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Abstract—Early identification of a polyp in the lower gas-
trointestinal (GI) tract can lead to prevention of life-threatening
colorectal cancer. Developing computer-aided diagnosis (CAD)
systems to detect polyps can improve detection accuracy and
efficiency and save the time of the domain experts called
endoscopists. Lack of annotated data is a common challenge
when building CAD systems. Generating synthetic medical data
is an active research area to overcome the problem of having
relatively few true positive cases in the medical domain. To be
able to efficiently train machine learning (ML) models, which
are the core of CAD systems, a considerable amount of data
should be used. In this respect, we propose the PolypConnect
pipeline, which can convert non-polyp images into polyp images
to increase the size of training datasets for training. We present
the whole pipeline with quantitative and qualitative evaluations
involving endoscopists. The polyp segmentation model trained
using synthetic data, and real data shows a 5.1% improvement
of mean intersection over union (mIOU), compared to the model
trained only using real data. The codes of all the experiments
are available on GitHub to reproduce the results.

Index Terms—polyp inpainting, synthetic polyps, generative
models, synthetic medical data, fake polyp data

I. INTRODUCTION

Utilizing the potential of data and deep learning in the
medical sphere is a highly regarded and valuable task. In-
telligent tools and computer-aided diagnosis (CAD) systems
[1]–[3] can be developed in order to assist medical staff, in an
effort to increase precision in diagnosis, support or guide in
decision-making, or increase the general efficiency of medical
processes. Even though there are clear potentials in utilizing
artificial intelligence for such tasks, several challenges still
exist to be researched.

One of the major issues in developing robust tools utilizing
machine learning (ML) algorithms within the medical sphere
is the lack of annotated data. Manual annotation of data by
domain experts is a costly and time-consuming process, which
is impractical in order to generate a substantially sized dataset
for model consumption. Moreover, the manual data annotation
process is subjective. As CAD systems potentially have an
impact on the actions or decisions of doctors and medical

employees, it is crucial to obtain robust and reliable models.
Models trained on small datasets might yield predictions with
over-fit assumptions, not suitable for out-of-sample data and
unfit for a production setting. The use of sensitive patient data
can also give rise to privacy-related issues, which complicates
the open sharing of data and code.

In this research, we aim to reduce or circumvent the issues
above by producing machine-generated synthetic images with
respective annotations in a selected medical case study, namely
polyp segmentation [4]–[6]. More specifically, we apply image
inpainting to generate gastrointestinal (GI) images containing
polyps. Image inpainting can be described as a method that
estimates pixel values to fill holes or missing areas in an
image. By utilizing both unlabeled and labeled data, we train
three image inpainting models and analyze the performance
of generating polyps on clean-colon images. This is a suitable
method since the mucosa surrounding the polyp is mostly
completely normal. Finally, we introduce an effective polyp
inpainting pipeline, called PolypConnect, to generate syn-
thetic polyps in clean colon data based on the best findings
of our experiments. This generation process is an effort to
enlarge the size of the dataset and subsequently compare
segmentation models trained on a mix of real and synthetic
images to evaluate performance. The goal is to research if
a generation of realistic images is viable for this kind of
data and to what extent it has an impact on improving polyp
segmentation models. Moreover, since the generated polyp
images are not from real patients, this could be a way of
circumventing regulations related to the privacy protection of
sensitive medical data and sharing data more easily.

In this regard, we can list our main contributions as follows:

• We evaluate three different state-of-the-art image inpaint-
ing models for the GI tract and benchmark the best model
in our polyp inpainting pipeline.

• We introduce PolypConnect, a novel polyp inpainting
pipeline to convert non-polyp images (true-negative sam-
ples) to realistic polyp images (true-positive samples).
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• We evaluate the quality of the pipeline quantitatively and
qualitatively with the aid of medical experts.

• We evaluate the effectiveness of using synthetic polyp
data for polyp segmentation models using the UNet
architecture.

The code is available in https://github.com/AndreFagereng/
polyp-GAN to reproduce the results and future studies, and
this work is building upon the preliminary work published in
an abstract by Thambawita et al. [7].

II. RELATED WORK

Generating synthetic polyps is not a new research direc-
tion. However, producing realistic synthetic polyps with the
corresponding ground truth, which can be used to train other
machine learning models, is challenging. Random synthetic
GI-tract images can be generated from the pre-trained gen-
erative adversarial network (GAN) models studied in [8],
[9]. However, generating synthetic polyps and corresponding
ground truth is not possible with these model.

