
Citation: Yilmaz, V.S.; Akdag, M.;

Dalveren, Y.; Doruk, R.O.; Kara, A.;

Soylu, A. Investigating the Impact of

Two Major Programming

Environments on the Accuracy of

Deep Learning-Based Glioma

Detection from MRI Images.

Diagnostics 2023, 13, 651. https://

doi.org/10.3390/diagnostics13040651

Academic Editors: Semen A. Kurkin

and Alexander E. Hramov

Received: 19 December 2022

Revised: 4 February 2023

Accepted: 7 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Investigating the Impact of Two Major Programming
Environments on the Accuracy of Deep Learning-Based Glioma
Detection from MRI Images
Vadi Su Yilmaz 1, Metehan Akdag 2, Yaser Dalveren 1 , Resat Ozgur Doruk 1, Ali Kara 3,* and Ahmet Soylu 4

1 Department of Electrical and Electronics Engineering, Atilim University, Kizilcasar Mahallesi, Incek Golbasi,
Ankara 06830, Turkey

2 Fonet Information Technologies, Kizilirmak Mahallesi, Cukurambar Cankaya, Ankara 06520, Turkey
3 Department of Electrical and Electronics Engineering, Gazi University, Eti Mahallesi, Yukselis Sokak, Maltepe,

Ankara 06570, Turkey
4 Department of Computer Science, OsloMet—Oslo Metropolitan University, Pilestredet 35, Oslo 0167, Norway
* Correspondence: akara@gazi.edu.tr

Abstract: Brain tumors have been the subject of research for many years. Brain tumors are typically
classified into two main groups: benign and malignant tumors. The most common tumor type among
malignant brain tumors is known as glioma. In the diagnosis of glioma, different imaging technologies
could be used. Among these techniques, MRI is the most preferred imaging technology due to its
high-resolution image data. However, the detection of gliomas from a huge set of MRI data could be
challenging for the practitioners. In order to solve this concern, many Deep Learning (DL) models
based on Convolutional Neural Networks (CNNs) have been proposed to be used in detecting glioma.
However, understanding which CNN architecture would work efficiently under various conditions
including development environment or programming aspects as well as performance analysis has not
been studied so far. In this research work, therefore, the purpose is to investigate the impact of two
major programming environments (namely, MATLAB and Python) on the accuracy of CNN-based
glioma detection from Magnetic Resonance Imaging (MRI) images. To this end, experiments on the
Brain Tumor Segmentation (BraTS) dataset (2016 and 2017) consisting of multiparametric magnetic
MRI images are performed by implementing two popular CNN architectures, the three-dimensional
(3D) U-Net and the V-Net in the programming environments. From the results, it is concluded that
the use of Python with Google Colaboratory (Colab) might be highly useful in the implementation of
CNN-based models for glioma detection. Moreover, the 3D U-Net model is found to perform better,
attaining a high accuracy on the dataset. The authors believe that the results achieved from this study
would provide useful information to the research community in their appropriate implementation of
DL approaches for brain tumor detection.

Keywords: brain tumor detection; glioma; deep learning; U-Net; V-Net; MATLAB; Python; perfor-
mance assessment

1. Introduction
1.1. Preamble

Primary brain tumors refer to a heterogeneous group of tumors developing from
various types of cells within the Central Nervous System (CNS) [1]. Primary brain tumors
can be benign (non-malignant) or malignant. Non-malignant tumors grow slowly and
do not spread to neighboring tissues, while malignant tumors expand rapidly and tend
to invade other tissues [2]. According to the revised 2021 World Health Organization
(WHO) classification of CNS tumors [3], brain tumors are mainly classified as: (a) Gliomas,
glioneuronal tumors, and neuronal tumors; (b) Choroid plexus tumors; (c) Embryonal
tumors; (d) Pineal tumors; (e) Cranial and paraspinal nerve tumors; (f) Meningiomas;

Diagnostics 2023, 13, 651. https://doi.org/10.3390/diagnostics13040651 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13040651
https://doi.org/10.3390/diagnostics13040651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-9459-0042
https://orcid.org/0000-0002-9739-7619
https://doi.org/10.3390/diagnostics13040651
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13040651?type=check_update&version=1


Diagnostics 2023, 13, 651 2 of 15

(g) Mesenchymal, non-meningothelial tumors; (h) Melanocytic tumors; (i) Hematolym-
phoid tumors; (j) Germ cell tumors; (k) Tumors of the sellar region; and (l) metastases to
the CNS. The Central Brain Tumor Registry of the United States (CBTRUS) reported that
about 28.3% of all brain and other CNS tumors diagnosed in the United States between
2015 and 2019 were malignant, while 71.7% were non-malignant [4]. It is also reported that
gliomas, including glioblastoma, pilocytic astrocytoma, oligodendroglioma, ependymoma,
and a few rare histopathologies, were the most common malignant primary brain tumor
type. Specifically, in the report, it is indicated that the most commonly occurring tumor
was glioblastoma, which accounted for 14.2% of all tumors and 50.1% of all malignant
tumors. According to the pathological and genetic properties, on the other hand, gliomas
are classified by the WHO into four grades. Grades I and II are categorized as low-grade
gliomas (LGG) such as pilocytic astrocytomas (WHO I), and diffuse low grade gliomas
including diffuse astrocytomas and oligodendrogliomas (WHO II). Grades III and IV are
categorized as high-grade gliomas (HGG), including anaplastic astrocytomas and anaplas-
tic oligodendrogliomas (WHO III), and glioblastoma (WHO IV) [3,5]. Obviously, when
compared to HGG, LGG are mostly considered as less-threatening tumors [6].

Diagnosis of gliomas at early stages is strictly necessary for a patients’ survival. For
diagnosing tumors, the radiologists use different types of procedures or technologies such
as biopsy, cerebrospinal fluid analysis, and medical imaging. However, with the rapid
developments of computer science, imaging technologies have become more popular due
to their accuracy and low risk to patients. Today, three imaging technologies such as X-rays,
computed tomography (CT), positron emission tomography (PET), and magnetic resonance
imaging (MRI), are commonly used in the diagnosis of brain tumors. Among them, MRI is
the most preferred imaging technology because of its high-resolution image data that are
useful for the detection and classification of tumors. However, the identification of tumors
from MRI data is not an easy task for the experts, as they need to put forth significant
effort in order to provide a diagnosis in a limited time. Therefore, automated diagnostic
systems based on machine learning (ML) approaches have started to be used [7]. ML is
mainly aimed at classifying tumors into the specific classes, such as tumor substructure,
tumor/non-tumor, or benign/malignant tumor.

Various ML methods based on particular classifiers such as Support Vector Machine
(SVM) [8–10], Extreme Learning Machine-Improved Particle Swarm Optimization (ELM-
IPSO) [11], K-Nearest Neighbors (KNN) [12], Artificial Neural Networks (ANN) [13], and
Random Forest (RF) [14,15] are used for glioma detection in the literature. However, it is
worth noting that such traditional ML methods apply pre-designed feature extraction from
the MRI data. Evidently, pre-selection of features might adversely affect the performance
of these traditional ML methods [16]. In order to resolve this concern, deep learning (DL)
approaches have gained increased attention from many researchers [17]. One of the most
important advantages over traditional ML methods is that hand-crafted features are not
required in the implementation of DL approaches. Even complicated patterns can be
discriminated by automatic feature learning. This enables practitioners to generate faster
and better insights from large MRI datasets.

In addition to glioma detection, the use of DL approaches is also very popular in
real-life applications in different fields, such as groundwater level prediction [18], nonlinear
distributed thermal processes [19], or even the aquaculture and fishery industry [20], due
to its easier implementation and higher computational efficiency. Many studies have been
conducted to propose DL approaches to be implemented for efficient detection and classifi-
cation of brain tumors as glioma, meningioma, or pituitary tumors from MRI data [21–33].
DL approaches based on Convolutional Neural Networks (CNNs) have attracted much
interest, as they require minimum preprocessing [34–40]. However, it is very important
to understand which CNN architecture would work well for detection and classification
of brain tumors under various conditions including the development environment or
programming aspects. Until now, two high-level programming environments, namely
MATLAB and Python, have been commonly preferred in the literature to implement the DL



Diagnostics 2023, 13, 651 3 of 15

approaches for the detection of brain tumors. Therefore, it is necessary to investigate the
impact of these programming environments on the accuracy of CNN-based brain tumor
detection.

