index [42] 

Degree Physical Appearance 
Damage 

Index 

Damage 

State 

Collapse Partial or total collapse of building 
> 1.0 Loss of 

building 

Severe 
Extensive crashing of concrete; disclosure of buckled 

reinforcement 

0.4 – 1.0  Beyond repair 

Moderate 
Extensive large cracks; spalling of concrete in weaker 

elements 

0.25 – 0.4 Repairable 

Minor Minor cracks; partial crushing of concrete in columns 
0.1 – 0.25 Minor damage 

 

Slight Sporadic occurrence of cracking < 0.1 No damage 

 

 

3. COMPUTATIONAL INTELLIGENCE METHODS 

 

Typically, the wording computational intelligence denotes the ability of a computer program to learn a 

specific task from real data or experimental observations [43]. Today, researchers are confronted by 

complex and highly nonlinear real-world problems where mathematical and traditional modelling 

methods fail or perform poorly. It has been proven that computational intelligence methods, such as the 

nature-inspired computational methodologies, can solve these types of problems. The recent advances 
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in computational intelligence methods have made them suitable for solving challenging problems in 

science and engineering. In this study, two of the most well-known methods, ANN and GP, are applied 

to a case study in the field of structural and earthquake engineering and their results are presented, 

assessed and compared. 

 

3.1. Artificial Neural Networks (ANNs) 

 

In the early 1940s, a computational model was first developed for neural networks by McCulloch and 

Pitts [44], who simulated a biological nervous system that resulted in emerging ANNs. These artificial 

networks consist of artificial neurons that work in a manner similar to the elementary functions of a 

biological neuron. The structure of ANNs is such that they are able to learn based on experiences they 

gain and to generalize based on making a relationship between the inputs and outputs. Without the need 

for a predefined mathematical equation between model inputs and outputs, ANNs only use the data to 

determine the structure of the model and the unknown model parameters. They are able to learn, adapt 

and improve as more data become available without having to repeat the learning process from the 

beginning, and hence overcome the considerable limitations of conventional methods. Rapid mapping 

of a given input into the desired output with the smallest error can be provided by a trained ANN, which 

can thus be used to improve the computational efficiency of a numerical analysis process. 

An ANN architecture comprises a set of processing elements usually arranged in a set of sequential 

layers including an input layer, one or more hidden layers and an output layer. The neurons in the input 

layer distribute the input signal xi to the neurons of the next layer. The neurons in the input layer weight 

the received signal xi and all the weighted signals are subsequently summed up. A bias b, which plays 

an important role, is added to the summation. The resulting summation process with the added bias can 

be mathematically expressed as [43]: 

1

n

i i

i

net w x b
=

 
= + 

 
  (4) 

In order to allow for varying input conditions and their effect on the output, it is usually necessary 

to include a transfer function (or activation function) f (.) in the neuron arrangement. The activation 

function is a monotonically increasing, continuous, differentiable function, applied to the weighted 

input of a neuron to produce the final output. This is so that the adequate levels of amplification may 

be used where necessary for small input signals, which avoids the risk of driving the output to 

unacceptable limits. The output of neuron y, is then computed as follows [43]: 
( )y f net=  (5) 

One of the common classes of ANNs is the multilayered perceptron (MLP) networks in which 

feedforward architectures are used, and the backpropagation algorithm is commonly used for training. 

This type of ANNs is capable of accurately predicting any continuous function [43]. An input layer, 

one or more hidden layers and an output layer are the components of an MLP network. Each unit of 

these networks is associated with weighted connections to the units of the subsequent layer. The output 

is obtained by passing the sum of the products of the inputs and weights through a nonlinear activation 

function. The use of hidden layers and nonlinear activation functions enhance the ability of ANNs to 

learn the complicated relationship between a set of input and a set of output data. The connection 

between neurons of each layer is called a link. This link is stored as a weighted value that provides a 

measure of the connection between two nodes [45]. The supervised learning step changes these weights 

(and biases) in order to minimize a selected error function, generally using the mean squared error 

(MSE) approach.  

Each layer includes a weight matrix W, a bias vector B and an output vector Y. This relationship 

could be mathematically expressed as follows [43]: 

( )Y W X Bf= +  (6) 

The selection of the network architecture (or topology), i.e. the number of neurons, layers, 

connections and choice of transfer functions, is usually fixed from the beginning and it is largely 

determined by the characteristics of the problem being solved.  
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3.2. Genetic Programming 

 

The use of conventional techniques such as regression analysis cannot guarantee that an accurate and 

reliable model for predicting the behavior of complex problems will be found [24]. Because of the 

available uncertainties in structural and earthquake engineering problems, determining the response of 

structures under an earthquake is a complex problem [25]. 

Genetic programming (GP), an efficient behavioral modeling methodology, was firstly proposed 

by Koza in 1990 [46]. It is an extension of genetic algorithm in which the relation of data, between 

inputs and outputs, could be formulated using a tree structure technique. Unlike ANNs and classic 

regression models, GP is capable of formulating the relationship regardless of a predefined structure. 