One study developed an inpainting method for endoscopy
medical images which was also able to remove specular high-
lights of polyps [10]. Akbari et al. [11] removed reflections in
colonoscopy video frames using a proposed inpainting method.
A GAN has also been developed to do inpainting reflections
in endoscopic images [12]. Recently, Daher et al. developed
a temporal GAN for the same purpose [13]. However, none
of these methods are designed to inpaint synthetic polyps in
clean GI images.

The SinGAN-Seg pipeline was introduced by Thambawita
et al. [14] to generate synthetic polyps with the corresponding
segmentation masks. Because this model uses only a single
real polyp as an input, the generated samples show very close
distributions of pixels to the input image. Furthermore, this
model was developed to generate completely new synthetic
polyp images from scratch and was not tested for converting
non-polyp images into polyp images. Also, distributions of
synthetic polyp images generated from this kind of pure polyp
generators are showing quite similar distribution to the training
data used to train GANs of the pipelines.

A simple UNET-based synthetic polyp generator was in-
troduced by Qadir et al. [15]. In this study, they have ex-
perimented with converting polyp images into non-polyp and
non-polyp into polyp images. However, the generated polyp
can be discriminated easily based on the presented results.
Furthermore, using only the mask to generate polyps makes
generated polyps unrealistic, and the structure of the polyp can
not be adjusted. In this regard, we present the PolypConnect
pipeline to generate realistic synthetic polyp on clean colon
images.

III. POLYPCONNECT PIPELINE

The complete pipeline of PolypConnect is depicted in
Figure 1. The pipeline consists of four steps. In Step 1, we use
a GAN architecture to generate synthetic realistic polyp masks.
In this study, we have used ProGAN [16]. However, other
GAN architectures such as StyleGAN [17] and FastGAN [18]

can be used for the synthetic mask generation. The generated
synthetic masks are then randomly paired with GI-tract images
to produce images with missing regions. The EdgeConnect
model is then pre-trained, conditioned on the missing region
images and extracted edge maps.

In Step 2, we fine-tune the pre-trained EdgeConnect model
using polyp datasets with corresponding extracted edge im-
ages. The pre-trained weights of the EdgeConnect model were
loaded from Step 1. In this process, the model is trained
to inpainting the exact polyp regions using the manually
annotated ground truth provided in the datasets.

Step 3 prepares the input data in order to produce realistic
polyp output from non-polyp colon images. As a simple
method, we extract polyp masks and the corresponding edge
from the polyp datasets used in Step 2. Alternatively, polyp
edge and corresponding masks can be generated using another
GAN model. Then, extracted polyp edge is merged into the
edge image of a clean colon image.

In Step 4, the edge polyp image returned from Step 3, the
corresponding mask, and the clean colon image are provided
as input to the pre-trained EdgeConnect model of Step 2. The
generated polyp image is the final output of this PolypConnect
pipeline. A sample clean-colon image and the generated polyp
image generated using it are depicted in Figure 1.

IV. EXPERIMENTAL RESULTS

A. Data

For the purpose of training the models for the generation
of synthetic polyps, we used the HyperKvasir dataset [19]. It
consists of 1, 000 images with segmented polyp annotations
and around 100, 000 unlabeled GI-tract landmarks. In Step
1, we have used the unlabeled data to pre-train the models.
The segmentation dataset was used from Step 2 to the final
polyp segmentation experiments. For the validation procedure,
200 images were randomly sampled from the training data,
and therefore the models were trained with the remaining
800 images. This initial split (80/20) of the dataset was kept
throughout all of the experiments, including the segmentation
performed at the end. All the data used in this study are
anonymous and publicly available for research purposes.

B. Experimental setup

We used two GPUs of Geforce GTX TITAN X of 8 GB
for the preliminary experiments. When the experiments were
ready to run for a total number of epochs, an NVIDIA DGX
server having 16 v100 GPUs of 32 GB was used, and the
Pytorch deep learning framework version 1.10.1 was used for
all experiments.

The structural similarity index (SSIM) [20], peak signal-
to-noise ratio (PSNR) [21] and Fréchet inception distance
(FID) [22] were used for quantitative evaluation of the models
on the validation data. These metrics are commonly used to
evaluate inpainting methods. Ideally, the SSIM and PSNR
should be as high as possible, while the FID should be close
to 0. In addition, a user survey including medical doctors was
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Fig. 1: Pipeline of PolypConnect. Step 1 - Pre-training of EdgeConnect , Step 2 - Fine-tuning of the EdgeConnect model,
Step 3 - Edge extractions for polyp masks (an alternative method is discussed in Section V), Step 4 - Generating polyps on
clean colon images.