1.2. Related Works and Research Gaps

High-level programming environments such as MATLAB, Python, R, Scala, Julia, or
Java are able to empower scientist and engineers in order to implement their ideas in a faster
way. This is due to the fact that the computational difficulties of low-level programming
languages, such as C, C++, or FORTRAN, can be relaxed by high-level programming
environments, which allow users to deal with mathematically heavy problems by means
of minimal programming. Among high-level programming environments, the use of
MATLAB and Python is mostly preferred in DL implementations due to their easy learning,
simplicity of use, and adaptability features.

The performances of MATLAB and Python compared to each other has been a subject
of debate over the years. In this context, the performance of MATLAB has been compara-
tively assessed with Python for different applications in various fields [41–46]. In [41], the
aim was to offer a well-structured teaching language that enabled engineering students to
quickly express their algorithms. In [42], the comparisons were made in terms of execution
times for a macroeconomic application. The study presented in [43] was conducted for
researchers in the field of economics in order to offer a best programming environment
suited to their own purpose. In [44], the performance of the programming environments in
a bioinformatics application were compared in terms of their memory requirement and
ease of integration. In [45], the runtimes of the programming environments were compared
for complex number calculations used in electromagnetic applications. In [46], accuracies
of the programming environments for the computation of a robotic arm end effector matrix
were compared.

Motivated by the aforementioned discussion, there have been no studies presented
that focus on the efficiency of MATLAB and Python on CNN-based brain tumor detection
from MRI data. This, in fact, indicates a significant research gap that might be critical for
many practitioners in their appropriate implementation of DL approaches for brain tumor
detection.

1.3. Purpose and Contributions

This research work aims to investigate the impact of two major programming en-
vironments, namely MATLAB and Python, on the accuracy of CNN-based brain tumor
detection, particularly glioma, from a well-known MRI dataset. For this purpose, extensive
experiments on Brain Tumor Segmentation (BraTS) dataset are performed by implementing
two popular and simple CNN architectures: a standard three-dimensional (3D) U-Net [47]
and V-Net [48] in MATLAB and Python. In the experiments, due to its larger size and
higher resolution, the BraTS 2016 and 2017 dataset, consisting of multiparametric-magnetic
MRI from patients diagnosed with either HGG or LGG, was used [49]. Experimental results
show that using Python with Google Colaboratory (Colab) offers significant advantages in
terms of training time and accuracy over MATLAB. Results also indicate that the 3D U-Net
model has higher accuracy in comparison to the V-Net model on the used dataset. Thus, it
is believed that the comparative study provided in this paper would attract the research
community working in the area of brain tumor detection from MRI images, and help them
to explore some future research directions as well as applicability of the models to BraTS
dataset. The main contributions of this study can be summarized as follows:

(a) This is the first study that comparatively assesses the impact of two major program-
ming environments on the accuracy of CNN-based glioma detection.

(b) Glioma detection performances of two popular CNN architectures, namely 3D U-Net
and V-Net, are compared using the BraTS dataset (2016 and 2017) for the first time in
the literature.



Diagnostics 2023, 13, 651 4 of 15

The rest of the article is organized as follows. In Section 2, an overview of MATLAB
and Python for DL implementations is provided. Then, in Section 3, the details of the
experiments performed within the context of this study are presented. This is followed
by Section 4, where experimental results are presented. Further discussions and future
research directions are addressed in Sections 5 and 6, respectively. Finally, the article is
concluded in Section 7.

2. Overview of MATLAB and Python for Deep Learning

In this section, a brief discussion on the use of two major programming environments
in DL implementations is presented to provide a better understanding before describing
the experiments and results.

It is widely known that DL is a branch of ML, which teaches computers to learn from
experience. In DL, neural networks combining nonlinear processing layers are used to
learn useful features from the data. The effectiveness of DL models in object classification
has been thoroughly discussed in the literature. However, the efficiency of MATLAB and
Python in DL model implementations is still under debate by the research communities.

MATLAB is a popular high-level programming language often employed both in
industry and research for numerical computations [50]. It is very mature and widespread
among the scientific community as well as practitioners, with its user-friendly toolboxes and
libraries for DL implementations. It supports Open Neural Network Exchange (ONNX),
which is an open standard that defines common file format and set of operators to represent
DL models in various frameworks. It is interoperable with Python, which empowers
researchers to use MATLAB and Python together. Moreover, it is easy to preprocess datasets
with domain-specific applications for various types of data. In other words, it is possible
to check and fix problems in order to build or modify complex network architectures for
transfer learning before the training process. It is also possible to produce code supporting
optimized libraries such as the ARM Compute Library, NVIDIA TensorRT, and Intel Math
Kernel Library for Deep Neural Networks (MKL-DNN). This multi-program deployment
feature significantly improves its performance. Furthermore, MATLAB Deep Learning
Toolbox provides a framework in order to design and implement DL networks or models.
For instance, Long Short-Term Memory (LSTM) networks and CNNs can be easily applied
by the users. Its applications enable users to update the network architectures, to check the
progress in preparation, to visualize the layer activations, and to monitor training progress
graphically. For training on a modest dataset, it is possible to operate transfer learning
through the pre-trained network models or models trained with libraries such as Keras,
Caffe, and TensorFlow. For training on larger datasets, the process can be boosted on a
single or multiple graphics processing units (GPUs) with Parallel Computing Toolbox. In
addition, the training process can be scaled up to clusters and clouds, such as Amazon
Elastic Compute Cloud (EC2) GPU instances, and NVDIA GPU Cloud with MATLAB
Parallel Server. Although MATLAB has many advantages for DL, not being open source
might be considered as an important drawback. MATLAB is proprietary software, and
it is expensive because of its commercial license. This, in fact, limits the flexibility of a
professional programmer. In addition, the use of NVDIA GPU Cloud and Amazon EC2
instances is not free, which can be considered as another drawback in the training of larger
datasets.

Python, on the other hand, is another high-level language that is increasingly used in
various sectors [51]. It is open-source, and it has a rich ecosystem from which a variety of
packages and libraries can be downloaded and installed for different tasks and purposes. It
has very easy syntax and commands; therefore, it appeals to many programmers as it is
very easy to learn. This makes it easier to build models for DL implementations. Since it is
a general-purpose language, a set of complex DL tasks can be accomplished and prototypes
can be easily built in order to test a product for DL purposes. It has an extensive set of
libraries that are widely used for DL, such as PyTorch, Keras, Tensorflow, Caffe, and others.
It also offers a variety of visualization tools, namely Matplotlib, seaborn and gplot, for better



Diagnostics 2023, 13, 651 5 of 15

understanding of data. It could be a good choice for DL, as it offers flexible programming
which enables the programmers to select the programming styles, including imperative
style, functional style, object-oriented style, and procedural style. Moreover, Google Colab
can be used to execute arbitrary python code for DL implementations. Colab provides free
access to utilize computing resources including GPUs. Hence, when DL implementation
issues such as the storage of dataset and GPU in DL implementations are concerned, Python
enables users to use free high-performance GPUs and open cloud environments. This can
be considered as an important advantage for training large datasets.

It is surely beyond doubt that the interest in the use of Python for DL is increasing day
by day, whereas the benefits provided by MATLAB should not be ignored. However, it is
very important to note that deciding on the right programming environment for DL imple-
mentations depends on the user’s perceptions and expectations. Thus, it might be better
to use MATLAB and Python interactively for utilizing the abilities of each environment.
We believe that this hybrid approach could be expected to be more widespread among the
researchers in the near future.

3. Experiments
3.1. Dataset

Several open source datasets such as BraTS [52], Harvard [53], RIDER (Reference
Database to Evaluate Response) [54], and ISLES (Ischemic Stroke Lesion Segmentation) [55]
have been used in brain tumor analysis. However, the BraTS datasets, which are an open
source repository of multi-institutional radiological data, are mostly used by the researchers
in ML competitions (challenges) in order to optimize or evaluate their proposed models
each year, due to the fact that BraTS datasets are the most challenging MRI datasets [56].