GP and its variants have been successfully used to solve numerous engineering problems (e.g. [23, 25, 

47]. Multi-gene genetic programming (MGGP), one of the variants of GP, was proposed by Searson et 

al. [48] to improve the performance of the standard GP, where the capability of conventional regression 

is added. Studies have shown that MGGP outperforms the standard GP in model prediction [25]. 

 
3.2.1 Multi-Gene Symbolic Regression  

MGGP is one of the efficient variants of GP [21, 22, 48]. It is used to predict mathematical models that 

are inherently multi-gene and consists of a linear combination of low order nonlinear transformations 

of the input variables. MGGP uses a single GP particle swarm model selection program consisting of a 

number of genes in which each gene has a tree expression with some relatively simple, fixed-depth sub-

models [49]. 

In order to develop a population of genes, the symbolic regression method is implemented using 

standard GP in which a symbolic mathematical expression is directly encoded by each of the genes. 

Figure 1 shows a typical multi-gene model with three input variables (x1, x2, and x3). The overall model 

consists of some coefficients (g0, g1, and g2) utilized for a weighted linear combination of genes, 

although the nonlinear terms such as “sin” and “log” are used. The model is generally known as multi-

gene symbolic regression, and it can be mathematically written as [24]: 

( )
1

ˆ ( , , ) ( )x g x
n

o i i

i

y g g G
=

= +    (7) 

where go is a bias term; gi is the gene weight; Gi(θ,x) is the output vector from the ith gene encompassing 

a multi-gene individual; θ is the vector of the unknown parameters for each gene; and n is the number 

of genes. The algorithmic structure of GP and MGGP is the same in general, except for crossover and 

mutation of multi-gene individuals. MGGP is more accurate than the standard GP in solving complex 

nonlinear problems [21, 22] since it does not include a simplifying assumption in the model 

development process.  

 To construct an initial population in MGGP, random individuals are generated by means of different 

nonlinear functions, input variables, and a range of random constants, where each individual can contain 

between 1 to Gmax genes. In the algorithm, an attempt is made to maximize diversity, provided that the 

individuals do not include the same genes. The genes are randomly selected, and the vector of unknown 

coefficients g is estimated by the least-squares normal equation as follows [48]: 

( )
1

g G G G y
T T

−

=  (8) 

in which G = [1 G1…Gn] is the gene response matrix. Since the columns of matrix G can be 

collinear, the Moore–Penrose pseudo-inverse (GTG)# can be calculated through the singular value 

decomposition instead of the standard matrix inverse (GTG)-1. During the MGGP run, genes can be 

employed or eliminated by a tree crossover operator (a high-level crossover) whilst this action is 

performed in addition to the sub-tree crossover in the standard GP (a low-level crossover). The low-

level crossover chooses a gene randomly from each parent individually. The standard sub-tree crossover 

is then used, and the created trees will replace the parent trees in the otherwise unaltered individual in 

the next generation. The high-level crossover allows the interchange of one or more genes with another 

selected individual provided that the maximum number of genes of an individual is Gmax. Thus, if the 

number of genes passes Gmax, more genes are randomly selected and removed [50]. 
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Figure 1. An example of a multi-gene mathematical model [24]. 

 

3.2.2. Multi-Objective Genetic Programming (MOGP) 

The overall process of both standard GP and MGGP is structured based on a single objective 

optimization problem for each individual in which a fitness function is considered. For a symbolic 

regression, the goodness-of-fit to the training data is considered as a single objective to be maximized. 

Due to this maximization, the optimization procedure could result in overly complex, impractical and 

non-robust models [24]. In addition, for MGGP, additional genes may be employed by a multi-gene 

model, which has a minor effect on the final model performance. The first and simple solution could 

be provided by limiting G in a model to Gmax, which is a hard-to-determine unique value for any given 

problem parall]. 

 As the main goal is to establish a model with high accuracy and low complexity, the use of the multi-

objective concept in the multi-gene symbolic regression was proposed by Searson [50]. As such, both 

the goodness-of-fit and the complexity of candidate models can be optimized simultaneously by 

searching what is known as the Pareto front (non-dominated solutions) set. The methodology is 

commonly referred to as multi-objective genetic programming (MOGP). In this paper, the GPTIPS 2 

toolbox [50], associated with the related subroutines coded in MATLAB [51], is used to solve the 

MOGP task by using a non-dominated sorting technique [52]. The non-dominated solutions are sorted 

based on their complexity accuracy and exactness by using the non-dominating sorting technique at the 

end of each generation of the MOGP algorithm. The non-dominating sorting technique is described in 

detail in [50, 53]. 
 

3.2.3. Accelerating GP Process 

The term “Big data” can be used to define data sets that are very large, or when the data mining is 

complex enough to mean that traditional methods either cannot handle it or they are not practical to 

employ [24]. In engineering studies and especially in experimental results, the data sets are generally 

not very large, but they are typically complex [54]. Although successful applications of GP techniques 

in modelling engineering systems have been reported in the literature, there are some difficulties 

because of the big data problem. The evolutionary approaches are often time-consuming compared with 

statistical data mining approaches (e.g. regression analysis). GP is one of the slowest among them 

because it is used to find the structure of a model. The extra process of non-dominated sorting of a 

MOGP accentuates the problem. In this paper, in order to overcome this shortcoming, the following 

two solution strategies are used in the prediction procedure: 

 

• 60% of the data were randomly selected and used for the training process, and the rest are used as 

a testing set for each run. 