Fig. 2: Sample synthetic masks generated from ProGAN [16]

performed in order to evaluate the models qualitatively. Details
about the survey are provided in subsection IV-G.

C. Synthetic polyp masks

The total number of unique segmented polyp masks from
KvasirSEG [23] is 1, 000, which is insufficient for our pre-
liminary experiments of general image inpainting. Thus, we
used ProGAN [16] conditioned on random noise to produce
new realistic polyp masks. Figure 2 visualizes some samples
of the generated masks. Examining the generated masks, we
observed a couple of undesirable shapes and sizes. The mask
regions in these images were either taking up the entire region
or were non-existent. In other words, the binary distribution
of the masks was at each end of the extremes in these cases.
Therefore, we decided to discard such images by only keeping
generated images where the masked regions filled between
5%− 70% of the entire image.

D. Polyp inpainting

We have selected three image inpainting models, namely
GMCNN [24], AOTGAN [25] and EdgeConnect [26], to
explore the capability of inpainting polyps on a given clean

TABLE I: Comparison of different image inpainting models.
Selected best values from different checkpoints are presented
here. The best two models’ values are presented using bold
text.

Model SSIM PSNR FID

GMCNN [24] 0.4911 12.641 181.720
EdgeConnect [26] 0.6100 17.980 74.070

AOTGAN [25] 0.9100 28.878 34.550

colon image. These three models were chosen due to their
popularity and novelty. We have performed a set of preliminary
experiments, which are presented in Table I. Based on the
preliminary results, we chose to proceed with EdgeConnect
and AOTGAN.

E. Selecting EdgeConnect over AOTGAN

The performance metrics for Edgeconnect and AOTGAN on
the validation data after fine-tuning the models, are shown in
Table II. In addition to qualitative evaluation, Figure 3 provides
example data from the different steps of the PolypConnect
pipeline using the EdgeConnect model and the AOTGAN
model. Due to obvious visual differences in the generated
polyps between the models, we selected the EdgeConnect
model as the main polyp inpainting model of the PolypConnect
pipeline for further evaluation and qualitative assessment by
domain experts.

F. Polyp segmentation models with synthetic polyps

At this stage of the experiments, the generated polyps
from PolypConnect (using the EdgeConnect model as the
main inpainting model) are prepared for the segmentation
evaluation. In total, there are four datasets. Therefore, we
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Fig. 3: Sample data used and generated in the different steps of PolypConnect pipeline. (a) - real polyp images, (b) - manually
annotated polyp masks, (c) - randomly selected colon images used as input to the final step of PolypConnect, (d) - extracted
edge images of row c. (e) - extracted edge images of polyp regions of row a using the masks of row b. (f) - combined
edge images of row d and f. (g) - generated polyp on the images of row c using EdgeConnect. (h) - generated samples from
AOTGAN.



TABLE II: Calculated metrics for fine-tuned Edgeconnect
and AOTGAN on the validation set for different fine-tune
iterations.

Model EdgeConnect AOTGAN

Iteration SSIM PSNR FID SSIM PSNR FID

500 0.529 17.832 77.712 0.882 27.114 27.114
1000 0.527 17.859 77.007 0.890 28.176 42.102
2000 0.527 17.847 76.460 0.887 28.021 42.449
2500 0.526 17.836 76.956 0.889 27.969 42.484
3000 0.527 17.817 77.461 0.888 28.045 42.154
3500 0.527 17.817 77.515 0.888 28.038 42.559
4000 0.528 17.832 76.988 0.889 28.058 41.628
4500 0.526 17.796 76.851 0.889 28.084 41.599
5000 0.525 17.860 77.219 0.889 28.100 42.200
6000 0.527 17.835 76.310 0.882 28.0635 41.224

TABLE III: Evaluation of UNet segmentation model using real
data and combined real and synthetic data. The best values
are highlighted using bold text. Image IOU is calculated by
aggregating intersection and union over whole dataset. Dataset
IOU is also known as mIOU, and is the mean IOU.