The brain tumor dataset utilized in the experiments is a volumetric medical image
dataset, which is a subset of the data (Task 1) used in the 2016 and 2017 BraTS chal-
lenges [57,58]. This dataset was selected to be used in the experiments, as it is created
for the challenge of locating the complex and heterogeneously-located targets while other
BraTS datasets are created for different tasks [49]. The dataset consists of 484 multimodal
multisite MRI images from patients diagnosed with either HGG or LGG. Each sample has
four modalities, such as FLAIR (Fluid-Attenuated Inversion Recovery), T1w (T1-weighted),
T1gd (T1-weighted with gadolinium contrast enhancement), T2w (T2-weighted), with
ground truth labels, namely background, enhancing and non-enhancing tumor, and edema
segmentations. Each image has 240 × 240 × 155 volume size, and has uniform, 1 mm3,
voxel resolution. A sample of the dataset before preprocessing is shown in Figure 1 (adopted
from [59]).

Diagnostics 2023, 13, x FOR PEER REVIEW  6  of  16 
 

 

 

Figure 1. A  sample of  the dataset:  (a) T1w  (T1‐weighted);  (b) T2w  (T2‐weighted);  (c) T1gd  (T1‐

weighted  with  gadolinium  contrast  enhancement);  (d)  FLAIR  (Fluid  Attenuated  Inversion 

Recovery); (e) Ground truth. 

3.2. Deep Learning Approaches Used in the Experiments 

In  the  literature,  various  DL  approaches  based  on  CNN  architectures  such  as 

3DConvNet [60], ResNet [61], DenseNet [62], GoogleNet [63], AlexNet [37], U‐Net [64], V‐

Net [65] and VGG16 [66] have been used in MRI‐based glioma detection, classification, 

segmentation,  and  grading.  In  general,  all  of  these  architectures  demonstrate  a  good 

performance. However,  in  this  study, a 3D version of  the original U‐Net architecture, 

which is adopted from [47], and a standard V‐Net architecture [44] were chosen to be used 

in  the experiments. One of  the  reasons  is  that  they comply with our  inclusion criteria, 

which  included  simplicity,  relevance  with  glioma  detection,  and  applicability  to  a 

volumetric medical image dataset. It should be noted that although the 3D U‐Net and V‐

Net have been already applied  to similar or closely‐relevant applications,  their glioma 

detection performances have not been comparatively assessed on the BraTS dataset (2016 

and 2017) yet. This,  in  fact,  is  the other  reason  for  choosing  the  3D U‐Net  and V‐Net 

architectures  to  be  used  in  the  experiments.  In  the  following  subsections,  these 

architectures are summarized in technical aspects. 

3.2.1. 3D U‐Net 

A standard (two‐dimensional: 2D) U‐Net architecture is mainly composed of three 

parts:  (a) Encoder,  (b) bottleneck,  (c) decoder  [67].  In  the encoder part,  the prospective 

region  of  the  image  is  identified.  There  are  3  ×  3  convolution  layers with  activation 

functions,  and  2  ×  2 max  pooling  layers  where  the  feature maps  are  doubled.  The 

bottleneck part of  the architecture  is a path  that assembles  the encoding and decoding 

path. The decoder part has transposed convolutional layers with concatenation, and 3 × 3 

convolution layers with activation functions.   

For glioma segmentation and/or detection from MRI data, the use of DL approaches 

based on U‐Net variants has been proposed in many works [47,64,68–78]. However, since 

a volumetric  image dataset  is used  in this study, a standard U‐Net architecture and  its 

variants developed for 2D datasets become inapplicable. For a proper implementation, it 

needs to be advanced by changing all 2D operations with their 3D counterparts. Hence, 

basic 3D U‐Net [47] and its many variants, such as residual symmetric 3D U‐Net [79], 3D 

U‐Net++  [80], Attention 3D U‐Net  [81], and Separable 3D U‐Net  (S3D‐UNet)  [82] have 

been proposed for brain tumor segmentation. In this study, basic 3D U‐Net framework is 

adapted due to its simplicity.   

The network architecture of basic 3D U‐Net is shown in Figure 2. It should be noted 

that the numbers shown in the red boxes correspond to the number of filters. As shown 

in the figure, the input  layer  is followed by a convolutional layer, batch normalization, 

and a Rectified Linear Unit (ReLU) activation layer. Through the layers, padding is set to 

same, and the kernel size is kept constant at, 3 × 3 × 3. In addition, the max pooling layer 

is sized at 2 × 2 × 2  in the encoding path. In the decoding path, on  the other hand, the 

number of filters is reduced by half after the transposed convolutional layers is applied 

Figure 1. A sample of the dataset: (a) T1w (T1-weighted); (b) T2w (T2-weighted); (c) T1gd (T1-
weighted with gadolinium contrast enhancement); (d) FLAIR (Fluid Attenuated Inversion Recovery);
(e) Ground truth.



Diagnostics 2023, 13, 651 6 of 15

3.2. Deep Learning Approaches Used in the Experiments

In the literature, various DL approaches based on CNN architectures such as 3DCon-
vNet [60], ResNet [61], DenseNet [62], GoogleNet [63], AlexNet [37], U-Net [64], V-Net [65]
and VGG16 [66] have been used in MRI-based glioma detection, classification, segmenta-
tion, and grading. In general, all of these architectures demonstrate a good performance.
However, in this study, a 3D version of the original U-Net architecture, which is adopted
from [47], and a standard V-Net architecture [44] were chosen to be used in the experiments.
One of the reasons is that they comply with our inclusion criteria, which included simplicity,
relevance with glioma detection, and applicability to a volumetric medical image dataset.
It should be noted that although the 3D U-Net and V-Net have been already applied to
similar or closely-relevant applications, their glioma detection performances have not been
comparatively assessed on the BraTS dataset (2016 and 2017) yet. This, in fact, is the other
reason for choosing the 3D U-Net and V-Net architectures to be used in the experiments. In
the following subsections, these architectures are summarized in technical aspects.

3.2.1. 3D U-Net

A standard (two-dimensional: 2D) U-Net architecture is mainly composed of three
parts: (a) Encoder, (b) bottleneck, (c) decoder [67]. In the encoder part, the prospective
region of the image is identified. There are 3 × 3 convolution layers with activation
functions, and 2 × 2 max pooling layers where the feature maps are doubled. The bottleneck
part of the architecture is a path that assembles the encoding and decoding path. The
decoder part has transposed convolutional layers with concatenation, and 3 × 3 convolution
layers with activation functions.

For glioma segmentation and/or detection from MRI data, the use of DL approaches
based on U-Net variants has been proposed in many works [47,64,68–78]. However, since
a volumetric image dataset is used in this study, a standard U-Net architecture and its
variants developed for 2D datasets become inapplicable. For a proper implementation, it
needs to be advanced by changing all 2D operations with their 3D counterparts. Hence,
basic 3D U-Net [47] and its many variants, such as residual symmetric 3D U-Net [79], 3D
U-Net++ [80], Attention 3D U-Net [81], and Separable 3D U-Net (S3D-UNet) [82] have
been proposed for brain tumor segmentation. In this study, basic 3D U-Net framework is
adapted due to its simplicity.

The network architecture of basic 3D U-Net is shown in Figure 2. It should be noted
that the numbers shown in the red boxes correspond to the number of filters. As shown in
the figure, the input layer is followed by a convolutional layer, batch normalization, and a
Rectified Linear Unit (ReLU) activation layer. Through the layers, padding is set to same,
and the kernel size is kept constant at, 3 × 3 × 3. In addition, the max pooling layer is sized
at 2 × 2 × 2 in the encoding path. In the decoding path, on the other hand, the number of
filters is reduced by half after the transposed convolutional layers is applied with stride 2.
A convolutional layer with a sigmoid activation function is then used for the segmentation
of glioma.



Diagnostics 2023, 13, 651 7 of 15

Diagnostics 2023, 13, x FOR PEER REVIEW  7  of  16 
 

 

with stride 2. A convolutional layer with a sigmoid activation function is then used for the 

segmentation of glioma.   

 

Figure 2. The network architecture of 3D U‐Net used in this study. 

3.2.2. V‐Net 

The standard V‐Net architecture is a 3D CNN that is a modified version of standard 

U‐Net for volumetric medical image segmentation [48]. In order to enhance the efficiency, 

various V‐Net variants have been presented for brain tumor segmentation, such as Deep 

Supervised 3D Squeeze‐and‐Excitation V‐Net (DSSE‐V‐Net) [65], Cascaded V‐Net [83,84], 

Attention V‐Net [85], and 3D AGSE‐VNet [86]. For the sake of simplicity, the standard U‐

Net architecture is utilized in this study.   