• The final Pareto front was determined by merging the Pareto fronts for all runs.  

   

  Two classes of machine learning algorithms are trajectory-based algorithms and population-based 

algorithms in general. The trajectory algorithms (for example, ANNs and regression analysis) deal with 

a single solution during the learning process. Unlike them, GP, a population-based algorithm, deals 
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with a set of solutions (programs) in each generation. This feature makes GP suitable for parallel 

processing. Therefore, the performance of the MOGP procedure could be accelerated by parallelizing 

the computations using a distributed computing machine that makes it able to deal with Big Data in GP. 

The schematic of parallel processing in the GP process is shown in Figure 2. Herein, twelve cores were 

only used to evolve and evaluate new models while this number could be increased up to the population 

size using this framework. As shown in Figure 2, the population is split evenly among the available 

cores (nodes). For larger problems, the GP system can be parallelized by Cloud computing in which 

Cloud nodes replace computer cores. Further information about the parallel processing of multi-gene 

MOGP used in this study and GP in general in a distributed system can be found in [53] and [54], 

respectively. 

 

 
Figure 2. A parallel processing schematic in the GP. 

 

4. PREDICTING SEISMIC DAMAGE SPECTRA 

 

4.1. Exact Database 

 

The structural and earthquake ground motion properties could greatly (or poorly – as investigation is 

needed) affect the inelastic responses of an SDOF system. In this paper, these properties, which are 

frequently used for seismic damage evaluations of structures, are used as the input variables of the 

prediction models, and they are described in detail in the next subsections. 

 

4.1.1. Inelastic SDOF Systems 

The period (T), hardening ratio of hysteretic behavior (), damping ratio (), response modification 

factor (Ru), the ultimate capacity ductility ratio (u), and the constant of the Park-Ang damage index () 

are the structural properties used to determine the spectral damage. The period’s range studied for the 

prediction of the seismic damage spectra is between 0.1 to 6.0 s with a step of 0.1 s. The values assumed 

for  are 0, corresponding to the elastic-perfectly-plastic (EPP) model, and 0.05 and 0.1 indicating 

bilinear models. The values used for the other parameters can be found in Table 2. The assumed values 

for the considered variables (T, , , Ru, u and ) resulted in a total number of 60×3×3×3×3×3=14,580 

individual inelastic SDOF systems used for the prediction of the SDI. It should be noted that only T, , 

 and Ru are used in the structural analyses (i.e. 60×3×3×3=1620 analyses for each earthquake ground 

motion record) while u and  are only used for post-processing of the spectral damage computation. 

 

Table 2. Structural properties of the inelastic SDOF systems and other parameters used 

Parameter Values used 

Period (T) 
From 0.1 s to 6.0 s, with step 0.1 s 

(60 values) 

Hardening ratio () 0 0.05 0.1 
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Damping ratio () 0.02 0.05 0.1 

Response modification factor (Ru) 2 4 6 

Ult. capacity ductility ratio (u) 6 8 10 

Constant of Park-Ang DI () 0.05 0.15 0.3 

 

4.1.2. Earthquake Ground Motions 

Three factors of the site class, source-to-site distance, and Sa are the three variables considered for the 

earthquake ground motion records used. Based on the shear wave velocities corresponding to the 30 m 

in depth (Vs,30) of more than 750, 360 to 750, 180 to 360 and less than 180 m/s, four soil types (S1, S2, 

S3, and S4) were assumed for the records used. The soil types S1, S2, S3, and S4 correspond to the soft, 

firm, stiff and rock soil types, respectively. To consider the source-to-site distance, the records having 

the Joyne-Boor distance (RJB) in the range of more than 17.5 km and less than 150 km were used (known 

as far-fault records). All records are non-pulse-like and correspond to events with a magnitude (M) 

greater than 5.5. The NGA-West-II project of the PEER ground motion database [55] was used for the 

selection of the records. The diversity of M, RJB and Vs,30, and the number of records are shown in Figure 

3. As shown in this figure, 281 records were selected in such way that they cover a large variety of the 

mentioned properties. In addition, they have been differentiated on the basis of their allocated soil types. 

 

 
Figure 3. Parameters M, RJB and Vs,30, and the number of records used 

 

Finally, based on the values assumed for the structural variables and the four sets of earthquake 

records, a large number of inelastic time history dynamic analyses (more than 455,000) were carried 

out, and the exact values of SDI were determined. The entire process was simulated in MATLAB [51].  

In order to compute the damage spectra, the individual spectral damage responses of the SDOF 

systems under each earthquake record (of a set of interest) were firstly computed. Then, based on the 

normal distribution, the mean spectral damage of each set of the earthquake records was determined, to 

be predicted later on. 



 

10 

 

 

4.2. Damage Assessment 

 

In this section, the exact results of the Park-Ang damage index are presented, and the effects of the 

variables Ru, , u, ,  and soil type on the SDI are investigated. It should be noted that for all the 

spectral damages presented herein, such as, for example, the investigation of the effects of Ru, the 

spectral damage presented is the mean across all the other variables. Figure 4 shows the damage spectra 

in terms of all the mentioned variables. To show the changes clearly, the vertical axis is arranged in a 

logarithmic scale. 

