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Abstract 21 

To screen/identify suitable microbe, nutrient and reservoir for successful field 22 

implementation of in-situ MEOR technique, it is important to predict the oil recovery 23 

and quantify the relative importance of influencing parameters from limited 24 

experimental data. For this purpose, Physics-Informed Machine Learning (PIML) 25 

approach is adopted in this study, which is developed by integrating the physics-based 26 

and Machine Learning (ML) models. It is found that biosurfactant yield w.r.t nutrient 27 

(𝑌𝑃𝑆), flow velocity and initial oil saturation (𝑆𝑜𝑖) are correspondingly the most 28 

influential microbial kinetic, operational and reservoir parameters. Higher oil recovery 29 

is achieved by selecting a microbe-nutrient-reservoir pair having higher 𝑌𝑃𝑆 and 𝑆𝑜𝑖 30 

values but with lower 𝑌𝑋𝑆 (microbial yield w.r.t nutrient) value. Among 12 ML models 31 

analysed, Neural network model had predicted the oil recovery relatively accurate (𝑅2~  32 

0.98). Overall, this PIML approach helps to devise strategies for maximizing oil 33 

recovery at initial laboratory stage itself with limited experimental data. 34 

Keywords: Microbial Enhanced Oil Recovery; Machine Learning; Biosurfactants; 35 

Modelling; Kinetics 36 

1. Introduction 37 

 To meet the increase in global energy demand and to sustain crude oil 38 

production from depleting oil reservoirs, more than half of the crude oil that is left after 39 

primary and secondary recovery techniques must be recovered by suitable Enhanced Oil 40 

Recovery (EOR) techniques (Joshi et al., 2016). In relative to existing chemical EOR 41 

methods, In-situ Microbial Enhanced Oil Recovery (MEOR) method is an economical 42 

and environmental friendlier EOR technique (Joshi et al., 2016; Varjani and Upasani, 43 
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2016; Shibulal et al., 2018; Jeong et al., 2022). In in-situ MEOR process, exogeneous 44 

(or) indigenous microbes are injected into the reservoir, which subsequently undergoes 45 

metabolic activity within the reservoir by utilizing nutrients and producing bioproducts, 46 

which consequently helps to recover the crude oil from the reservoirs (Joshi et al., 2016; 47 

Varjani and Upasani, 2017; Shibulal et al., 2018; Markande et al., 2021). Though in-situ 48 

MEOR technique inherits several advantages, it is not widely implemented in the field 49 

across the globe as other chemical EOR techniques due to the existence of following 50 

challenges (Nikolova and Gutierrez, 2020): (a) complexity in predicting the oil recovery 51 

performance of in-situ MEOR technique; and (b) lack in quantifying the relative 52 

importance of each influencing parameter on final oil recovery. Resolving these 53 

challenges at initial lab investigation stage itself will correspondingly: help to decide 54 

whether to implement in-situ MEOR technique in the given reservoir or not and to 55 

identify/screen the suitable microbe-nutrient-reservoir combination for attaining better 56 

oil recovery; and assist in development of strategies for optimizing the oil recovery.  57 

 To evaluate the oil recovery performance of in-situ MEOR process, earlier, 58 

several core flooding experimental studies (Joshi et al., 2016; Varjani and Upasani, 59 

2016; Shibulal et al., 2018) and physics based computational modelling studies (Nielsen 60 

et al., 2016; Sivasankar and Kumar, 2016, 2017, 2019; Jeong et al., 2021, 2022) were 61 

performed.  However, performing core flooding experimental studies to identify/screen 62 

a suitable microbe-nutrient-reservoir combination from several available combinations 63 

makes experimental approach an expensive and time-consuming exercise. Though 64 

physics-based models can provide better prediction of oil recovery with physically 65 

consistent results, but it is computationally intensive to perform uncertainty 66 

quantification and optimization studies as it requires to solve the non-linear equations 67 
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for several simulation runs (Thanh et al., 2020; Karniadakis et al., 2021). Moreover, it is 68 

also unfeasible to quantify the relative importance of each influencing parameter on oil 69 

recovery by both experimental and physics-based modelling approach as it requires 70 

several experiments. Recently, Machine Learning (ML) models/algorithms are 71 

increasingly used for different bioprocess applications to predict and optimize its 72 

performance (Cruz et al., 2012; Tang et al., 2021; Zhang et al., 2021; Wang et al., 73 

2022). With the availability of large input and output datasets, ML models can quickly 74 

predict the outcome of complex problems and quantify the relative importance of each 75 

input parameters, which is otherwise difficult by using only physics-based models 76 

(Thanh et al., 2021; Tang et al., 2021). However, with the limited availability of data 77 

from experimental and field studies, it will not be feasible to apply ML 78 

models/algorithms alone as it may predict physically inconsistent results with lesser 79 

accuracy. Hence the requirement to have a quick and physically consistent results from 80 

limited observed/experimental data with better accuracy is achieved by integrating both 81 

the physics informed model and data driven ML model into a single hybrid model 82 

called Physics Informed Machine Learning (PIML) model (Thanh et al., 2020; 83 

Karniadakis et al., 2021). In recent times, PIML modelling approach is gaining 84 

popularity because of its ability to accommodate the merits of both physics-based model 85 

and ML model in a single model, while mitigating their respective drawbacks. Recently, 86 

PIML modelling approach have been successfully used for different applications (Thanh 87 

et al., 2020; Karniadakis et al., 2021; Liu et al., 2021). However, the use of PIML 88 

approach for in-situ MEOR application have not been explored yet at least to the 89 

authors knowledge.  90 
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SOMETHING ABOUT PIML WRITE ABOUT EXPLAINABLITY, 91 

INTERPRETABLE AND PHYSICALLY CONSISTENT… 92 

 93 

 94 

Hence the novelty of the present work is in introducing the PIML approach for in-situ 95 

MEOR application to predict its oil recovery performance and to quantify the relative 96 

importance of parameters influencing the oil recovery using limited experimental data. 97 

In particular, the objectives of the present work are: (a) to develop a framework to 98 

integrate the physics based model and ML model into a single PIML model for 99 

generating a large, relevant and physically consistent data sets from limited 100 

experimental data; (b) to quantify the relative importance of each parameter on 101 

influencing the final oil recovery using PIML approach, and subsequently to identify the 102 

critical kinetic and operational parameters influencing the oil recovery; and (c) to 103 

identify the suitable ML model among 12 different ML models that shall be used 104 

directly in PIML approach for predicting the oil recovery performance.  105 

  The present PIML approach study will help the end-users: to quickly select a 106 

favourable microbial-nutrient-reservoir combination from several other available 107 

options; to decide whether to implement in-situ MEOR technique in a particular 108 

reservoir or not; and to devise operational strategies for maximizing the oil recovery.  109 