In comparison to the 3D U‐Net architecture, in a standard U‐Net architecture, max 

pooling operations are replaced with convolutional layers which have a 5 × 5 × 5 kernel 

size  in each stage. Moreover,  throughout  the network, Parametric ReLU  (PReLu) non‐

linearities are applied. Another difference  in  comparison  to U‐Net  is  that  the  features 

extracted from the early stages of the left part of the network are forwarded to the right 

part of the network in order to gather fine‐grained detail. 

The network architecture of a standard V‐Net is shown in Figure 3. In the left part of 

the  network,  there  are  four  stages  along with  an  input  stage.  The  data  resolution  is 

reduced by means of convolutions with 2 × 2 × 2 kernels applied with stride 2. In the right 

part of the network, on the other hand, the very last convolutional layer has 1 × 1 × 1 kernel 

size, and produces outputs that are the same size as the input volume. After each stage, 

de(down)‐convolution operation  is applied, which  is  followed by convolutional  layers 

with 1 × 1 × 1 strides.   

Figure 2. The network architecture of 3D U-Net used in this study.

3.2.2. V-Net

The standard V-Net architecture is a 3D CNN that is a modified version of standard
U-Net for volumetric medical image segmentation [48]. In order to enhance the efficiency,
various V-Net variants have been presented for brain tumor segmentation, such as Deep
Supervised 3D Squeeze-and-Excitation V-Net (DSSE-V-Net) [65], Cascaded V-Net [83,84],
Attention V-Net [85], and 3D AGSE-VNet [86]. For the sake of simplicity, the standard
U-Net architecture is utilized in this study.

In comparison to the 3D U-Net architecture, in a standard U-Net architecture, max
pooling operations are replaced with convolutional layers which have a 5 × 5 × 5 kernel
size in each stage. Moreover, throughout the network, Parametric ReLU (PReLu) non-
linearities are applied. Another difference in comparison to U-Net is that the features
extracted from the early stages of the left part of the network are forwarded to the right
part of the network in order to gather fine-grained detail.

The network architecture of a standard V-Net is shown in Figure 3. In the left part of
the network, there are four stages along with an input stage. The data resolution is reduced
by means of convolutions with 2 × 2 × 2 kernels applied with stride 2. In the right part
of the network, on the other hand, the very last convolutional layer has 1 × 1 × 1 kernel
size, and produces outputs that are the same size as the input volume. After each stage,
de(down)-convolution operation is applied, which is followed by convolutional layers with
1 × 1 × 1 strides.



Diagnostics 2023, 13, 651 8 of 15Diagnostics 2023, 13, x FOR PEER REVIEW  8  of  16 
 

 

 

Figure 3. The network architecture of V‐Net used in this study. 

3.3.Preprocessing and Implementation Details   

Before feeding the data into the U‐Net and V‐Net models, the data were preprocessed 

considering the networks’ architectures. In this context, the input dataset was resized to 

128 × 128 × 128 dimensions for the 3D U‐Net model, while it was resized to 64 × 64 × 64 

dimensions for the V‐Net model. The images in both datasets were then randomly flipped 

to reduce overfitting in the training of the models. Next, the dataset for each model is split 

up  into the training set  (400  images), the  test set (55  images) and the validation set  (29 

images).   

The  3D U‐Net  and V‐Net models  described  in  Section  3.1 were  implemented  in 

Python and MATLAB. Google Colaboratory (Colab) was used as a development platform 

in order to implement the models in Python. In MATLAB implementations, on the other 

hand, the workstation equipped with NVIDIA Quadro RTX 5000 was used. Both 3D U‐

Net and V‐Net models were trained on the same dataset introduced in the previous sub‐

section.  In  order  to  train  the models,  the Adam  optimizer was used due  to  its  faster 

computation  time,  and  because  it  requires  fewer  parameters  for  tuning  than  other 

optimizers  such as Gradient Descent, Adagrad, RMSProp, or AdaDelta.  In addition, a 

smaller learning rate was decided to be used, which was set to 0.0003. Since it requires 

more training epochs in order to properly converge to a suboptimal solution, the epoch 

was set to 50. Moreover, in order to achieve the best performance of the workstation in 

terms of its computational power efficiency to process all images in parallel, batch size 

was varied and then determined to be set to 4.   

It is also worth noting that the input patch size was 4 × 128 × 128 × 128 to implement 

the 3D U‐Net model, while it was 4 × 64 × 64 × 64 for the V‐Net model, since there are four 

MRI modalities in the original dataset. 

4. Results of the Experiments 

Generally, the effectiveness of ML algorithms is evaluated under different goals, such 

as  easy  training,  long  lifetime,  good  performance,  and  rapid  production.  In  order  to 

compare  the  effectiveness  of  ML  models  or  algorithms,  development‐based  and 

production‐based approaches can be used. While development‐based approaches include 

statistical tests, loss functions and metrics, and learning curves (training and validation 

learning  curves),  production‐based  approaches  include  two  basic  parameters:  time 

complexity and space complexity.   

Figure 3. The network architecture of V-Net used in this study.

3.3. Preprocessing and Implementation Details

Before feeding the data into the U-Net and V-Net models, the data were preprocessed
considering the networks’ architectures. In this context, the input dataset was resized to
128 × 128 × 128 dimensions for the 3D U-Net model, while it was resized to 64 × 64 × 64
dimensions for the V-Net model. The images in both datasets were then randomly flipped
to reduce overfitting in the training of the models. Next, the dataset for each model is
split up into the training set (400 images), the test set (55 images) and the validation set
(29 images).

The 3D U-Net and V-Net models described in Section 3.1 were implemented in Python
and MATLAB. Google Colaboratory (Colab) was used as a development platform in order
to implement the models in Python. In MATLAB implementations, on the other hand, the
workstation equipped with NVIDIA Quadro RTX 5000 was used. Both 3D U-Net and V-Net
models were trained on the same dataset introduced in the previous sub-section. In order
to train the models, the Adam optimizer was used due to its faster computation time, and
because it requires fewer parameters for tuning than other optimizers such as Gradient
Descent, Adagrad, RMSProp, or AdaDelta. In addition, a smaller learning rate was decided
to be used, which was set to 0.0003. Since it requires more training epochs in order to
properly converge to a suboptimal solution, the epoch was set to 50. Moreover, in order
to achieve the best performance of the workstation in terms of its computational power
efficiency to process all images in parallel, batch size was varied and then determined to be
set to 4.

It is also worth noting that the input patch size was 4 × 128 × 128 × 128 to implement
the 3D U-Net model, while it was 4 × 64 × 64 × 64 for the V-Net model, since there are
four MRI modalities in the original dataset.

4. Results of the Experiments

Generally, the effectiveness of ML algorithms is evaluated under different goals,
such as easy training, long lifetime, good performance, and rapid production. In order to
compare the effectiveness of ML models or algorithms, development-based and production-
based approaches can be used. While development-based approaches include statistical
tests, loss functions and metrics, and learning curves (training and validation learning
curves), production-based approaches include two basic parameters: time complexity and
space complexity.



Diagnostics 2023, 13, 651 9 of 15

On the other hand, since the main target of this study is to investigate the impact
of two major programming environments on the accuracy of DL-based glioma detection,
basic comparable parameters, such as learning curves, loss (accuracy) metrics, and training
time, were chosen to evaluate the experimental results. Other comparable parameters
can still be used; however, they are more applicable for comparing the effectiveness of
DL algorithms comprehensively. Thus, firstly, the models were validated on the dataset,
and their accuracies were recorded. Then, based on the comparative performances of the
models, the effects of the programming environments on the results are assessed.

The training and validation accuracy and loss of the 3D U-Net and V-Net models
implemented in Python are shown in Figures 4a and 4b, respectively. The 3D U-Net model
achieves a training accuracy of 98.7% with a training loss of 13.7% and a validation accuracy
of 96.6% with a validation loss of 36.2%. The test accuracy, moreover, is found to be 98.9%
while the test loss is found to be 21.9%. On the other hand, the V-Net model provides a
training accuracy of 96.9% with a training loss of 17.1% and a validation accuracy of 96.6%
with a validation loss of 61.3%. Furthermore, the test accuracy of the model is found to be
96.9%, while the test loss is found to be 40.6%.