 The variations of SDI for the three values of Ru equal to 2, 4 and 6 are depicted in Figure 4(a), where 

it can be seen that the spectral damage increases in step with increasing Ru for all the structures with 

short-to-long periods. It could be said that, because of decreasing Fy, higher degrees of nonlinearity are 

experienced at the same level of earthquake intensity, and the induced damage is then increased with 

increasing Ru. The variations of SDI from the structures with an Ru of 2 to 4 is much greater than those 

from 4 to 6.  

 Figure 4(b) shows the variation of SDI for three values of u equal to 6, 8 and 10. As can be seen, 

the spectral damage is decreased when the ductility ratio increases. This is because structures with 

higher ductility have more deformation capability and energy dissipation capacity, resulting in a lower 

degree of damage. 

 The effect of the damping ratio of the SDOF systems on the SDI is discussed herein. The three values 

considered for the damping ratio are 0.02, 0.05 and 0.1, which are the common values used in the 

analysis of engineering structures [56]. This effect is shown in Figure 4(c). A clear relation between 

them is that SDI increases as the damping ratio  increases. This effect has been confirmed in detail by 

the results found by Zhai et al. [11]. As they have also noted, increasing the damping ratio leads to a 

decrease in spectral acceleration (Sa), and at a given Ru, in accordance with Eq. (3), the Fy of the SDOF 

system will decrease, resulting in increased damage. As shown in Figure 4(c), the differences due to 

the effect of the damping ratio on SDI is decreased as the period of structures is increased. Moreover, by 

increasing the damping ratio, a greater range of short-period structures experience collapse status.  

 Herein, the effects of the hardening ratio () of bilinear hysteretic behavior of SDOF systems on 

the SDI are studied. The ratio is equal to the post-yield stiffness of the bilinear model to the initial one. 

Three values of 0.0, 0.05 and 0.1 are considered for , where 0.0 indicates the EPP behavior model. 

The damage spectra for different  values are shown in Figure 4(d), where the overall trend of damage 

spectra is seen to descend, and a greater hardening ratio leads structures to exhibit a lower degree of 

damage. By considering 0.05 as the hardening ratio for the behavior model, the spectral damage is 

significantly decreased, and by increasing the hardening ratio from 0.05 to 0.1, the spectral damage is 

slightly decreased. The former difference is almost zero for the short-period structures, particularly 

those with a period of less than 0.6 s.  

 A positive constant, , is used to combine two terms of the Park-Ang damage index by which the 

portion of hysteretic energy is contributed. Several values have been proposed for  which are common 

in the range of 0.05 to 0.3. Figure 4(e) shows the variation of SDI with respect to  As expected, SDI 

increases as  increases. 
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Figure 4. Damage spectra for the variables: (a) Ru, (b) u, (c) , (d) , (e) , (f) S1 to S4 (Note: the 

vertical axis is in logarithmic scale)  

The effects of soil types S1 to S4 were also captured and are shown in Figure 4(f). As can be seen, the 

effect of soil type on SDI is not as significant as the other abovementioned parameters. In general, except 

for a limited region of long-period structures, SDI for S4 is more than that for S1, S2 and S3. In addition, 

for most of the periods in the range of short and medium, SDI corresponding to S1 is higher than that 

for S2 and S3 and vice versa for long-period structures. Moreover, as a general trend, the value of SDI 

decreases as the period increases, in all cases. 

 

4.3. Model Development Using MOGP 

An efficient model needs appropriate parameters to be utilized as a part of the MOGP predictive 

algorithm. To develop an optimum MOGP model, some mathematical functions (e.g. tanh, ln) and basic 

arithmetic operators (+, -, ×, /) have to be used. To form the model, the elements chosen from the 

functional set and the terminal set are combined randomly. The population size is used to determine the 

number of programs in the population, and the number of levels (which the algorithm would apply 

before it terminates) is determined by the number of generations. These important values are set based 

on three factors: the nature of the data set; the number of variables; and the problem complexity. To 

restrict the complexity of the models, the parameters Gmax and Dmax need to be defined, which 

respectively are the upper bounds of an individual and the maximum tree depth. The values are obtained 

from a trade-off between the running time and the complexity of the evolved solutions.  

 Herein, a “rate-based high-level crossover” is employed with the aim of generating new genes for 

individuals, decreasing the overall number of genes for one model and increasing the total number of 

genes for the other. A crossover rate parameter (CR) is used to capture the process. A uniform random 

number (r0) in the range [0, 1] with a mean value of 0.5 is produced separately for each gene in the 

parents. If r0 < CR, the corresponding gene is transferred to the other individual. If an exchange of gene 

results in offspring that violate Gmax, the gene is deleted to satisfy the constraint [50]. For the analyses 

and to develop the models, data are split into a training subset and a validating subset. To fit the genetic 

model evolution, the training subset is used only for the learning, and the performance of the evolved 

programs on unseen data is measured by the performance of the algorithm on the validation subset. 

