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ABSTRACT
Ad hoc dataset retrieval is a trending topic in IR research. Methods
and systems are evolving from metadata-based to content-based
ones which exploit the data itself for improving retrieval accuracy
but thus far lack a specialized test collection. In this paper, we build
and release the first test collection for ad hoc content-based dataset
retrieval, where content-oriented dataset queries and content-based
relevance judgments are annotated by human experts who are
assisted with a dashboard designed specifically for comprehensively
and conveniently browsing both the metadata and data of a dataset.
We conduct extensive experiments on the test collection to analyze
its difficulty and provide insights into the underlying task.

CCS CONCEPTS
• Information systems → Test collections; Retrieval effec-
tiveness; Presentation of retrieval results; Resource Description Frame-
work (RDF).
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1 INTRODUCTION
With increasinglymany datasets registered on open data portals and
public on the Web (e.g., [37, 38, 43]), a lot of research attention [4]
has been given to the task of ad hoc dataset retrieval: answering a
keyword query with a ranked list of datasets. Pioneers along this
direction include the Google Dataset Search system [1, 17] and the
NTCIR-15 test collection for ad hoc dataset retrieval [21].

Motivation. As the de facto paradigm, the above-mentioned data
portals, dataset search engines, and evaluation efforts focus on
metadata. As illustrated in Figure 1, the metadata of a dataset in-
cludes its title, description, author, etc. Despite its usefulness and
ease of use for ad hoc dataset retrieval, its limitations are explicit.
Systems only using metadata cannot support queries pointed to the
content of a dataset [26], i.e., the data itself, while such queries are
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Figure 1: Right: an example ofmetadata. Left: tab groups pro-
vided by our dashboard for browsing a dataset.

frequent [5]. For example, although the COLINDA dataset1 is a good
answer to the query “conferences in France”, its metadata in Fig-
ure 1 could not match “France” and hence it may not be retrieved by
metadata-based techniques, while this keyword appears frequently
in its data. Metadata is also weak in providing signals for dataset
ranking [1] and in satisfying post-retrieval user needs such as data
exploration and analysis [14]. To address these limitations, content-
based dataset retrieval systems have recently emerged [2, 51, 52],
exploiting both the metadata and data of a dataset for retrieval.
However, their effectiveness has not been thoroughly evaluated
due to the lack of content-based test collections.

Our Work. We fill the gap by building Acordar, a test collection
for ad hoc content-based dataset retrieval. To this end, observe
that creating content-oriented dataset queries and making content-
based relevance judgments are both non-trivial because, compared
with small-sized metadata, the data may be too large for a human
annotator to browse without a tool support. Therefore, as a pre-
requisite for building the test collection, we develop a dashboard
integrating a variety of summarization and visualization methods
for browsing a dataset, its data in particular. With its help, we build
and publish a test collection2 containing 10,671 relevance judg-
ments involving 493 queries over 31,589 datasets collected from
543 data portals. Our contributions in this paper include:

• to the best of our knowledge, the first public test collection
for ad hoc content-based dataset retrieval,

• evaluation results of four standard retrieval models in three
configurations on the test collection,

• empirical insights into the difficulty of the test collection
and the usefulness of metadata and data for retrieval, and

• the design of a comprehensive dashboard for conveniently
browsing datasets and a user study of its effectiveness.

The current implementation of the dashboard supports datasets in
RDF format3 and is extensible. We prioritize RDF because it is a stan-
dard model for data interchange on the Web and has been widely
used for representing knowledge graphs [18] such as DBpedia and
Wikidata, on which a wide range of IR tasks have been defined
and extensively studied, e.g., keyword-based search [10, 39] and

1http://www.colinda.org/
2https://github.com/nju-websoft/ACORDAR
3https://www.w3.org/RDF/

Figure 2: A typical process of browsing a dataset.

exploration [40, 41], question answering [47], and document enrich-
ment [28]. Accordingly, the current version of the test collection is
restricted to datasets having an RDF version.

Outline. We introduce the design of the dashboard in Section 2,
describe the construction of the test collection in Section 3, present
experiments in Section 4, compare with related work in Section 5,
and discuss limitations and future work in Section 6.