Diagnostics 2023, 13, x FOR PEER REVIEW  9  of  16 
 

 

On the other hand, since the main target of this study is to investigate the impact of 

two major programming environments on  the accuracy of DL‐based glioma detection, 

basic  comparable  parameters,  such  as  learning  curves,  loss  (accuracy)  metrics,  and 

training  time,  were  chosen  to  evaluate  the  experimental  results.  Other  comparable 

parameters  can  still  be  used;  however,  they  are more  applicable  for  comparing  the 

effectiveness of DL algorithms comprehensively. Thus, firstly, the models were validated 

on  the  dataset,  and  their  accuracies were  recorded.  Then,  based  on  the  comparative 

performances of the models, the effects of the programming environments on the results 

are assessed.     

The  training and validation accuracy and  loss of  the 3D U‐Net and V‐Net models 

implemented in Python are shown in Figure 4a and Figure 4b, respectively. The 3D U‐Net 

model achieves a training accuracy of 98.7% with a training loss of 13.7% and a validation 

accuracy of 96.6% with a validation loss of 36.2%. The test accuracy, moreover, is found 

to be 98.9% while the test loss is found to be 21.9%. On the other hand, the V‐Net model 

provides  a  training  accuracy  of  96.9% with  a  training  loss  of  17.1%  and  a  validation 

accuracy of 96.6% with a validation loss of 61.3%. Furthermore, the test accuracy of the 

model is found to be 96.9%, while the test loss is found to be 40.6%. 

 

(a) 

 

(b) 

Figure 4. For the 3D U‐Net and V‐Net models implemented in Python: (a) Training and validation 

accuracy, (b) Training and validation loss. 

Figure 4. For the 3D U-Net and V-Net models implemented in Python: (a) Training and validation
accuracy, (b) Training and validation loss.



Diagnostics 2023, 13, 651 10 of 15

As for the 3D U-Net model implemented in MATLAB, the model achieves a training
accuracy of 98.6% with a training loss of 26.4% and a validation accuracy of 97.7% with
a validation loss of 37.6%. The test accuracy achieved by the model is 97.8%, and the test
loss is 26.7%. The V-Net model implemented in MATLAB, on the other hand, achieves a
training accuracy of 97.7 % with a training loss of 25.4% and a validation accuracy of 97.5%
with a validation loss of 37.9%. Furthermore, the V-Net model achieves test accuracy of
97.2% while the test loss of 43.2%.

The comparative performances of the 3D U-Net and V-Net models implemented both
in Python and MATLAB are summarized in Table 1. It is clear that the 3D U-Net model
has higher accuracy when compared to the V-Net model regardless of the programming
environment used in the experiments. Particularly, low training loss (17.1%) but high
test loss (40.6%) obtained in Python experiments show that the V-Net model could be
overfitting. This suggests that the V-Net model might not be applicable to the used BraTS
dataset for glioma detection. Therefore, in order to assess the impact of programming
environments on the detection accuracies, only the results achieved for 3D U-Net model
are considered.

Table 1. Comparison of the models implemented in Python and MATLAB.

Metric
Python MATLAB

3D U-Net V-Net 3D U-Net V-Net

Training Accuracy (%) 98.7 96.9 98.6 97.7
Training Loss (%) 13.7 17.1 26.4 25.4

Validation Accuracy (%) 96.6 96.6 97.7 97.5
Validation Loss (%) 36.2 61.3 37.6 37.9
Test Accuracy (%) 98.9 96.9 97.8 97.2

Test Loss (%) 21.9 40.6 26.7 43.2
Training Time (hr.) ~4 ~4 ~38 ~38

From the results listed in Table 1, it can be seen that the accuracy of the 3D U-Net
model is highly affected by the programming environment used in the experiments. The
test accuracy of 98.9% achieved from Python is reduced to the accuracy of 97.8% when
MATLAB is used. This is also the case for training loss of the models, which decreases from
26.4%, obtained in MATLAB, to 13.7%, obtained in Python.

Concerning the training time of the models, on the other hand, it took about 4 hours
for training both the 3D U-Net and V-Net model in Python, while it took about 38 hours
in MATLAB. The reason is that a free GPU supported and provided by Google Colab is
much faster than the GPU of the workstation used to perform experiments in MATLAB.
Moreover, during the implementation of models in Python, the data is retrieved from a free
cloud service of Google Colab, whereas it is retrieved from MATLAB folders. Therefore,
using Python with Google Colab offers a significant advantage over MATLAB in terms of
training time.

5. Discussion

The results achieved from the experiments can be discussed under two main heads.
One is the effect of programming environments on the accuracy of CNN-based models in
glioma detection from MRI images. From the experimental results, it can be concluded
that the detection accuracies of the models can be affected by the used programming
environment. This can be clearly seen in Table 1, where the test accuracy of 3D U-Net
obtained from Python is decreased by 1.1% when MATLAB is used. This is also the case
for test loss, which is increased by 4.8% when MATLAB is used. On the other hand, when
the training time is considered, Python has an important advantage over MATLAB due
to Google Colab, with the native features available for any user such as faster GPUs and
cloud data storage. In Table 1, it is clear that the training time takes longer when MATLAB



Diagnostics 2023, 13, 651 11 of 15

is used. However, it is still possible to achieve higher training times with MATLAB, if a
powerful workstation is available.

The second head is the comparison of the effectiveness of 3D U-Net and V-Net models
utilized for detecting glioma images (tumor and non-tumor) from BraTS 2016 and 2017
dataset. The experimental results show that the 3D U-Net model has higher accuracy than
the V-Net model. However, its performance needs to be compared with the state-of-the-art
in order to quantify its efficiency over other available models. In the literature, only a
few studies that test DL based on the same dataset for detecting glioma images (tumor
and non-tumor) [87,88]. In [87], the SoftMax layer is used with the central clustering
algorithm for feature extraction. The extracted features are then used in a CNN-based
algorithm. Results show that the proposed approach provides 96% accuracy. In [88], a
data augmentation-based DL approach is proposed. By means of a ResNet-50 classifier, the
experimental results show that the proposed approach achieves 91.08% accuracy. Therefore,
the results obtained in the study offer that the 3D U-Net with 98.9% test accuracy has an
ability to reach higher accuracies in glioma detection when compared to the approaches
proposed in both [87] and [88].

6. Future Research Directions

Although this study addresses some major issues on DL developments, there are
still important research opportunities. In fact, the authors are currently working on some
specific aspects. First of all, some other programming environments have gained interest in
recent years, such as R, Scala, Julia, and Java, and are planned to be used in DL implemen-
tations in order to obtain more comprehensive comparison results. In this way, it will be
possible to provide a deeper insight regarding the programming environments to be used
for implementing DL-based models in brain tumor detection.

In this study, among the CNN-based models, 3D U-Net and V-Net were chosen to be
implemented in MATLAB and Python for brain tumor detection. Obviously, other well-
known CNN-based models could have been used in the study. In the literature, however,
glioma detection performances of 3D U-Net and V-Net on BraTS dataset (2016 and 2017)
have not been compared yet. Therefore, the main motivation behind our choice was to
compare their glioma detection performance for the first time in the literature. In this
context, our second task is to conduct new experiments on the most up-to-date BraTS
datasets by accounting for other well-known CNN-based models, in order to evaluate their
glioma detection accuracies.

It is important to note that the objective of the detection process in this study is
to identify whether glioma is present in MRI images or not. As mentioned earlier, the
primary brain tumors are categorized as meningioma, pituitary, and glioma. Many studies
presented in the literature focus on the identification or classification of the primary brain
tumors from MRIs. Moreover, classifying glioma grades as LGG or HGG from MRI images
has received great interest in the literature. Thus, as a third task, the current study will be
directed toward examining the effects of programming environments on the classification
of primary brain tumors or glioma grades.

Furthermore, it would be interesting to evaluate the experimental results from the
clinician’s point of view, due to the fact that clinicians mostly need accurate and reliable
results. This idea has therefore motivated us to involve clinicians in our future works.

7. Conclusions

This work was devoted to examining the impact of two major programming environ-
ments, namely MATLAB and Python, on the accuracy of glioma detection using CNN-based
DL models. For this purpose, experiments were performed in which two popular CNN
architectures were implemented on a well-known BraTS dataset (2016 and 2017). According
to the experimental results, the use of Python with Google Colab brings some benefits in
comparison to MATLAB. More specifically, using Python might affect the accuracy of the
models positively, and require less training time. On the other hand, when compared to



Diagnostics 2023, 13, 651 12 of 15

the V-Net model, the 3D U-Net model demonstrates higher accuracy. This suggests that the
V-Net model could not be applicable to BraTS datasets, and further modifications might be
required to improve its accuracy.