Dataset Image IOU Dataset IOU Dice Coef Prec Rec

Baseline 0.760 0.728 0.846 0.911 0.784
+800 0.795 0.765 0.874 0.923 0.817

+1600 0.791 0.758 0.869 0.912 0.818
+2400 0.795 0.759 0.873 0.919 0.814

train four U-Net [27] models for segmentation. The baseline
dataset consists of only real polyp images. The remaining
are datasets combining the real and generated polyp images.
The first combined dataset consists of 800 real and 800
generated. The second and third are similar but with 1600
and 2400 generated polyp images. The models were evaluated
on the same validation set of 200 real images. The obtained
metrics show a clear improvement in all models trained on the
additional synthetic data. Results can be found in Table III.

(a) (b) (c) (d) (e) (f)

Fig. 4: Visual comparison of segmentation performance with
UNet architecture when synthetic data is used. (a) Input Image.
(b) Ground Truth. (c) Baseline (UNet) only with 800 real data
(d) real data +800 (e) real data + 1600 (f) real data + 2400.

TABLE IV: Qualitative evaluation of synthetic polyps over
real polyps using an questionnaire.

Reader TP FN FP TN Accuracy Recall Precision

DOC 4 1 1 4 80% 80% 80%
DOC 3 2 3 2 50% 60% 50%
SAP 3 2 3 2 70% 80% 66%
GEC 4 1 3 2 60% 80% 57%
GEC 3 2 1 4 70% 60% 75%
GEC 3 2 3 2 50% 60% 50%
GEC 3 2 5 0 30% 60% 37.5%

Mean - - - - 58.5% 68.5% 59.3%

G. Qualitative analysis by domain experts

Following the completion of the training and image in-
painting of the generative models, a questionnaire was created
to obtain subjective opinions on the generated images from
domain experts. There were four participants in total from
three fields of domain expert positions. Two of the partici-
pants are medical doctors (DOC), one is a gastroenterology
consultant (GEC), and finally, an associate professor (SAP).
The questionnaire included a total of ten polyp images and
required the participants to rate images (fake or generated) on
a confidence scale from 1 − 10, where a score of 1 means a
real image, and a score of 10 means a generated image. To
summarize the results, we converted these scores into binary
(1 − 5 = real and 6 − 10 = generated). The summary of the
collected results is tabulated in Table IV. In addition, the
participants were asked to give the same confidence rating
only based on the polyps themselves, and the background
surrounding the polyps. The participants were not given any
information regarding the experiment and had no knowledge
about the study.

V. DISCUSSION AND CONCLUSION

This study is focused on solving or reducing the data
deficiency issues by efficiently generating realistic polyps in
non-polyps images. This way, a dataset of finished segmented
polyps can be generated in a short amount of time and vastly
increase the data basis for polyp detection models. However,
to be a useful solution, the generated results are required to be
realistic and also improve the detection models experimentally.
Our idea incorporated utilizing non-segmented and unlabeled
data for pretraining the models on general GI-tract image
inpainting prior to finetuning for polyp generation. We used
ProGAN [16] to generate synthetic realistic polyp masks
to be paired with random unlabeled images while training.
However, we used the manually segmented polyp masks from
KvasirSEG [23] to generate the synthetic polyps in non-polyp
images. The polyp edges were extracted from the same images
and used as the input for EdgeConnect. Synthetically generated
pairs of polyp mask- and edge-images could be easily be
created with ProGAN [16] or similar architectures, but this was
not tested in this research. After conducting the experiments,
we were able to generate realistic polyps in non-polyp images
and also improve the detection rate of a polyp segmentation
model by adding the synthetic data to the training data. The



improved metrics are presented in Table III. Precision and
recall increased by 1.2% and 3.4%, respectively. Image IoU
and dataset IoU increased from 0.76 to 0.795 (4.6%) and
0.728 to 0.765 (5.1%), respectively. The dice coefficient also
showed improved results in the mixed datasets by 3.3%. All
of the mixed datasets (utilizing the synthetic data) expressed
clear improvements to the baseline. The model trained on the
+800 dataset produced the overall best results. The +1600
and +2400 datasets yielded no clear improvement compared
to the +800 dataset, and might therefore be an indication that
additional synthetic images will not improve the segmentation
model further. Moreover, the low accuracy of synthetic polyp
detection by the domain experts presented in the results of
the questionnaire implies that generated synthetic polyps are
visually realistic as well.

VI. FUTURE WORKS

The PolypConnect pipeline can be enhanced by adding
more pre-extracted features, such as Histogram of Oriented
Gradients and texture features, etc. Furthermore, different
GAN architectures can be experimented with to generate
synthetic polyp masks, synthetic edge images, and synthetic
clean colon images as well. Investigating to control more fine
features of generated data can add value to the pipeline.
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