Note that the validation subset is only used for validation and plays no role in building the models.  

A consistent data division is obtained by considering different combinations of training and testing 

sets. To designate the best-encoded expression, the evolved expressions are evaluated by the fitness 
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function. For the MOGP, the minimum of the root mean square error (RMSE) is used as the fitness 

function expressed as follows: 

( )
2

1 ,

n

i i

i

e p

RMSE
n

=

−

=


 

(9) 

in which, pi and ei are the predicted, and exact output values for the i-th output, respectively; and n is 

the number of samples. In the MOGP approach, the two objectives of maximizing the correlation 

coefficient (R) and minimizing the model complexity are considered for selecting the best final 

predictive model. 

 

4.4. Model Development Using ANNs 

In order to develop a predictive model using ANN, some main factors need to be addressed. In general, 

this comprises choosing the data set, data preprocessing, selecting adequate input variables, determining 

an appropriate network architecture, assigning convergence criteria, choosing the optimization method 

and model validation. One of the most important among these factors for improving the model 

performance is the selection of a network architecture that is compatible with the input and output data 

and the nature of the problem.  

 The ANN model development procedure starts by inputting a training data set into the input layer. 

A learning rule is then used to find a set of weights by producing an input-output mapping with the 

smallest error. After successfully implementing the training phase, another data set (i.e. the testing data 

set) is applied to assess the performance of the developed model.   

In this paper, three training methods, namely trainlm, trainscg and trainbr were used: 

• trainlm is a network training function that updates weight and bias values according to the 

Levenberg-Marquardt optimization [57]. 

• trainscg is a network training function that updates weight and bias values according to the scaled 

conjugate gradient method.  

• trainbr is another network training function that updates the weight and bias values according to the 

Levenberg-Marquardt optimization. However, it minimizes a combination of squared errors and 

weights, and then determines the correct combination so as to produce a network that generalizes 

well. This process is called Bayesian regularization. 

Determining the optimum value of the performance ratio parameter is a challenging problem during the 

regularization process. The large values of this ratio can result in overfitting, which leads to a fitting of 

the noise and a loss of generalization of the network. Hence, there is a need to automatically find the 

optimum values.  The regularization parameters are automatically set by the Bayesian regularization 

function, which is related to the unknown variances associated with these distributions. This reduces 

the potential for overfitting by which a nonlinear system is converted into the “well-posed” statistical 

problems [37, 38]. One basic feature of Bayesian regularization is providing a measure for recognizing 

the effective network parameters, including weights and biases. The weights are considered as the 

random variables in the Bayesian network, and their density function is thereby written according to 

the Bayes’ rules. A detailed description of the process can be found in [58]. 
 

4.5. Model Accuracy  

 

It should be noted that all the models can be valid in the range of the actual data used for the model 

generation. In order to investigate the effectiveness and accuracy of the models in the range of our 

database, common performance metrics, including the mean absolute percentage error (MAPE), relative 

root mean square error (RRMSE), linear correlation coefficient (R), performance index (PI), coefficient 

of efficiency (E), and the index of agreement (d) corresponding to the predicted formulation of each 

EDP are obtained. The equations for calculating these quantities are expressed as follows: 
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where ie and ip  are the average values of the exact and predicted outputs, respectively; and n, ei, and 

pi have been predefined. Lower MAPE and RRMSE values as well as higher R (or R2), E, and d indicate 

the accuracy and effectiveness of the prediction model used. Based on Eq. (13), higher R values and 

lower RRMSE values result in lower PI and, subsequently, indicate a more precise model. It should be 

noted that the PI ranges from 0 to ∞, and values close to 0 indicate that the model fits very well to the 

exact (actual) values. 

 It is worth noting that two sources of complexity affect the accuracy of the models: Firstly, the 

behavior of the structures under consideration as they experience inelastic deformations with high 

nonlinearity, and secondly, the nature of earthquake excitations includes some effective characteristics, 

such as frequency content, which make a structure experience different cyclic excursions associated 

with complex behavior [25]. 

 

5. RESULTS AND DISCUSSION 

 

5.1. MOGP predictive model 

 

The parameter settings used for the MOGP are listed in Table 3. The values were obtained based on the 

authors’ experience, the suggestions available in the literature [48-50] and the employment of a case-

dependent trial-and-error process. Finally, using the MOGP, the SDI was predicted, and its optimal 

mathematical model was determined.  

 Four cases based on the different soil types (S1 to S4) were considered in the model development 

process. Therefore, in this paper, the complete database (which includes four soil types, S1 to S4) is 

employed in order to develop a unique prediction model for SDI. The linear regression coefficients are 

then updated for each soil type. The final mathematical model is selected based on a compromise 

between the prediction accuracy (as measured by the correlation coefficient R) and the model 
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complexity (as measured by the number of input variables). After that, the complete database is divided 

into four groups based on soil types S1 to S4. Using each group of data, the predicted coefficients of 

the final model are re-evaluated by conducting a regression analysis to reflect the influence of the soil 

types. Finally, a unique mathematical model is presented containing the structural variables (and PGA 

of earthquake records) with an application to all soil types (S1 to S4), with four different groups of 

coefficients. The participation of each input variable in the mathematical model and the Pareto front 

obtained by using a non-dominated sorting method is also presented. 