In general, it is expected that the results obtained in this study might offer some
insights on the most appropriate DL development environment for brain tumor detection.
In the near future, the authors are planning to enrich the presented study by considering
different datasets, DL models, and programming environments in order to provide more
comprehensive results.

Author Contributions: Conceptualization, investigation, methodology, software, data curation, V.S.Y.
and M.A.; validation, formal analysis, Y.D., R.O.D., A.K. and A.S.; writing—original draft preparation,
V.S.Y. and Y.D.; writing—review and editing, supervision, R.O.D., A.K. and A.S.; All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Atilim University Undergraduate Research Projects: [Grant
Number ATU-LAP-2021-05].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available at http://
medicaldecathlon.com/, accessed on 19 December 2022.

Acknowledgments: Authors would like to thank students of Atilim University for their voluntary
contribution to this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lapointe, S.; Perry, A.; Butowski, N.A. Primary Brain Tumours in Adults. Lancet 2018, 392, 432–446. [CrossRef]
2. DeAngelis, L.M. Brain Tumors. N. Engl. J. Med. 2001, 344, 114–123.
3. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger,

G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncol. 2021, 23, 1231–1251.
[CrossRef]

4. Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary
Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-Oncol. 2022, 24, v1–v95.

5. Alis, D.; Bagcilar, O.; Senli, Y.D.; Isler, C.; Yergin, M.; Kocer, N.; Islak, C.; Kizilkilic, O. The Diagnostic Value of Quantitative
Texture Analysis of Conventional MRI Sequences Using Artificial Neural Networks in Grading Gliomas. Clin. Radiol. 2020, 75,
351–357. [CrossRef]

6. Bauer, S.; Wiest, R.; Nolte, L.-P.; Reyes, M. A Survey of MRI-Based Medical Image Analysis for Brain Tumor Studies. Phys. Med.
Biol. 2013, 58, R97. [CrossRef]

7. Amin, J.; Sharif, M.; Haldorai, A.; Yasmin, M.; Nayak, R.S. Brain Tumor Detection and Classification Using Machine Learning: A
Comprehensive Survey. Complex Intell. Syst. 2021, 8, 3161–3183. [CrossRef]

8. Zöllner, F.G.; Emblem, K.E.; Schad, L.R. SVM-Based Glioma Grading: Optimization by Feature Reduction Analysis. Z. Für Med.
Phys. 2012, 22, 205–214. [CrossRef]

9. Javed, U.; Riaz, M.M.; Ghafoor, A.; Cheema, T.A. MRI Brain Classification Using Texture Features, Fuzzy Weighting and Support
Vector Machine. Prog. Electromagn. Res. B 2013, 53, 73–88. [CrossRef]

10. Lahmiri, S. Glioma Detection Based on Multi-Fractal Features of Segmented Brain MRI by Particle Swarm Optimization
Techniques. Biomed. Signal Process. Control 2017, 31, 148–155.

11. Nachimuthu, D.S.; Baladhandapani, A. Multidimensional Texture Characterization: On Analysis for Brain Tumor Tissues Using
MRS and MRI. J. Digit. Imaging 2014, 27, 496–506. [CrossRef]

12. Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Anjum, M.A. Brain Tumor Detection Using Statistical and Machine Learning Method.
Comput. Methods Programs Biomed. 2019, 177, 69–79. [CrossRef]

13. Kickingereder, P.; Isensee, F.; Tursunova, I.; Petersen, J.; Neuberger, U.; Bonekamp, D.; Brugnara, G.; Schell, M.; Kessler, T.;
Foltyn, M. Automated Quantitative Tumour Response Assessment of MRI in Neuro-Oncology with Artificial Neural Networks:
A Multicentre, Retrospective Study. Lancet Oncol. 2019, 20, 728–740.

14. Pinto, A.; Pereira, S.; Dinis, H.; Silva, C.A.; Rasteiro, D.M. Random Decision Forests for Automatic Brain Tumor Segmentation
on Multi-Modal MRI Images. In Proceedings of the 2015 IEEE 4th Portuguese meeting on bioengineering (ENBENG), Porto,
Portugal, 26–28 February 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5.

http://medicaldecathlon.com/
http://medicaldecathlon.com/
http://doi.org/10.1016/S0140-6736(18)30990-5
http://doi.org/10.1093/neuonc/noab106
http://doi.org/10.1016/j.crad.2019.12.008
http://doi.org/10.1088/0031-9155/58/13/R97
http://doi.org/10.1007/s40747-021-00563-y
http://doi.org/10.1016/j.zemedi.2012.03.007
http://doi.org/10.2528/PIERB13052805
http://doi.org/10.1007/s10278-013-9669-5
http://doi.org/10.1016/j.cmpb.2019.05.015


Diagnostics 2023, 13, 651 13 of 15

15. Abbasi, S.; Tajeripour, F. Detection of Brain Tumor in 3D MRI Images Using Local Binary Patterns and Histogram Orientation
Gradient. Neurocomputing 2017, 219, 526–535.

16. Shaver, M.M.; Kohanteb, P.A.; Chiou, C.; Bardis, M.D.; Chantaduly, C.; Bota, D.; Filippi, C.G.; Weinberg, B.; Grinband, J.; Chow,
D.S. Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging. Cancers 2019, 11, 829.
[CrossRef]

17. Nazir, M.; Shakil, S.; Khurshid, K. Role of Deep Learning in Brain Tumor Detection and Classification (2015 to 2020): A Review.
Comput. Med. Imaging Graph. 2021, 91, 101940.

18. Afan, H.A.; Ibrahem Ahmed Osman, A.; Essam, Y.; Ahmed, A.N.; Huang, Y.F.; Kisi, O.; Sherif, M.; Sefelnasr, A.; Chau, K.;
El-Shafie, A. Modeling the Fluctuations of Groundwater Level by Employing Ensemble Deep Learning Techniques. Eng. Appl.
Comput. Fluid Mech. 2021, 15, 1420–1439. [CrossRef]

19. Fan, Y.; Xu, K.; Wu, H.; Zheng, Y.; Tao, B. Spatiotemporal Modeling for Nonlinear Distributed Thermal Processes Based on KL
Decomposition, MLP and LSTM Network. IEEE Access 2020, 8, 25111–25121. [CrossRef]

20. Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep Learning-Based Appearance Features Extraction for Automated Carp Species
Identification. Aquac. Eng. 2020, 89, 102053.

21. Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. A Deep Learning Approach for Brain Tumor
Classification and Segmentation Using a Multiscale Convolutional Neural Network. Healthcare 2021, 9, 153.

22. Haq, E.U.; Jianjun, H.; Li, K.; Haq, H.U.; Zhang, T. An MRI-Based Deep Learning Approach for Efficient Classification of Brain
Tumors. J. Ambient Intell. Humaniz. Comput. 2021, 1–22. [CrossRef]

23. Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; Salama, A.S.; Daradkeh, Y.I.; Javeed, D.; Ur Rehman, A.; Hamam, H. A Hybrid Deep
Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [CrossRef]

24. Zahoor, M.M.; Qureshi, S.A.; Bibi, S.; Khan, S.H.; Khan, A.; Ghafoor, U.; Bhutta, M.R. A New Deep Hybrid Boosted and Ensemble
Learning-Based Brain Tumor Analysis Using MRI. Sensors 2022, 22, 2726.

25. Khan, M.S.I.; Rahman, A.; Debnath, T.; Karim, M.R.; Nasir, M.K.; Band, S.S.; Mosavi, A.; Dehzangi, I. Accurate Brain Tumor
Detection Using Deep Convolutional Neural Network. Comput. Struct. Biotechnol. J. 2022, 20, 4733–4745. [CrossRef]

26. Ullah, N.; Khan, J.A.; Khan, M.S.; Khan, W.; Hassan, I.; Obayya, M.; Negm, N.; Salama, A.S. An Effective Approach to Detect and
Identify Brain Tumors Using Transfer Learning. Appl. Sci. 2022, 12, 5645.

27. Gupta, R.K.; Bharti, S.; Kunhare, N.; Sahu, Y.; Pathik, N. Brain Tumor Detection and Classification Using Cycle Generative
Adversarial Networks. Interdiscip. Sci. Comput. Life Sci. 2022, 14, 485–502.