2. Materials and Methods 110 

 In the present study, PIML approach is developed by combining the physics-111 

based model and ML model into a single model. Initially, laboratory experiments are 112 

performed to determine the microbial kinetic and reservoir properties data. Based on 113 
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these limited experimental data, physics-based models for microbial kinetic and oil 114 

recovery processes are developed. From these physics-based models, large, physically 115 

relevant input and output data sets are generated. Using these large datasets, the ML 116 

models are then trained and tested to quantify the relative importance of each parameter 117 

and to predict the oil recovery quickly. The methodology for developing this PIML 118 

approach is presented in detail in this section and briefed in Figure 1.  119 

[Figure 1] 120 

2.1 Classification and collection of input parametric data 121 

 In the present study, 13 input parameters are considered. The corresponding 122 

values of these input parameters constitutes the input parametric data. In the present 123 

study, the input parametric data are classified as: (i) microbial kinetic parametric data, 124 

(ii) operational parametric data, and (iii) reservoir parametric data, based on the 125 

corresponding properties of microbes, nutrients, operational and reservoir conditions. 126 

2.1.1 Collection of input microbial kinetic parametric data from experimental studies 127 

 In the present study, the microbial kinetic parameters that are considered as 128 

input are maximum microbial growth rate [𝑈𝑚𝑎𝑥 , (ℎ−1)], yield of microbes w.r.t sucrose 129 

(𝑌𝑋𝑆), yield of biosurfactants w.r.t sucrose (𝑌𝑃𝑆) and Monod half saturation coefficient 130 

(𝐾𝑋𝑆, (𝑔𝑙−1)]. The corresponding values of these microbial kinetic parameters are 131 

considered as input microbial kinetic parametric data. In the present study, the input 132 

data for all these microbial kinetic parameters are sourced from the experimental studies 133 

of Sivasankar et. al., 2016, in which, Pseudomonas putida MTCC 2467 was used as 134 

microbe, while sucrose and ammonium sulphate were used as carbon and nitrogen 135 

source nutrient, respectively. In that study, at pH 8 condition, experiments on microbial 136 
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growth, nutrient utilization and biosurfactant production were carried out to determine 137 

the values of microbial kinetic parameters for predicting the oil recovery.  138 

2.1.2 Collection of input operational and reservoir parametric data  139 

 In the present study, the operational parameters that are considered as input are 140 

mean flow velocity of injection fluid within reservoir [𝑢, (𝑚ℎ−1)], viscosity of injection 141 

fluid [𝜇𝑤, (𝑁ℎ𝑚−2)], initial/injection concentration of microbes [𝑋𝑖, (𝑔𝑙−1)], 142 

initial/injection concentration of sucrose [𝑆𝑖, (𝑔𝑙−1]], initial/injection concentration of 143 

ammonium sulphate [𝐴𝑖 , (𝑔𝑙−1],] and resident time [𝑇𝑟 , (ℎ)].  These input operational 144 

parameters are controlled by the operators/scientists in the field/laboratory during the 145 

implementation of in-situ MEOR technique. Finally, the reservoir fluid-rock parameters 146 

that are considered as input parameters in the present study are initial residual oil 147 

saturation [𝑆𝑜𝑟𝑖, (fraction)], irreducible water saturation [𝑆𝑤𝑖𝑟, (fraction)] and initial or 148 

maximum oil-water Interfacial Tension (IFT) at the start of EOR [𝜎𝑚𝑎𝑥 , (𝑚𝑁𝑚−1)]. In 149 

the present study, the input data for all these operational and reservoir rock-fluid 150 

parameters are sourced from Sivasankar et al., 2016. Table 1 presents the sourced data 151 

or reference value of all these input parameters. It is to be noted that for each input 152 

parameter, only one reference value is available either from experiments or other 153 

sources, which will be insufficient for applying the ML algorithms. 154 

[Table 1] 155 

2.2 Generation of large input and output datasets from physics-based model  156 

 In the present study, percent of oil recovery is the only parameter considered as 157 

output parameter. This output oil recovery parameter is influenced by all the input 158 

parameters (Sivasankar et al., 2016) that are mentioned in Tab. 1. In order to apply 159 
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Machine Learning (ML) algorithms for predicting the output oil recovery, large data 160 

sets of input and output parameters are required to train and test the ML algorithms. 161 

However, the availability of input and output parametric data from laboratory 162 

experiments and other sources are limited (as presented in Tab. 1), which is inadequate 163 

to implement the ML algorithms. Hence in the present study, large datasets of input and 164 

output parameters are generated synthetically (data augmentation) for training and 165 

testing the ML algorithms. Data augmentation is a mathematical method to synthesise 166 

more data from the known (experimental) data when there is data insufficiency. The 167 

methodology adopted in the present study for generation of input and output data is 168 

similar to the method earlier adopted by Thanh et al., 2020, and it is outlined in sec. 169 

2.2.1. and sec. 2.2.2.   170 

2.2.1 Generation of large input datasets from sourced reference values 171 

 The reference value of input microbial kinetic parameters that are presented in 172 

Tab. 1 are specific only to a particular temperature, pH, salinity, and pressure conditions 173 

at which experiments were conducted. However, in actual reservoir fields, the reference 174 

value of input parameters mentioned in Tab. 1 varies significantly due to the existence 175 

of heterogeneity, resulting in uncertainty (Ansah et al., 2020; Thanh et al., 2020). Hence 176 

accounting for this uncertainty, and to make the present model to be applicable for 177 

wider variations in input parametric data during its field implementation, a 50% 178 

Standard Deviation (SD) is considered to all the input parameter values (Thanh et al., 179 

2020). The resultant value range for each of these input parameters after considering the 180 

SD is presented in Tab. 1. Subsequently, large datasets of about 10000 values (i.e., data) 181 

for each of the input parameter is generated between their corresponding value range by 182 

dividing it in equal intervals following the uniform distribution. 183 
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2.2.2 Generation of large output data sets using physics-based model 184 

 The output data on oil recovery is dependent on all the input parametric data. 185 

Hence, to generate the large data sets of output parameter (oil recovery, %) for training 186 

and testing of ML algorithms, the physics-based model (Eqs. 1- 8) (Sivasankar and 187 

Suresh Kumar, 2016) which is dependent on all input parameters is simulated several 188 

times using the generated input datasets. In the present physics-based model, the 189 

microbial kinetic model (Eqs. 1 – 4) simulates: growth kinetics of microbes (Eq. 1); 190 

nutrient utilization kinetics (Eq. 2); biosurfactant production kinetics (Eq. 3); and 191 