2 A DASHBOARD FOR BROWSING DATASETS
To build a test collection for ad hoc content-based dataset retrieval,
we need a tool to help human annotators create content-oriented
dataset queries and make content-based judgments about the rele-
vance of a dataset to a query. These annotation activities rely on
convenient access to both the metadata and data of a dataset, which
is crucial to the efficiency of the annotation process and to the qual-
ity of the annotations because a dataset, unlike a document which
can be easily read, is often both too complex (e.g., having a graph
structure) and too large (e.g., containing millions of edges) for an
annotator to browse plainly. To support these activities, we design
and develop a comprehensive dashboard for browsing a dataset
from multiple views to satisfy a variety of possible needs that an
annotator may have in the annotation process.

Figure 2 presents a typical process of browsing a dataset from
multiple views that are supported by our dashboard. Given a dataset,
a user can start by browsing its metadata which is created by the
dataset publisher and is supposed to offer a good starting point
for beginners. Then the user moves to data browsing. Since data
may have a complex structure, the user can browse data progres-
sively [45]—scanning its elements before investigating its structure.
To explore the data structure which may be huge, the user can
browse its summarized macro-level patterns, micro-level samples,
or both. All these browsing activities are supported by different
tabs in the dashboard, thus allowing flexible mixtures of activities
beyond the anticipated process presented in Figure 2.

Specifically, the dashboard provides four tab groups correspond-
ing to the above-mentioned browsing targets: Metadata, Data Ele-
ments, Data Patterns, and Data Samples, as illustrated in Figure 1.
Below we describe the design of each tab group.

2.1 Metadata
Datasets are published with metadata which is easy to be under-
stood. Some common fields in the metadata of a dataset include its
title, description, author, license, last updated date, etc.

Metadata is the first tab group in the dashboard. It comprises
only a single tab where a table trivially listing all the fields in the
metadata is presented. Observe that different dataset publishers may

http://www.colinda.org/
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(a) Class cloud. (b) Property cloud. (c) Entity cloud. (d) Literal cloud.

Figure 3: An example of element clouds.

(a) Element counts. (b) Distribution of classes in entities. (c) Distribution of properties in RDF triples.

Figure 4: An example of element statistics.

adopt different metadata formats. To present them in a uniformway,
we manually unify the fields in known popular metadata formats.
Figure 1 illustrates this presentation for the COLINDA dataset.

2.2 Data Elements
Structured data may not be easy to be understood. To help anno-
tators understand data better, we organize data presentations in a
meaningful order that shows gradually more structures, and gradu-
ally more complex ones. As a starting point, only data elements are
extracted and summarized but their structures are hidden to avoid
overwhelming annotators at an early stage.

Data Elements is the second tab group in the dashboard. Since
for a large dataset it would be difficult, if not impossible, to show all
the elements of the data, in this tab group we provide two tabs of-
fering complementary overviews of data elements: Element Clouds
and Element Statistics. The former presents significant concrete
elements of the data, and the latter gives their statistics.

Element Clouds. This tab extracts significant elements from the
data and visualizes them as a tag cloud, which has been popularly
used to visualize a distribution by significance. For an RDF dataset,
the elements of the data are resources which, according to RDF
Schema, fall into four categories: literals, classes, properties, and
other resources which are commonly called entities. Significant
elements in different categories are visualized in different tag clouds
where tag size represents significance. Significance is measured by
frequency, i.e., the number of RDF triples where a class, property, or
entity is included, or the number of literals where a word appears.
Figure 3 illustrates these clouds for the COLINDA dataset.

Element Statistics. This tab presents statistics about data ele-
ments. For an RDF dataset, a table listing the number of RDF triples
in the data and the number of elements in each category is shown.

The distribution of classes in entities and the distribution of prop-
erties in RDF triples are visualized as pie charts. Figure 4 illustrates
these visualizations for the COLINDA dataset.

2.3 Data Patterns
Data structure is about how data elements are organized. For a large
dataset it would be unrealistic to show all the structures, which
is also unnecessary as structures often repeat themselves. Such
patterns are mined from the data as an outline of the structures.