28. Sekhar, A.; Biswas, S.; Hazra, R.; Sunaniya, A.K.; Mukherjee, A.; Yang, L. Brain Tumor Classification Using Fine-Tuned GoogLeNet
Features and Machine Learning Algorithms: IoMT Enabled CAD System. IEEE J. Biomed. Health Inform. 2021, 26, 983–991.

29. Samee, N.A.; Mahmoud, N.F.; Atteia, G.; Abdallah, H.A.; Alabdulhafith, M.; Al-Gaashani, M.S.; Ahmad, S.; Muthanna, M.S.A.
Classification Framework for Medical Diagnosis of Brain Tumor with an Effective Hybrid Transfer Learning Model. Diagnostics
2022, 12, 2541. [CrossRef]

30. Anjum, S.; Hussain, L.; Ali, M.; Alkinani, M.H.; Aziz, W.; Gheller, S.; Abbasi, A.A.; Marchal, A.R.; Suresh, H.; Duong, T.Q.
Detecting Brain Tumors Using Deep Learning Convolutional Neural Network with Transfer Learning Approach. Int. J. Imaging
Syst. Technol. 2022, 32, 307–323.

31. Khan, A.H.; Abbas, S.; Khan, M.A.; Farooq, U.; Khan, W.A.; Siddiqui, S.Y.; Ahmad, A. Intelligent Model for Brain Tumor
Identification Using Deep Learning. Appl. Comput. Intell. Soft Comput. 2022, 2022, 8104054.

32. Qureshi, S.A.; Raza, S.E.A.; Hussain, L.; Malibari, A.A.; Nour, M.K.; Rehman, A.u.; Al-Wesabi, F.N.; Hilal, A.M. Intelligent
Ultra-Light Deep Learning Model for Multi-Class Brain Tumor Detection. Appl. Sci. 2022, 12, 3715. [CrossRef]

33. Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass
SVM. Medicina 2022, 58, 1090.

34. Khawaldeh, S.; Pervaiz, U.; Rafiq, A.; Alkhawaldeh, R.S. Noninvasive Grading of Glioma Tumor Using Magnetic Resonance
Imaging with Convolutional Neural Networks. Appl. Sci. 2018, 8, 27. [CrossRef]

35. Anaraki, A.K.; Ayati, M.; Kazemi, F. Magnetic Resonance Imaging-Based Brain Tumor Grades Classification and Grading via
Convolutional Neural Networks and Genetic Algorithms. Biocybern. Biomed. Eng. 2019, 39, 63–74.

36. Hemanth, D.J.; Anitha, J.; Naaji, A.; Geman, O.; Popescu, D.E. A Modified Deep Convolutional Neural Network for Abnormal
Brain Image Classification. IEEE Access 2018, 7, 4275–4283. [CrossRef]

37. Ismael, S.A.A.; Mohammed, A.; Hefny, H. An Enhanced Deep Learning Approach for Brain Cancer MRI Images Classification
Using Residual Networks. Artif. Intell. Med. 2020, 102, 101779. [CrossRef]

38. Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-Grade Brain Tumor Classification Using Deep CNN with
Extensive Data Augmentation. J. Comput. Sci. 2019, 30, 174–182. [CrossRef]

39. Salçin, K. Detection and Classification of Brain Tumours from MRI Images Using Faster R-CNN. Teh. Glas. 2019, 13, 337–342.
40. Menaouer, B.; El-Houda, K.N.; Zoulikha, D.; Mohammed, S.; Matta, N. Detection and Classification of Brain Tumors from MRI

Images Using a Deep Convolutional Neural Network Approach. Int. J. Softw. Innov. (IJSI) 2022, 10, 1–25.
41. Fangohr, H. A Comparison of C, MATLAB, and Python as Teaching Languages in Engineering. In Proceedings of the 4th

International Conference on Computational Science, Kraków, Poland, 6–9 June 2004; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 1210–1217.

http://doi.org/10.3390/cancers11060829
http://doi.org/10.1080/19942060.2021.1974093
http://doi.org/10.1109/ACCESS.2020.2970836
http://doi.org/10.1007/s12652-021-03535-9
http://doi.org/10.3390/electronics11071146
http://doi.org/10.1016/j.csbj.2022.08.039
http://doi.org/10.3390/diagnostics12102541
http://doi.org/10.3390/app12083715
http://doi.org/10.3390/app8010027
http://doi.org/10.1109/ACCESS.2018.2885639
http://doi.org/10.1016/j.artmed.2019.101779
http://doi.org/10.1016/j.jocs.2018.12.003


Diagnostics 2023, 13, 651 14 of 15

42. Aruoba, S.B.; Fernández-Villaverde, J. A Comparison of Programming Languages in Macroeconomics. J. Econ. Dyn. Control 2015,
58, 265–273. [CrossRef]

43. Coleman, C.; Lyon, S.; Maliar, L.; Maliar, S. Matlab, Python, Julia: What to Choose in Economics? Comput. Econ. 2021, 58,
1263–1288. [CrossRef]

44. Albanese, D.; Filosi, M.; Visintainer, R.; Riccadonna, S.; Jurman, G.; Furlanello, C. Minerva and Minepy: A C Engine for the MINE
Suite and Its R, Python and MATLAB Wrappers. Bioinformatics 2013, 29, 407–408. [CrossRef]

45. Weiss, A.; Elsherbeni, A. Computational Performance of MATLAB and Python for Electromagnetic Applications. In Proceedings
of the 2020 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey, CA, USA, 27–31 July
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–2.

46. Uddin, M.; Kumar, V.; Yadav, V.K. Comparative Study of the VINCI Robot’s Arm End Effector Matrix Using Python and MATLAB.
Mater. Today Proc. 2021, 47, 3761–3764.

47. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016,
Athens, Greece, 17–21 October 2016; Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 424–432.

48. Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.
In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 565–571.

49. Antonelli, M.; Reinke, A.; Bakas, S.; Farahani, K.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; Ronneberger, O.;
Summers, R.M.; et al. The Medical Segmentation Decathlon. Nat. Commun. 2022, 13, 4128. [CrossRef]

50. Moler, C.; Little, J. A History of MATLAB. Proc. ACM Program. Lang. 2020, 4, 1–67. [CrossRef]
51. van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum voor Wiskunde en Informatic: Amsterdam, The Netherlands, 1995.
52. Ghaffari, M.; Sowmya, A.; Oliver, R. Automated Brain Tumor Segmentation Using Multimodal Brain Scans: A Survey Based on

Models Submitted to the BraTS 2012–2018 Challenges. IEEE Rev. Biomed. Eng. 2020, 13, 156–168. [CrossRef]
53. Summers, D. Harvard Whole Brain Atlas: Www.Med.Harvard.Edu/AANLIB/Home.Html. J. Neurol. Neurosurg. Psychiatry 2003,

74, 288. [CrossRef]
54. Armato, S.; Beichel, R.; Bidaut, L.; Clarke, L.; Croft, B.; Fenimore, C.; Gavrielides, M. RIDER (Reference Database to Evaluate

Response) Committee Combined Report. 2008. Available online: https://wiki.cancerimagingarchive.net/display/Public/
Collections% (accessed on 6 February 2023).

55. Kistler, M.; Bonaretti, S.; Pfahrer, M.; Niklaus, R.; Büchler, P. The Virtual Skeleton Database: An Open Access Repository for
Biomedical Research and Collaboration. J. Med. Internet Res. 2013, 15, e2930. [CrossRef]

56. Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing the
Cancer Genome Atlas Glioma MRI Collections with Expert Segmentation Labels and Radiomic Features. Sci. Data 2017, 4, 170117.
[CrossRef]

57. Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens,
G.; Menze, B. A Large Annotated Medical Image Dataset for the Development and Evaluation of Segmentation Algorithms. arXiv
2019, arXiv:1902.09063.

58. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The
Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [CrossRef]

59. Berral, J.L.; Aranda, O.; Dominguez, J.L.; Torres, J. Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image
Segmentation. In Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Lyon, France, 30 May 2022–3 June 2022; pp. 1045–1052.