 Twenty independent GP runs with random initial populations were conducted, and the final 

populations are merged in a pool with 4,000 models (20×200=4,000). The results of all models 

developed by MOGP for SDI are shown in Figure 5(a). The Pareto front sets are shown with green 

circles, and the rest of the models are shown in solid black circles. As mentioned earlier, the Pareto 

front set is obtained by using a non-dominated sorting of populations at the end of all MOGP runs. This 

process simultaneously optimizes the accuracy and complexity of all developed models. The final 

model in the Pareto front set is selected and highlighted in a red circle. 

 

Table 3. Parameter settings for the MOGP algorithm 

Parameter settings Setting 

Function set 
+, -,×,/, , ^2, ^3, exp., ln, tanh, 

mul3a 

Population size 100 – 500 (200b) 

Number of generations 10,000 

Maximum number of genes allowed in an individual 

(Gmax) 
3 – 4 

Maximum tree depth (Dmax) 5 

Tournament size 10% of the population 

Pareto Tournament 30% of tournaments 

Crossover events 0.85 

High-level crossover 0.2 

Low-level crossover 0.8 

Mutation events 12 

Sub-tree mutation 9 

Replacing input terminal with another random terminal 0.05 

Gaussian perturbation of randomly selected constant 0.05 

Direct reproduction 0.05 

Ephemeral random constants [˗10,10] 
a mul3 means the product of three factors; b Bold set is the final set 

 

 
(a) (b) 
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Figure 5. (a) Pareto front, and (b) Frequency of the model developed by MOGP  

 

The frequencies of each input variable measure the contribution of each input variable in the 

mathematical prediction models. The maximum contribution of each input variable corresponds to the 

frequency value of 1.0, indicating that it has the maximum contribution within the best-generated 

models [59]. It was assumed that the models with R2> 0.8 are the best-generated models. The frequency 

histograms of the input variables for the predicted spectral damage are shown in Figure 5(b). As shown, 

for the selected database, R-factor and  respectively, show the most and the least statistically 

significant contributions in the best-generated MOGP models.  

The mathematical model obtained for SDI is expressed as follows: 

 

0 1 1 2 2 3 3 4 4DIS c c G c G c G c G= + + + + , (15) 

 

where the parameters G1, G2, G3 and G4 are expressed as 
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and c0 is the bias term, while c1 to c4 are the gene weight for the prediction model. These coefficients 

are listed in Table 4.  

 

Table 4. The coefficients c0, c1, c2, c3, c4 used in equation (17) for each soil type 

Soil 

Type 

Coefficients – Eq. (16) 

c0 c1 c2 c3 c4 

S1 0.130275 5.832123 0.000492 0.002978 0.035622 

S2 0.111011 6.216587 0.000366 0.002046 0.026355 

S3 0.095521 6.366112 0.000329 0.001634 0.024222 

S4 0.090168 6.875437 0.000876 0.006611 0.056876 

 

 The correlation coefficient (R) is an essential output of the regression analysis measuring the 

correlation between the exact (target) and predicted data. For a more rigorous investigation, the square 

of R, i.e. R2 is used herein. Figure 6 shows the regression plots for the training, test and validation data. 

As can be seen from all the plots, the predicted data are well concentrated around the 45° line. Moreover, 

the results of R2 marked on the figure are equal to 0.984, 0.987 and 0.986, respectively, for the training, 

test and validation data set, demonstrating their excellent agreement with the target data.  
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Figure 6. Regression plots for exact versus predicted results for the MOGP model 

 
5.2. ANN predictive model 

The hyperbolic tangent sigmoid transfer function and a linear transfer function were considered for the 

hidden layer and the output layer, respectively. To update weight and bias values, the Levenberg-

Marquardt algorithm with 1000 epochs was used as the network training function. Backpropagation 

was used to adjust the weights and biases in the steepest descent direction to reduce prediction errors. 

The error corresponding to the adjusted weights and biases was then calculated and fed back to the 

network. The mean square error (MSE) with a tolerance of 10-5 was used as the performance function, 

and 85% and 15% of the data were used for training and testing the ANN model, respectively. 

The number of input-output neurons is primarily determined on the basis of the requirements, but 

there is no certain rule for determining the number of neurons in the hidden layers. Due to the nature of 

the problem, all the trained networks have 6 neurons in the input layer and 4 neurons in the output layer. 

It was decided that the number of neurons in the hidden layer would be 30. The best number of neurons 

was obtained using a trial-and-error process. The criteria used to determine this number were that less 

time was required to achieve less error in the testing and training of the ANNs. The parameter settings 

for the ANN are listed in Table 5.  

 

Table 5. Parameter settings for the ANN used 

Parameter Setting 

Number of neurons in the input layer 6 

Number of neurons in the output layer 4 
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Number of neurons in the hidden layer 1-30 (28a) 

Epochs 1000 

Goal 0 

Momentum constant 0.005 

Training, validation, and testing data (%) 70, 15, 15 

Training optimization algorithm Levenberg–Marquardt 

Transfer function (hidden layer) Hyperbolic tangent sigmoid 

Transfer function (output layer) Linear 

Regularization function Bayesian 
a Bold set is the final set 

 

Three network training functions are implemented here to update the network weights, including 

Levenberg–Marquardt optimization, Bayesian Regularization, and Scaled Conjugate Gradient. 