Monod’s kinetics (Eq. 4). While the oil recovery model (Eqs. 5 – 8) simulates: IFT 192 

reduction by produced biosurfactants (Eq. 5); increase in Capillary Number due to IFT 193 

reduction (Eq. 6); decrease in oil saturation due to increase in Capillary Number (Eq. 7); 194 

and the final percent of oil recovery (Eq. 8), which is the output and target data. Based 195 

on this obtained oil recovery data, performance evaluation of MEOR technique and 196 

screening of suitable microbe-nutrient-reservoir combination are carried out. 197 

𝑑𝑋 𝑑𝑡⁄ = µ𝑥 . 𝑋          (1) 198 

𝑑𝑆 𝑑𝑡⁄ = − µ𝑥. 𝑋 𝑌𝑋𝑆⁄ ;    𝑑𝐴 𝑑𝑡⁄ = − µ𝑥. 𝑋 𝑌𝑋𝐴⁄     (2) 199 

𝑑𝑃 𝑑𝑡⁄ = (𝑌𝑃𝑆 𝑌𝑋𝑆⁄ ). µ𝑥 . 𝑋         (3) 200 

µ𝑥 = 𝑈𝑚𝑎𝑥. {(𝑆 𝐾𝑋𝑆 + 𝑆⁄ ) + (𝐴 𝐾𝑋𝐴 + 𝐴⁄ )}       (4) 201 

log(𝜎∗) = log(𝜎𝑚𝑖𝑛) + log(𝜎𝑚𝑎𝑥 𝜎𝑚𝑖𝑛⁄ ) . {(𝑃 − 𝑃𝑚𝑎𝑥) (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)⁄ }  (5) 202 

𝑁𝑐𝑎
∗ =  𝑢𝑤𝜇𝑤 𝜎∗⁄          (6) 203 

𝑆𝑜 = [
− tanh(𝑣1(𝑁𝑐𝑎

∗ )−𝑣3)+1+𝑣2

− tanh(𝑣1(𝑁𝑐𝑎
0 )−𝑣3)+1+𝑣2

] 𝑆𝑜
′           𝑆𝑤 = 1 − 𝑆𝑜                (7) 204 
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𝑂𝑖𝑙 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦, % = {(𝑆𝑤 − 𝑆𝑤𝑖𝑟) (1 −  𝑆𝑤𝑖𝑟)⁄ } × 100    (8) 205 

 In Eqs. (1 - 8), the terms: X, S, A and P represents the concentration of microbes, 206 

sucrose ammonium sulphate and produced biosurfactant, respectively in 𝑔𝑙−1; µ𝑥 207 

represents the microbial growth rate in ℎ−1; 𝐾𝑋𝐴 represents the half-saturation constant 208 

of ammonium sulphate in 𝑔𝑙−1; 𝑌𝑋𝐴 represents the yield of microbes w.r.t ammonium 209 

and sulphate, r; 𝑌𝑃𝑆 represents the yield of biosurfactant w.r.t sucrose;  𝑁𝑐𝑎 represents 210 

the updated IFT (𝑚𝑁𝑚−1) and Capillary Number, respectively; 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 211 

represents the minimum and maximum biosurfactant concentration, respectively in 212 

𝑔𝑙−1; 𝜎∗ and 𝜎𝑚𝑖𝑛 represents the updated IFT and minimum IFT, respectively in 213 

(𝑚𝑁𝑚−1); 𝑆𝑜 and 𝑆𝑤 represents the saturation of oil and water, respectively in fraction; 214 

and ν1, ν2, ν3 are the constants.  215 

 By performing one simulation job of physics-based model from Eqs. 1 - 8, one 216 

output data on oil recovery is generated. Hence, in the present study, to generate a large 217 

database of output data, ten thousand (10000) simulation jobs were performed which 218 

resulted in generation of 10000 output data on % oil recovery. While, in each simulation 219 

job, the input value (data) of different input parameters that are required are sampled 220 

randomly from the generated input database using Latin Hyper-Cube Sampling (LHS) 221 

technique (Thanh et al., 2020). In some simulation jobs, the set of input data have not 222 

generated a valid positive output data (i.e., % of oil recovery), and such data are 223 

excluded from the training and testing of ML algorithms. Figure 2 shows the frequency 224 

distribution of all the input and output data values that were considered in the present 225 

study for training and testing of different ML algorithms. 226 

    [Figure 2] 227 
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2.3 Machine Learning Models 228 

 Subsequent to the generation of large sets of input and output data, the 229 

interaction strength (or) sensitivity of all 13 input parameters on the output oil recovery 230 

is quantified by using Pearson Correlation Coefficient (PCC) and Spearman Rank 231 

Corelation Coefficient (SRCC) values. PCC value measures the linear relationship 232 

between two variables and SRCC value measures the monotonic relationship between 233 

two parameters. Both PCC and SRCC values range from -1 to 1. Positive correlation 234 

value between two parameters indicates that parameters are directly proportional, and 235 

vice versa. Magnitude of the correlation indicates the strength of the relationship 236 

between the two parameters. Higher the magnitude of correlation coefficient value, 237 

higher is the association strength between the two parameters. Determination of PCC 238 

and SRCC values helps to quantify the influence of different input parameters on output 239 

oil recovery, which shall be used to screen the suitable microbes, nutrients and 240 

reservoirs at the laboratory experimental stage for MEOR field implementation. 241 

2.4 Prediction of relative importance score to quantify the significance of input 242 

microbial kinetic, operational and reservoir parameters on output oil recovery 243 

 In the present work, feature importance study is carried out to quantify the 244 

relative importance of each input parameter on the output oil recovery using Random 245 

Forest Classifier ML algorithm (Keprate and Ratnayake, 2019) in the present PIML 246 

framework. This ML algorithm has been trained and tested using the input and output 247 

parameter datasets that are generated from physics-based model (as described in sec 248 