60. Zhuge, Y.; Ning, H.; Mathen, P.; Cheng, J.Y.; Krauze, A.V.; Camphausen, K.; Miller, R.W. Automated Glioma Grading on
Conventional MRI Images Using Deep Convolutional Neural Networks. Med. Phys. 2020, 47, 3044–3053. [CrossRef]

61. Korfiatis, P.; Kline, T.L.; Lachance, D.H.; Parney, I.F.; Buckner, J.C.; Erickson, B.J. Residual Deep Convolutional Neural Network
Predicts MGMT Methylation Status. J. Digit. Imaging 2017, 30, 622–628. [CrossRef]

62. Lu, Z.; Bai, Y.; Chen, Y.; Su, C.; Lu, S.; Zhan, T.; Hong, X.; Wang, S. The Classification of Gliomas Based on a Pyramid Dilated
Convolution Resnet Model. Pattern Recognit. Lett. 2020, 133, 173–179. [CrossRef]

63. Yang, Y.; Yan, L.-F.; Zhang, X.; Han, Y.; Nan, H.-Y.; Hu, Y.-C.; Hu, B.; Yan, S.-L.; Zhang, J.; Cheng, D.-L.; et al. Glioma Grading on
Conventional MR Images: A Deep Learning Study With Transfer Learning. Front. Neurosci. 2018, 12, 804.

64. Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully
Convolutional Networks. In Medical Image Understanding and Analysis; Valdés Hernández, M., González-Castro, V., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 506–517.

65. Liu, P.; Dou, Q.; Wang, Q.; Heng, P.-A. An Encoder-Decoder Neural Network With 3D Squeeze-and-Excitation and Deep
Supervision for Brain Tumor Segmentation. IEEE Access 2020, 8, 34029–34037. [CrossRef]

66. Rehman, A.; Naz, S.; Razzak, M.I.; Akram, F.; Imran, M. A Deep Learning-Based Framework for Automatic Brain Tumors
Classification Using Transfer Learning. Circuits Syst. Signal Process. 2020, 39, 757–775. [CrossRef]

http://doi.org/10.1016/j.jedc.2015.05.009
http://doi.org/10.1007/s10614-020-09983-3
http://doi.org/10.1093/bioinformatics/bts707
http://doi.org/10.1038/s41467-022-30695-9
http://doi.org/10.1145/3386331
http://doi.org/10.1109/RBME.2019.2946868
http://doi.org/10.1136/jnnp.74.3.288
https://wiki.cancerimagingarchive.net/display/Public/Collections%
https://wiki.cancerimagingarchive.net/display/Public/Collections%
http://doi.org/10.2196/jmir.2930
http://doi.org/10.1038/sdata.2017.117
http://doi.org/10.1109/TMI.2014.2377694
http://doi.org/10.1002/mp.14168
http://doi.org/10.1007/s10278-017-0009-z
http://doi.org/10.1016/j.patrec.2020.03.007
http://doi.org/10.1109/ACCESS.2020.2973707
http://doi.org/10.1007/s00034-019-01246-3


Diagnostics 2023, 13, 651 15 of 15

67. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab,
N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

68. Hu, Y.; Xia, Y. 3D Deep Neural Network-Based Brain Tumor Segmentation Using Multimodality Magnetic Resonance Sequences.
In Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada, 14 September 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 423–434.

69. Marcinkiewicz, M.; Nalepa, J.; Lorenzo, P.R.; Dudzik, W.; Mrukwa, G. Segmenting Brain Tumors from MRI Using Cascaded
Multi-Modal U-Nets. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, , 16 September 2018;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 13–24.

70. Naser, M.A.; Deen, M.J. Brain Tumor Segmentation and Grading of Lower-Grade Glioma Using Deep Learning in MRI Images.
Comput. Biol. Med. 2020, 121, 103758.

71. Bagyaraj, S.; Tamilselvi, R.; Gani, P.B.M.; Sabarinathan, D. Brain Tumour Cell Segmentation and Detection Using Deep Learning
Networks. IET Image Process. 2021, 15, 2363–2371.

72. Kot, E.; Krawczyk, Z.; Siwek, K.; Królicki, L.; Czwarnowski, P. Deep Learning-Based Framework for Tumour Detection and
Semantic Segmentation. Bull. Pol. Acad. Sciences. Tech. Sci. 2021, 69, e136750.

73. Saeed, M.U.; Ali, G.; Bin, W.; Almotiri, S.H.; AlGhamdi, M.A.; Nagra, A.A.; Masood, K.; Amin, R. ul RMU-Net: A Novel Residual
Mobile U-Net Model for Brain Tumor Segmentation from MR Images. Electronics 2021, 10, 1962. [CrossRef]

74. Sohail, N.; Anwar, S.M.; Majeed, F.; Sanin, C.; Szczerbicki, E. Smart Approach for Glioma Segmentation in Magnetic Resonance
Imaging Using Modified Convolutional Network Architecture (U-NET). Cybern. Syst. 2021, 52, 445–460. [CrossRef]

75. Ghosh, S.; Chaki, A.; Santosh, K. Improved U-Net Architecture with VGG-16 for Brain Tumor Segmentation. Phys. Eng. Sci. Med.
2021, 44, 703–712. [CrossRef]

76. Kihira, S.; Mei, X.; Mahmoudi, K.; Liu, Z.; Dogra, S.; Belani, P.; Tsankova, N.; Hormigo, A.; Fayad, Z.A.; Doshi, A. U-Net Based
Segmentation and Characterization of Gliomas. Cancers 2022, 14, 4457. [CrossRef]

77. Raza, R.; Bajwa, U.I.; Mehmood, Y.; Anwar, M.W.; Jamal, M.H. DResU-Net: 3D Deep Residual U-Net Based Brain Tumor
Segmentation from Multimodal MRI. Biomed. Signal Process. Control 2023, 79, 103861.

78. Allah, A.M.G.; Sarhan, A.M.; Elshennawy, N.M. Edge U-Net: Brain Tumor Segmentation Using MRI Based on Deep U-Net Model
with Boundary Information. Expert Syst. Appl. 2023, 213, 118833. [CrossRef]

79. Lee, K.; Zung, J.; Li, P.; Jain, V.; Seung, H.S. Superhuman Accuracy on the SNEMI3D Connectomics Challenge. arXiv 2017,
arXiv:1706.00120.

80. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Stoyanov, D., Taylor, Z., Carneiro, G.,
Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., Lu,
Z., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018;
pp. 3–11.

81. Nodirov, J.; Abdusalomov, A.B.; Whangbo, T.K. Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain
Tumor Images. Sensors 2022, 22, 6501. [CrossRef]

82. Chen, W.; Liu, B.; Peng, S.; Sun, J.; Qiao, X. S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation. In Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T., Eds.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 358–368.

83. Casamitjana, A.; Catà, M.; Sánchez, I.; Combalia, M.; Vilaplana, V. Cascaded V-Net Using ROI Masks for Brain Tumor Segmenta-
tion. In Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada, 14 September 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 381–391.

84. Hua, R.; Huo, Q.; Gao, Y.; Sui, H.; Zhang, B.; Sun, Y.; Mo, Z.; Shi, F. Segmenting Brain Tumor Using Cascaded V-Nets in
Multimodal MR Images. Front. Comput. Neurosci. 2020, 14, 9.

85. Giri, C.; Sharma, J.; Goodwin, M. Brain Tumour Segmentation on 3D MRI Using Attention V-Net. In Engineering Applications of
Neural Networks; Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022;
pp. 336–348.

86. Guan, X.; Yang, G.; Ye, J.; Yang, W.; Xu, X.; Jiang, W.; Lai, X. 3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation
Framework. BMC Med. Imaging 2022, 22, 6. [CrossRef]

87. Siar, M.; Teshnehlab, M. Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm. In Proceedings
of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 24–25 October 2019;
pp. 363–368.

88. Han, C.; Rundo, L.; Araki, R.; Furukawa, Y.; Mauri, G.; Nakayama, H.; Hayashi, H. Infinite Brain MR Images: PGGAN-Based
Data Augmentation for Tumor Detection. In Neural Approaches to Dynamics of Signal Exchanges; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 291–303.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/electronics10161962
http://doi.org/10.1080/01969722.2020.1871231
http://doi.org/10.1007/s13246-021-01019-w
http://doi.org/10.3390/cancers14184457
http://doi.org/10.1016/j.eswa.2022.118833
http://doi.org/10.3390/s22176501
http://doi.org/10.1186/s12880-021-00728-8

	Introduction 
	Preamble 
	Related Works and Research Gaps 
	Purpose and Contributions 

	Overview of MATLAB and Python for Deep Learning 
	Experiments 
	Dataset 
	Deep Learning Approaches Used in the Experiments 
	3D U-Net 
	V-Net 

	Preprocessing and Implementation Details 

	Results of the Experiments 
	Discussion 
	Future Research Directions 
	Conclusions 
	References