Training using Scaled Conjugate Gradient was not successful, and therefore, only results of  

Levenberg–Marquardt optimization and Bayesian Regularization are presented in Figure 7. The results 

show that both algorithms have almost the same performance, and their results are converged with more 

than 30 neurons. Here, the best model is selected based on the training error, which has the lowest 

testing error. The final model is the networked trained with Bayesian Regularization and has 28 nodes. 

 

 
Figure 7. MSE values vs the number of hidden neurons for different training functions 

 

Herein, the performance of the best ANN applied is evaluated through the MSE. Figure  shows the 

performance curve of the developed model for predicting SDI. As can be seen, MSE becomes small as 

the number of epochs is increased, and no overfitting is observed, while the training process has been 

performed well. The best performance in terms of MSE was about 0.005 and occurred at epoch 1000. 
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Figure 8. The ANN performance during the training step 

 

Additional verification of the ANN performance could be provided using the error histogram, 

which visualizes the difference between values predicted by the ANN model and the actual values after 

the training. Normally, the near-zero errors indicate the better-trained model. Figure  shows the error 

histogram plot with 20 bins for the ANN model used. As can be seen, the data-fitting errors are 

distributed within an appropriate range near zero, confirming the superior performance of the training 

step. 

 

 
Figure 9. Error histogram of ANN (with 20 Bins) during the training step 

 

The training state is also shown in Figure , which shows the plots of gradient, momentum and 

validation checks against epochs. The descending trend of gradient during epochs are obvious, 

indicating that the model is converging, and its performance is improving. The variation of Mu values, 

which is used to control the weights of the neuron updating process during the training, is also depicted 

in the figure. The final values for gradient and Mu are marked on the figure. In addition, validation fails 

during the training process are shown in Figure , indicating that there are no fails during the training. 

Note also that a high number of fails during the training step shows overtraining, resulting in the process 

being stopped. 

 



 

19 

 

 
Figure 10. The training state of ANN in terms of gradient, Mu and validation checks 

 

Figure  shows the regression plots for the developed ANN model for all soil types (S1 to S4). As 

shown in this figure, the predicted data are well concentrated around the 45° line. In addition, the results 

of R2 marked on the figure are more than 0.998 for all soil types, indicating that the predicted values 

are in excellent agreement with the exact data. In addition, it confirms the high accuracy of the 

developed ANN model.  
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Figure 7. Regression plots for exact versus predicted results for the ANN model 

 

5.3. Comparison 

In the previous subsections, the accuracy of the predictive models developed by both MOGP and ANN 

was confirmed. Herein, in order to compare the models developed by the MOGP and the ANN with a 

model presented in the literature, a relevant model proposed by Zhai et al. [11] is applied. The model 

is mathematically expressed as follows [11]:  

( ) 32
, . 1 1.5

1 10
1
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DI Zhai et al u

u u

b
S b R
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 
= + + − 

 
 (17) 

where b1 to b3 are the coefficients depending on the soil types, and the other parameters have been 

predefined. The values proposed for the coefficients corresponding to each soil type are listed in Table 

6. 

To make a general comparison, the mean values of SDI predicted by all of the models developed 

across all variables are used. The above-defined performance metrics, including MAPE, RRMSE, R2, 

PI, E, d, and are used for the comparison. To make an informative comparison, all the performance 

metrics are listed in Table 7. The results are separately presented for each soil type (S1 to S4). The 

differences between the performance metrics of the two models are also computed and presented. As 

shown in this table, the results of MOGP and ANN are excellent in terms of all performance metrics, 

and the ANN model has higher accuracy compared with the MOGP model. Nevertheless, the 

mathematical relationship of equation (16) is an advantage for the MOGP model when compared to the 

ANN model, which provides no such elegant solution. In addition, the comparison of the performance 

metrics shows that both MOGP and ANN models have higher accuracy (i.e. lower MAPE, RRMSE, PI 

and higher R2, d, E) than the Zhai et al. model. This is true for all four soil types.  
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Table 6. The values proposed for b1 to b3 used in the model developed by Zhai et al [11]. 

Soil Type 
Coefficients  

b1 b2 b3 

S1 0.08 0.02 1.25 

S2 0.09 0.04 1.2 

S3 0.09 0.05 1.1 

S4 0.08 0.1 1.18 

 

To make a more informative and general assessment of the proposed MOGP and ANN models, as 

well as the Zhai et al. model, the average values of the performance metrics of all soil types, for each 

of the models, are also presented in Table 7. As shown, the MAPE, RRMSE and PI of the MOGP model 

have almost 53.1, 76.1 and 77.6% lesser values, respectively, and R2, E and d have almost 29, 98.6, and 

15.7% higher values, respectively, compared with those of the model of Zhai et al. [11]. In addition, 

based on the table, the MAPE, RRMSE and PI of the ANN model have almost 83.5, 93.9 and 94.3% 

lesser values, respectively, while the R2, E and d have almost 31.6, 102.6 and 16.2% higher values, 

respectively, compared with those of the Zhai et al. model. Finally, the higher accuracy of the MOGP 

and ANN models compared with the Zhai et al. model is confirmed by the performance metrics listed 

in Table 7. It can also be seen that the ANN model outperforms the MOGP model. 