2.3). This feature importance study computes the Relative Importance (RI) score for 249 

each input parameters in fraction, where its summation will be 1. Hence, RI score of an 250 
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input parameter quantifies the significance (or) importance of that input parameter on 251 

influencing the output oil recovery in relative to other input parameters. Determination 252 

of this RI score for all input parameters will helps to identify the critical input 253 

parameters influencing the output oil recovery, which subsequently guide the future 254 

operation. In the present work, the results from the feature importance study would 255 

helps: (a) to identify the input parameters that are most and least important for 256 

predicting the oil recovery, which subsequently helps to identify the input parameters 257 

which exhibits higher and lower influence on the output oil recovery; (b) to identify the 258 

critical input parameters that shall be optimized for improving the efficiency of oil 259 

recovery; and (c) to determine the weightage functions of all input parameters, which 260 

shall be used to screen the suitability of MEOR technique among other EOR techniques 261 

and to identify the right combination of microbe-nutrient pair for attaining better oil 262 

recovery during its field implementation. 263 

2.5 Prediction and evaluation of different machine learning algorithms for MEOR 264 

applications from lab data  265 

 In the present study, Machine Learning (ML) model which is integrated within 266 

the PIML approach is used to predict the output oil recovery. CRISP-DM methodology 267 

was used for performing data mining and predicting the output oil recovery from input 268 

parameters (Keprate and Ratnayake, 2019). The large data sets of input parameter data 269 

and output data that are required for training and testing the ML model are sourced from 270 

physics-based model which is embedded within the PIML approach (the procedure for 271 

data generation using physics-based model is presented in sec. 2.2). As there are 272 

different ML models available to do the prediction, it is necessary to identify the most 273 

accurate and suitable ML model that can be used in the PIML approach by the end-users 274 
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(researchers/scientists in the laboratory) for predicting the oil recovery. Hence, in the 275 

present study, 12 different ML models/algorithms are used in the PIML approach to 276 

determine its accuracy in predicting the output oil recovery. The 12 different ML 277 

models/algorithms that were used in the present study are K-Nearest Neighbours 278 

(KNN), Decision Trees, Lasso, Ridge, Linear Regression, Random Forests, ADA Boost 279 

Regression, Gradient Boosting, Gaussian Process Regression, Polynomial Regression, 280 

Support Vector Regression (SVR) and neural networks.  281 

 For all these 12 ML models adopted in the PIML approach, the input parameter 282 

data was normalised, and was subsequently split into training data sets and test data sets 283 

in the ratio of 7:3 for training and testing of the ML model used. k-fold cross validation 284 

was performed on the training set by setting k = 10, and the best model is then evaluated 285 

on the test data set. In the present work, all the 12 ML models were trained using 286 

training data sets, and its prediction performance were compared based on 3 metrics, 287 

namely, Root Mean Square Error {RMSE; eq. (9)}, Coefficient of Determination {R2; 288 

eq. (10)} and Explained Variance Score {EVS; eq. (11)}.  289 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
         (9) 290 

𝑅2 = 1 − 
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖− 𝑦̅)2𝑛
𝑖=1

          (10) 291 

𝐸𝑉𝑆 = 1 −  
𝑉𝑎𝑟(𝑦𝑖− 𝑦̂𝑖)

𝑉𝑎𝑟(𝑦𝑖)
          (11) 292 

In the Eqs. (9 - 11), where:𝑦𝑖 represents the actual % oil recovery determined from 293 

physics-based model; 𝑦̂𝑖 represents the predicted value of % oil recovery determined 294 

from ML model; 𝑦̅ represents the mean value of 𝑦𝑖;  n represents the number of 295 

samples; and Var represents the variance. RMSE is a measure of accuracy, and lower 296 
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values indicate better fit of data. 𝑅2 and EVS measures proportion to which a 297 

mathematical model accounts for variation of a given data set. The ML model having 298 

values of 𝑅2 and EVS closer to 1 is the most accurate and suitable model that shall be 299 

used to predict the % oil recovery for in-situ MEOR application. 300 

3. Results and Discussion 301 

3.1 Validation of physics based microbial kinetic model 302 

 The validity of the physics-based microbial kinetic model that is used in the 303 

present study is verified by comparing the present numerical model results with the 304 

experimental data. From Fig. 3(a - c), it is observed that the present model results 305 

(microbial, nutrient and bio-surfactant concentrations w.r.t time) is in good agreement 306 

with the experimental data. As the present adopted model is validated, it is subsequently 307 

used to generate large datasets. 308 

[Figure 3] 309 

3.2 Quantifying the influence of input parameters on output oil recovery 310 

[Figure 4] 311 

 Figure 4a shows the PCC and SPCC values in a matrix form that represents the 312 

interaction (or) association strength between any two parameters involved in the MEOR 313 

process. Fig. 4b specifically presents the PCC and SPCC values (i.e., interaction 314 

strength) between all the input parameters with the output oil recovery parameter. 315 

Results from Fig. 4a and Fig. 4b reveals that the input parameters, 𝑌𝑃𝑆, 𝑢, 𝑆𝑜𝑟𝑖, 𝜇𝑤, 𝑋𝑖,316 

𝐴𝑖 , 𝑆𝑖, 𝑈𝑚𝑎𝑥,  𝑆𝑤𝑖𝑟 𝑎𝑛𝑑 𝑇𝑟  are directly proportional to the oil recovery, while the input 317 
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parameters 𝐾𝑋𝑆, 𝑌𝑋𝑆 𝑎𝑛𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝐹𝑇 are inversely proportional to the oil recovery. 318 

These results are consistent with the reality, which validates the results shown in Fig. 4.  319 

 It is observed that among all these input parameters, the parameter,  𝑌𝑃𝑆 had 320 

strongly associated with the output oil recovery while compared to all the other input 321 

parameters. This illustrates that the yield value of biosurfactants w.r.t sucrose (𝑌𝑃𝑆) is 322 

the dominant parameter that significantly influences the output oil recovery. Moreover, 323 

it is also inferred that the oil recovery performance of MEOR process increases with 324 

increase in 𝑌𝑃𝑆 value, which means that with the increase in utilization of nutrients for 325 

biosurfactant production, the oil recovery increases. This obtained result corroborates 326 

with the earlier results of Sivasankar and Suresh Kumar, 2019, in which, it is reported 327 

that 𝑌𝑃𝑆 parameter significantly influences the oil recovery compared to other kinetic 328 

parameters. From Fig. 4a and Fig. 4b, it is also observed that among the negatively 329 

correlated input parameters (i.e., parameters that are inversely proportional to the oil 330 

recovery), 𝑌𝑋𝑆 is the input parameter that is strongly associated with the output oil 331 

recovery. This illustrates that lower the value of 𝑌𝑋𝑆 (i.e., less nutrient is utilized for the 332 

growth of microbes), higher is the oil recovery. Hence, the study reveals that the higher 333 

oil recovery is attained by selecting a microbe-nutrient pair that have higher value of 334 

𝑌𝑃𝑆 and lower value of 𝑌𝑋𝑆. Based on these observations made on 𝑌𝑃𝑆 and 𝑌𝑋𝑆 values, it 335 

shall be finally correlated that the ratio between 𝑌𝑃𝑆 and 𝑌𝑋𝑆 (i.e., 𝑌𝑃𝑆/𝑌𝑋𝑆) values for a 336 

microbe-nutrient pair needs to be higher to achieve better oil recovery. Thus, based on 337 

the determination of PCC and SPCC values, it is concluded that: (a) 𝑌𝑃𝑆 and 𝑌𝑋𝑆 are the 338 

two input parameters that significantly influences the output oil recovery; and (b) oil 339 

recovery could be maximized by selecting a microbe-nutrient pair having higher 340 

𝑌𝑃𝑆/𝑌𝑋𝑆 value at initial laboratory investigation stage itself.  341 
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3.3 Application of PIML approach for identifying critical input microbial kinetic, 342 

operational and reservoir parameters influencing the output oil recovery 343 

[Figure 5] 344 

 Figure 5a presents the Relative Importance (RI) score or relative strength of all 345 

the 13 input parameters on influencing the output oil recovery. The RI score was 346 

determined by performing feature importance study. As all the 13 input parameters 347 

involved in the feature importance study were selected (or) sourced from the physics-348 

based model (Eqs. 1- 8), hence, all these input parameters are relevant and have some 349 

influence on deciding the output oil recovery. This is evident from Fig. 5a, which shows 350 

that each of the 13 input parameters have a non-zero RI score. Thus, in the present 351 

PIML approach, all the 13 input parameters are considered for the training, testing, and 352 

implementation of all ML algorithms (models) for predicting the output oil recovery.  353 

 It is observed from Fig. 5a that among all the input parameters, 𝑌𝑃𝑆 has the 354 

highest RI score of 0.168, hence, it is the most critical input which significantly 355 

influences the output oil recovery. In order to exclusively understand the relative 356 

importance of microbial, operational and reservoir parameters on deciding the output oil 357 

recovery, correspondingly, Figs. 5b, 5c and 5d are plotted. It is understood from Fig. 5b 358 

that among the input parameters that are related to microbes and nutrients (i.e., 𝑌𝑃𝑆, 𝑌𝑋𝑆, 359 

𝑆𝑖, 𝐴𝑖, 𝑈𝑚𝑎𝑥, 𝑋𝑖, 𝐾𝑋𝑆), 𝑌𝑃𝑆 and 𝑌𝑋𝑆 are relatively the most influential input parameters 360 

with RI score of 0.168 and 0.1, respectively. While, 𝐾𝑋𝑆 is relatively the less significant 361 

input kinetic parameter on deciding the percent of output oil recovery with RI score of 362 

0.014. It is also observed from Fig. 5b that compared to injection concentration of 363 

microbes, the injection concentration of nutrients (both, carbon and nitrogen source) 364 
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into the reservoir has relatively higher impact on deciding the output oil recovery. This 365 

implies that for maximizing the oil recovery, continuous supply of nutrients to the 366 

microbes need to be ensured for microbes to undergo metabolic activity within the 367 

reservoir (i.e., to produce biosurfactants) and recover the oil. 368 

 Fig. 5c shows the relative importance of operational parameters (𝑢, 𝜇𝑤, 𝑇𝑟) on 369 

influencing the output oil recovery. It is observed from Fig. 5c that though all 370 

operational parameters influence the output oil recovery, fluid velocity (𝑢) is the input 371 

operational parameter that influences the output oil recovery relatively more, and 372 

closely followed by the viscosity of injection water (𝜇𝑤) parameter. This obtained 373 

results are in accordance with the physics-based concept of Capillary Number, in which, 374 

the viscous force (i.e, product of 𝑢 and 𝜇𝑤) must be higher for achieving higher oil 375 

recovery. Thus, the results from Fig. 5c implies that more oil could be recovered during 376 

field implementation of in-situ MEOR technique by optimizing the injection velocity of 377 

the microbial slug (i.e, mixture of microbes, nutrients and water) and by increasing the 378 

water viscosity using biopolymer producing microbes during in-situ MEOR application. 379 

 Figure 5d presents the relative importance scores of different parameters (i.e., 380 

𝑆𝑜𝑟𝑖, 𝑆𝑤𝑖𝑟 , 𝜎𝑖) related to the fluids present within the reservoir. By correlating the results 381 

from Fig. 5d and from Fig. 4b, it is inferred that among the fluid parameters, the initial 382 

residual oil saturation parameter (𝑆𝑜𝑟𝑖) is the most significant parameter influencing the 383 

oil recovery, and the oil recovery will be higher in reservoirs that has higher value of  384 

𝑆𝑜𝑟𝑖. This finding is in good agreement with the earlier physics-based simulation studies 385 

(Sivasankar et al., 2016) which states that the oil recovery performance increases with 386 

the increase in initial residual oil saturation. Hence, based on this finding from Fig. 5d it 387 

is suggested that the oil recovery performance of MOER technique could be improved if 388 
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the MEOR technique is implemented at an earlier stage of oil production (i.e., along 389 

with secondary recovery stage), during which the oil saturation will be relatively higher 390 

compared to the later stage (i.e., at tertiary recovery stage).  391 

 As the results presented in Fig. 5 (a – d) validates with the physics-based model 392 

results, it has been affirmed that the physics has been infused into the ML model in the 393 

present PIML approach. Hence the results obtained from this PIML approach can be 394 

used to draw physical insights, based on which, suitable strategies can be developed for 395 

maximizing the oil recovery. 396 

3.4 Application of PIML approach to screen suitability of in-situ MEOR technique 397 

and to identify suitable microbe-nutrient for in-situ MEOR implementation 398 

 The RI score of each input parameter presented in Fig. 5a also correspondingly 399 

represents the weightage factor of each input parameter. Based on this weightage factor, 400 

the selection score of in-situ MEOR technique is calculated. This selection score helps 401 

in initial screening of in-situ MEOR technique among other EOR techniques for field 402 

implementation. The EOR technique that possess the highest selection score will be 403 

considered further for field implementation. Earlier, the selection sore for in-situ MEOR 404 

technique was calculated based on the reservoir fluid and rock properties, and neglected 405 

the consideration of microbial kinetic and operational parameters, which may mislead 406 

the entire EOR screening process for field implementation. However, with the PIML 407 

approach adopted in the present work, the selection score for in-situ MEOR technique is 408 

calculated by including both microbial kinetic parameters (𝑌𝑃𝑆, 𝑌𝑋𝑆, 𝐾𝑋𝑆) and 409 

operational parameters along with reservoir fluid and rock parameters. Thus, the present 410 

work would enhance the accuracy in screening of in-situ MEOR technique, which 411 
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subsequently would help the end users to make better decision on selecting a suitable 412 