 Next, a graphical comparison is made to show the varying trend of the predicted models using 

MOGP, and comparing the best model from the literature with the exact results. For this purpose, the 

input variables were selected as Ru = 4, u = 10,  = 0.05  = 0.0 and  = 0.15. The SDI corresponding 

to the soil types S1 to S4 are shown in Figure . The figure shows the plots of exact and predicted SDI 

using the MOGP, ANN and Zhai et al. models, and all the SDI curves show a descending trend. The SDI 

corresponding to the ANN model is very close to the exact values as compared to the MOGP and Zhai 

et al. models. This is also true for the MOGP model when compared to the Zhai et al. model. 

 

Table 7. Performance metrics for the ANN, MOGP and Zhai et al. models 

Soil  

Type 

Performance 

Metrics 

Prediction models for SDI 
Difference 

(Improvement) % 

Zhai et al. [11] MOGP ANN 
MOGP to  

Zhai et al.  

ANN to  

Zhai et al. 

S1 MAPE 27.17 12.18 4.48 -55.171 -83.511 

RRMSE 217.77 31.91 8.36 -85.347 -96.161 

R2 0.714 0.980 0.999 37.255 39.916 

PI 1.180 0.160 0.042 -86.441 -96.441 

E -3.837 0.980 0.999 -74.459 -73.964 

d 0.674 0.995 0.9996 47.626 48.309 

S2 MAPE 23.32 12.33 4.26 -47.127 -81.732 

RRMSE 91.50 27.15 7.69 -70.328 -91.596 

R2 0.786 0.979 0.998 24.555 26.972 

PI 0.485 0.136 0.038 -71.959 -92.165 

E 0.559 0.979 0.998 75.134 78.533 

d 0.917 0.995 0.9996 8.506 9.008 

S3 MAPE 27.52 12.12 3.72 -55.959 -86.483 

RRMSE 85.33 23.63 7.68 -72.308 -91.000 

R2 0.787 0.982 0.998 24.778 26.811 

PI 0.452 0.119 0.038 -73.673 -91.593 

E 0.678 0.982 0.998 44.838 47.198 

d 0.931 0.995 0.9995 6.874 7.358 

S4 MAPE 29.63 13.81 5.29 -53.392 -82.146 



 

22 

 

RRMSE 141.47 45.46 8.88 -67.866 -93.723 

R2 0.747 0.977 0.999 30.790 33.735 

PI 0.759 0.229 0.044 -69.829 -94.203 

E 0.626 0.977 0.999 56.070 59.585 

d 0.918 0.994 0.9997 8.279 8.900 

Average 

values 

for all 

soil 

types 

MAPE 26.91 12.61 4.44 -53.140 -83.501 

RRMSE 134.02 32.04 8.15 -76.093 -93.919 

R2 0.759 0.979 0.999 28.986 31.621 

PI 0.719 0.161 0.041 -77.608 -94.298 

E -0.493 0.979 0.999 98.580 102.637 

d 0.860 0.995 0.9996 15.698 16.233 

 

 

 
Figure 8. SDI plots corresponding to the exact and the MOGP, ANN and Zhai et al. models: (a) S1 to 

(d) S4 

 

6. CONCLUSIONS 
 

Determining the potential seismic damage of a structure is of great importance both when designing 

new structures and to assess the resiliency of existing ones. In this work, to determine the earthquake-

induced damage of a wide range of structures, the seismic damage spectra were predicted by using 

computational intelligence methods, specifically ANN and MGGP. In order to generate a database of 
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the spectral damage, the most important structural and earthquake features were captured, and the Park-

Ang damage index was used for the computation of structural damage. The structural features used 

were the period (T), hardening ratio of hysteretic behavior (), damping ratio (), response modification 

factor (Ru), ultimate capacity ductility ratio (u), and the constant of the Park-Ang damage index (). 

Also, some earthquake features including moment magnitude (M), the Joyne-Boor distance (RJB) and 

soil shear wave velocity corresponding to 30 m in depth (Vs,30) were considered when determining the 

spectral damage.  

Two predictive models based on ANN and MGGP were developed, and their predictions were 

assessed by performing a comparison with exact results using performance metrics. A spectral damage 

model available in the literature was also used in a comparison, and finally, all three models were 

compared with one another. Common performance metrics, including the mean absolute percentage 

error (MAPE), relative root mean square error (RRMSE), linear correlation coefficient (R), performance 

index (PI),  coefficient of efficiency (E), and the index of agreement (d) were employed to measure the 

developed predictive models. 

Although the performance metrics show that the ANN model is more accurate than the MGGP 

model, the explicit MGGP-based mathematical model makes it more practical in quantifying the 

potential seismic damage of structures. In addition, a comparison of the results of the developed models 

with those of other models available in the literature shows the superiority of the models proposed in 

this paper. 
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