EOR for field implementation. The selection score for an EOR technique is calculated 413 

by using the formula, 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =  ∑ 𝑤𝑖𝑎𝑖
𝑛
𝑖=1 . Here, 𝑖 represents the input 414 

parameters; 𝑛 represents the total number of input parameters; 𝑎𝑖 represents the 415 

accuracy factor of input parameter, 𝑖, and its value varies between 0 and 1. Accuracy 416 

factor value represents the measure of closeness of that input parameter value with the 417 

most favourable value range; 𝑤𝑖 represents the weightage function of the input 418 

parameter, 𝑖, and its value varies between 0 and 1. This weightage factor represents the 419 

relative importance of that input parameter influencing the output parameter. 420 

 In calculation of selection score for present in-situ MEOR technique, the 421 

weightage factor, 𝑤𝑖, of different input parameters, 𝑖, are same as the RI score of 422 

different input parameters as shown in Fig. 5a. Hence, based on the determined 423 

weightage factor (i.e., RI score) for all the 13 input parameters, the selection score for 424 

the in-situ MEOR technique shall be calculated by using Eq. (12).    425 

 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 = 0.168 𝑎𝑌𝑝𝑠 + 0.146 𝑎𝑆𝑜𝑟𝑖 + 0.14 𝑎𝑢 + 0.125 𝑎𝜇𝑤 + 0.114 𝑎𝐴𝑖 +426 

                                      0.1 𝑎𝑌𝑥𝑠 + 0.08 𝑎𝑆𝑖 + 0.047 𝑎𝑈𝑚𝑎𝑥 + 0.02 𝑎𝑇𝑟 + 0.018 𝑎𝑆𝑤𝑖𝑟 +427 

                                       0.016 𝑎𝑋𝑖 + 0.014 𝑎𝐾𝑥𝑠 + 0.012 𝑎𝜎𝑖                     (12)   428 

The value of accuracy factor values of each input parameter (𝑎𝑖) are determined from 429 

lab experiments. The value of 𝑎𝑖  varies case-to-case basis, and its value depends on the 430 

nature of reservoir and microbe-nutrient pair used and the operational conditions 431 

adopted. Upon calculation of 𝑎𝑖 from initial experiments, the selection score for in-situ 432 

MEOR technique shall be quickly calculated using Eq. (12), which will subsequently 433 

help to screen the suitability of in-situ MEOR technique among other EOR techniques 434 
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for field implementation at the initial laboratory investigation itself. In addition to it, the 435 

selection score presented in Eq. (12) also helps to identify the suitable microbe-nutrient 436 

combination among several available combinations for attaining better oil recovery at 437 

the initial laboratory investigation itself. The microbe-nutrient combination that have 438 

highest selection score value will recover relatively more oil from the reservoir for a 439 

given reservoir and operational conditions. Thus, it is concluded that the RI score 440 

determined from feature importance study in present PIML approach will: (a) help to 441 

screen the suitability of in-situ MEOR technique among other EOR techniques for field 442 

implementation; and also (b) helps to screen the suitable microbe-nutrient combination 443 

for successful implementation of in-situ MEOR technique in the field at the initial 444 

laboratory investigation itself. 445 

3.5 Application of different ML algorithms in the PIML approach to predict the oil 446 

recovery performance of in-situ MEOR technique  447 

[Figure 6] 448 

 Figure 6 shows the oil recovery (in %) predicted by different ML models used in 449 

the PIML approach against the benchmark (actual) results which are obtained from 450 

physics-based models. The most accurate ML model with better prediction capability 451 

will have the scatter plot points lying closer to the line equation 𝑦′ = 𝑥 (here, 𝑦′ and 𝑥 452 

are benchmark and predicted values, respectively), and correspondingly will have 𝑅2 453 

and RMSE value closer to 1 and 0, respectively. While, for the ML model with least 454 

accuracy, the scatter plot points are spread widely from the line equation 𝑦′ = 𝑥, and it 455 

will also have relatively lower 𝑅2 and relatively higher RMSE value. The 𝑅2, RMSE and 456 

EVS values of all the 12 ML algorithms that were used in the present PIML approach 457 

study is presented in Table 2. 458 
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[Table 2] 459 

 Based on the results presented in Fig. 6 and Tab. 2, it is inferred that among all 460 

the 12 ML algorithms/models that are used in the present PIML approach, Neural 461 

Networks ML model had performed better in predicting the output oil recovery (𝑅2 = 462 

0.9873, RMSE = 0.7145). The neural networks ML algorithm/model outperforms other 463 

ML algorithms in prediction because it can implicitly detect complex non-linear 464 

relationships between dependent and independent variables, and it also have the ability 465 

to detect all possible interactions between the input variables. Followed by the neural 466 

network model, it is observed that the Support Vector Regression (SVR) is the second-467 

best ML model that can better predict the oil recovery (𝑅2 = 0.9644; RMSE = 1.184). 468 

The main advantage of SVR model is that it is less susceptible to outliers than other 469 

data-driven models but it’s harder to manually tune hyperparameters. Next to SVR 470 

algorithm, it is found that the 4th degree Polynomial Regression model had predicted the 471 

oil recovery better (𝑅2 = 0.963; RMSE = 1.26) as it has the ability to better map the 472 

non-linear relationship between the input and output variables. Amongst all the 12 ML 473 

models that were used in the present PIML approach for oil recovery prediction, it is 474 

found that K-Nearest Neighbours ML model is the least accurate model (𝑅2 = 0.3698; 475 

RMSE = 3.369). Thus, from the present study, it is concluded that to predict the oil 476 

recovery performance of in-situ MEOR technique at initial lab stage, the Neural 477 

Network is the best ML algorithm that need to be used in the PIML approach. 478 

3.5 Case study on application of PIML approach for screening of suitable microbe-479 

nutrient combination for in-situ MEOR implementation 480 

 To illustrate the application of present PIML approach on screening of suitable 481 

microbe-nutrient combination, a case study using synthetic data has been carried out.  482 
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[Table 3] 483 

Table. 3 presents the microbial kinetic parameters for 4 different combinations of 484 

microbes and nutrients, and rest all other parameters are kept constants. By feeding the 485 

inputs through the trained neural network ML algorithm, the output oil recovery is 486 

calculated and presented in the last column of Tab 3. It is inferred from Tab.3 that 487 

among all the available combinations, the combination 4 shows highest oil recovery, 488 

hence that corresponding microbe-nutrient pair can be used for field implementation. 489 

 490 

4. Conclusions 491 

 Physics-Informed Machine Learning (PIML) approach is adopted to investigate 492 

the performance of in-situ MEOR technique from limited experimental data, which is 493 

difficult with conventional experimental and modelling approaches. Neural network ML 494 

model used in the PIML approach had more accurately predicted the oil recovery. 𝑌𝑃𝑆, 495 

flow velocity and initial oil saturation (𝑆𝑜𝑟𝑖) are correspondingly the most influential 496 

microbial kinetic, operational and reservoir parameter. Higher oil recovery is achieved 497 

by selecting a microbe-nutrient-reservoir pair having higher 𝑌𝑃𝑆/𝑌𝑋𝑆 and 𝑆𝑜𝑟𝑖 values. 498 

This PIML approach helps to screen/identify suitable microbe-nutrient-reservoir pair at 499 

initial laboratory stage itself, ensuring its success during the field implementation. 500 

Funding Source: This research did not receive any specific grant from funding 501 

agencies in the public, commercial, or not-for-profit sectors. 502 

References 503 



23 
 

1. Ansah, E.O., Thanh, H.V., Sugai, Y., Nguele, R., Sasaki, K., 2020. Microbe-induced 504 

fluid viscosity variation: field-scale simulation, sensitivity and geological uncertainty. J 505 

Petrol. Explor. Prod. Technol. 10, 1983–2003. 506 

2. Cruz, I.A., Chuenchart, W., Long, F., Surendra, K.C., Andrade, L.R.S., Bilal, M., 507 

Figueiredo, R.T., Khanal, S.K., Ferreira, L.F.R., 2021. Application of machine learning 508 

in anaerobic digestion: Perspectives and challenges. Bioresour. Technol. 126433. 509 

3. Joshi, S.J., Al-Wahaibi, Y.M., Al-Bahry, S.N., Elshafie, A.E., Al-Bemani, A.S., Al-510 

Bahry, A., Al-Mandhari, M.S., 2016. Production, characterization, and application of 511 

bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front. Microbiol. 7, 512 

1853.  513 

4. Jeong, M.S., Lee, Y.W., Lee, H.S., Lee, K.S., 2021. Simulation-Based Optimization 514 

of Microbial Enhanced Oil Recovery with a Model Integrating Temperature, Pressure, 515 

and Salinity Effects. Energies, 14, 1131. 516 

5. Jeong, M.S., Cho, J., Lee, K.S., 2022. Systematic modelling incorporating 517 

temperature, pressure, and salinity effects on in-situ microbial selective plugging for 518 

enhanced oil recovery in a multi-layered system, Biochem. Eng. J. 177, 108260. 519 

6. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 520 

2021. Physics-informed machine learning. Nat. Rev. Phys. 4, 422-440. 521 

7. Keprate, A., Ratnayake, R.M.C., 2019. Data Mining for Estimating Fatigue Strength 522 

Based on Composition and Process Parameters. Proc. ASME 2019 38th Int. Con. on 523 

Ocean, Offshore and Arctic Eng. Vol 4: Materials Technology. 524 

8. Liu, H., Zhang, J., Liang, F., Temizel, C., Basri, M.A., Mesdour, R., 2021. 525 

Incorporation of physics into machine learning for production prediction from 526 



24 
 

unconventional reservoirs: a brief review of the gray-box approach. SPE Res. Eval. 527 

Eng. 24, 847–858. 528 

9. Markande, A.N., Patel, D., Varjani, S.J., 2021. A review on biosurfactants: 529 

properties, applications and current developments. Bioresour. Technol. 330, 124963. 530 

10. Nielsen, S.M., Nesterov, I., Shapiro, A.A., 2016. Microbial enhanced oil recovery-a 531 

modeling study of the potential of spore-forming bacteria. Comput. Geosci. 20, 580. 532 

11. Nikolova, C., Gutierrez, T., 2020. Use of microorganisms in the recovery of oil 533 

from recalcitrant oil reservoirs: current state of knowledge, technological advances and 534 

future prespective. Front. Microbiol. 10, 2996. 535 

12. Sivasankar, P., Kanna, R., Kumar, G.S., Gummadi, S.N., 2016. Numerical 536 

modelling of biophysicochemical effects on multispecies reactive transport in porous 537 

media involving Pseudomonas putida for potential microbial enhanced oil recovery 538 

application. Bioresour. Technol. 211, 348-359. 539 

13. Sivasankar, P., Kumar, G.S., 2017. Influence of pH on dynamics of microbial 540 

enhanced oil recovery processes using biosurfactant produced Pseudomonas putida: 541 

Mathematical modelling and numerical simulation. Bioresour. Technol. 224, 498-508.  542 

14. Shibulal, B., Al-Bahry, S.N., Al-Wahaibi, Y.M., Elshafie, A.E., Al-Bemani, A.S., 543 

Joshi, S.J., 2018. Microbial-Enhanced Heavy Oil Recovery under Laboratory 544 

Conditions by Bacillus firmus BG4 and Bacillus halodurans BG5 Isolated from Heavy 545 

Oil Fields. Colloids Interfaces. 2, 1. 546 

15. Sivasankar, P., Kumar, G.S., 2019. Influence of bio-clogging induced formation 547 

damage on performance of microbial enhanced oil recovery processes. Fuel. 236, 109.  548 



25 
 

16. Thanh, H.V., Sugai, Y., Sasaki, K., 2020. Application of artificial neural network 549 

for predicting the performance of CO2 enhanced oil recovery and storage in residual oil 550 

zones. Sci. Rep. 10, 18204. 551 

17. Tang, Q., Chen, Y., Yang, H., Liu, M., Xiao, H., Wang, S., Chen. H., Naqvi, S.R., 552 

2021. Machine learning prediction of pyrolytic gas yield and compositions with feature 553 

reduction methods: Effects of pyrolysis conditions and biomass characteristics. 554 

Bioresour. Technol. 339, 125581. 555 

18. Varjani, S.J., Upasani, V.N., 2016. Core Flood study for enhanced oil recovery 556 

through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced 557 

by Pseudomonas aeruginosa NCIM 5514. Bioresour. Technol. 220, 175-182. 558 

19. Varjani, S.J., Upasani, V.N., 2017. Critical review on biosurfactant analysis, 559 

purification and characterization using rhamnolipid as a model biosurfactant. Bioresour. 560 

Technol. 232, 389-397. 561 

20. Wang, Z., Peng, X., Xia, A., Shah, A.A., Huang, Y., Zhu, X., Zhu, X., Liao, Q., 562 

2022. The role of machine learning to boost the bioenergy and biofuels conversion. 563 

Bioresour. Technol. 343, 126099. 564 

21. Zhang, W, Li, J., Liu, T., Leng, S., Yang, L., Peng, H., Jiang, S., Zhou, W., Leng, 565 

L., Li, H., 2021. Machine learning prediction and optimization of bio-oil production 566 

from hydrothermal liquefaction of algae. Bioresour. Technol. 342, 126011. 567 

 568 

 569 

 570 

 571 



26 
 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

Figures Caption 582 

1. Procedure of PIML approach followed in the present study to predict oil recovery by 583 

in-situ MEOR process 584 

2. Frequency distribution of input and output data that are generated and used for 585 

training and testing of ML algorithms in the PIML approach  586 

3. Validation of present microbial kinetic model results with measured experimental 587 

data for (a) variation of microbial concentration with time, (b) variation of sucrose 588 

concentration with time, (c) variation of biosurfactant concentration with time 589 
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4. (a) Pearson correlation and Spearman correlation coefficient matrix for microbe, 590 

operational, reservoir and % oil recovery data, (b) Correlation coefficient values for 591 

input microbe, operational and reservoir data towards output % oil recovery 592 

5. (a) Relative Importance (RI) score of all input parameters, (b) RI score of input 593 

microbial-nutrient parameters, (c) RI score of input operational parameters, (d) RI score 594 

of input reservoir parameter in predicting output % of oil recovery 595 

6. Comparative performance of 12 different ML algorithms in predicting the oil 596 

recovery against the actual % of oil recovery for in-situ MEOR application. 597 

Tables Caption 598 

1. Input parameters and their corresponding value range used in the present study 599 

2. Performance of different ML algorithms in predicting the actual % of oil recovery 600 

3. Microbial kinetic parameters for different microbial-nutrient combinations and their 601 

corresponding oil recovery determined using PIML modelling approach.                                      602 

Table 1. Input parameters and their corresponding value range used in the present study  603 

[Sivasankar et al. (2016)]]                                                                                                                                          604 

Parameter Reference value Range 

𝑌𝑋𝑆 0.1843  0.092 - 0.276 

𝑌𝑃𝑆 0.078 [Sivasankar et al. (2016)] 0.03900733 - 0.116996715 

𝐾𝑋𝑆 (g/l) 6.86 [Sivasankar et al. (2016)] 3.430058808 - 

10.28959695 

𝑈𝑚𝑎𝑥 (h-1) 0.053 [Sivasankar et al. (2016)] 0.02650387 - 0.079495509 
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𝑋𝑖  (g/l) 0.1521167 [Sivasankar et al. (2016)] 0.076094593 - 0.22824074 

𝑆𝑖   (g/l) 19.234 [Sivasankar et al. (2016)] 9.617601084 - 

28.84936382 

𝐴𝑖   (g/l) 3 [Sivasankar et al. (2016)] 1.500165456 - 4.49988547 

𝑇𝑟 (h) 150 100 – 200 

𝑢𝑤  (m/h) 0.0004 [Sivasankar et al. (2016)] 0.0002 – 0.0006 

 𝜇𝑤 (Nhm-2) 0.001 [Sivasankar et al. (2016)] 0.0005 – 0.0015 

Initial IFT 

(mN/m) 

51.6 [Sivasankar et al. (2016)] 25.80405697 - 77.39695 

𝑆𝑤𝑖𝑟 0.2 0.10000517 - 0.299989777 

𝑆𝑜𝑟𝑖 0.4 0.20000454 - 0.599986979 

Output - % oil 

recovery 

Mean - 7.423469637 

Median - 5.510703244 

 

0.174742622 - 

48.23409386 

 605 

 606 

 607 

Table 2: Performance of different ML algorithms in predicting the actual % of oil 608 

recovery 609 

Model R2 RMSE Explained Variance Score 

KNN 0.369897442 3.369742385 0.370031425 

Decision Trees 0.408587985 4.356687642 0.408683171 

Lasso 0.510880307 3.697724477 0.51138261 

Ridge 0.512474691 3.697351147 0.512976983 
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Linear Regression 0.51299017 3.697264614 0.513491055 

Random Forests 0.639724278 2.941482946 0.63972701 

ADA Boost 0.639746354 2.811959461 0.639980378 

Gradient Boosting 0.896025654 1.851540808 0.896025658 

Gaussian Process 0.951787039 1.353896887 0.951802595 

Polynomial (4) 0.963022723 1.26029449 0.963039744 

SVR 0.964436929 1.184682456 0.964596291 

Neural Network 0.987349995 0.714597767 0.987656577 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

Table 3: Microbial kinetic parameters for different microbial-nutrient combinations and 619 

their corresponding oil recovery determined using PIML modelling approach 620 

 621 

Combinations 𝒀𝑿𝑺 𝒀𝑷𝑺 𝑲𝑿𝑺 𝑼𝒎𝒂𝒙 Output Oil 

Recovery, % 

1 0.098734 0.067978 4.077158 0.068247 6.3529167 

2 0.148067 0.081408 4.763728 0.056552 4.531987 
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3 0.169445 0.091877 4.923773 0.053963 4.549041 

4 0.121985 0.095722 8.262717 0.038336 7.3623314 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 
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 637 

Figure 1:  Procedure of PIML approach followed in the present study to predict oil 638 

recovery by in-situ MEOR process (NIKHIL WILL CHANGE IT) 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 
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 650 

Figure 2:  HIstogram of input and output data that are generated and used for training 651 

and testing of ML algorithms in the PIML approach. 652 

 653 

 654 

 655 

 656 

 657 
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 658 

Figure 3: Validation of present microbial kinetic model results with measured 659 

experimental data for (a) variation of microbial concentration with time, (b) variation of 660 

sucrose concentration with time, (c) variation of biosurfactant concentration with time. 661 

 662 

 663 

 664 

 665 

 666 

 667 
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 668 

Figure 4: (a) Pearson correlation and Spearman correlation coefficient matrix for 669 

microbe, operational, reservoir and % oil recovery data, (b) Correlation coefficient 670 

values for input microbe, operational and reservoir data towards output % oil recovery. 671 

 672 
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 673 

Figure 5: (a) Relative Importance (RI) score of all input parameters, (b) RI score of 674 

input microbial-nutrient parameters, (c) RI score of input operational parameters, (d) RI 675 

score of input reservoir parameter in predicting output % of oil recovery. 676 
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 684 

Figure 6: Comparative performance of 12 different ML algorithms in predicting the oil 685 

recovery against the actual % of oil recovery for in-situ MEOR application. 686 

 687 