Data Patterns is the third tab group in the dashboard. Patterns
can be defined at different granularities of data [3, 9, 11, 54]. To
help annotators learn data better, for an RDF dataset we provide
three tabs offering data patterns at increasing granularities: Triple
Patterns, Entity Description Patterns, and Graph Pattern. Basically,
a triple pattern represents an aggregate of similar RDF triples, an
entity description pattern aggregates triple patterns about the same
entity, and a graph pattern aggregates entity description patterns
and their relations.

Triple Patterns. This tab implements ABSTAT [46] to mine triple-
level patterns from the data. For an RDF triple ⟨𝑠, 𝑝, 𝑜⟩, its pattern is
a triple ⟨𝑥, 𝑝,𝑦⟩ where 𝑥 and𝑦 are minimal classes of 𝑠 and 𝑜 , respec-
tively; minimization is based on the class hierarchy in the ontology.
We reproduce the user interface in [36] to show a table listing triple
patterns in descending order of frequency, i.e., the number of RDF
triples conforming to a pattern. In each triple pattern, after each
class and property the number of its instances is shown in paren-
theses. To explore a large number of triple patterns, annotators can
filter them by putting constraints on each position of a triple pat-
tern using the corresponding text box which features autocomplete.
Figure 5(a) illustrates this user interface for the COLINDA dataset.



(a) Triple patterns. (b) Entity description pattern. (c) Graph pattern.

Figure 5: An example of data patterns.

(a) Sampled by IlluSnip. (b) Sampled by PCSG.

Figure 6: An example of data samples.

Entity Description Patterns. This tab follows [49, 50] to mine
entity-level patterns from the data. For an entity, its entity descrip-
tion pattern (EDP) consists of three sets: a set of all its classes, a
set of all its properties, and a set of all its inverse properties which
have it as a value. EDPs are listed in descending order of frequency,
i.e., the number of entities conforming to an EDP. For each EDP
its composition and frequency are presented. Figure 5(b) illustrates
the presentation of an EDP in the COLINDA dataset.

Graph Pattern. This tab implements RDFQuotient [15] to mine
graph-level patterns from the data. Based on the concept of quotient
graph, entities are grouped according to their classes, properties,
and relations (i.e., entity-value properties) to others. The result is
a graph where nodes represent entity groups and edges represent
relations between entity groups. We reproduce the visualization
in [15] which draws this graph in the style of ER diagram. Within
each node the number of entities in the group, their classes, and
their properties are listed from top to bottom. After each property
the number of its instances and the number of its distinct values
appear in parentheses connected by an arrow. After each relation
the number of its instances is shown in parentheses. Figure 5(c)
illustrates this visualization for the COLINDA dataset.

2.4 Data Samples
In parallel to data patterns, representative samples of the data are
extracted as a preview of the data structures in a possibly huge
dataset [44]. Despite incompleteness, a data sample gives annotators
the opportunity of seeing a snippet of the actual data.

Data Samples is the fourth tab group in the dashboard. There
are methods for sampling different subsets of data having different
characteristics [12, 16, 27, 30, 50]. To give annotators more flexibil-
ity, for an RDF dataset we provide four tabs offering data samples
extracted by different state-of-the-art methods: Sample 1 (IlluSnip),
Sample 2 (PCSG), Sample 3 (KSD), and Sample 4 (QPCSG). While
the first and second samples are generated for general purposes, the
third and fourth samples are dynamically generated to be biased
towards a given keyword query. The latter is crucial to one kind
of annotation activity the dashboard aims at supporting, i.e., an-
notators make content-based judgments about the relevance of
a dataset to a query. Query-biased samples can help annotators
easily locate some relevant parts of the data—if any. Besides these
automatically computed samples, we also provide a Navigation tab
where annotators can be guided to freely navigate to any portion
of the data.

Sample 1 (IlluSnip). This tab implements IlluSnip [8] to extract,
from the data, a representative subset of RDF triples about a set of
interconnected entities which collectively have the most frequent
classes, properties, and central positions (in terms of PageRank) in
the RDF graph. For efficiency reasonswe implement an approximate
version of IlluSnip [29]. The extracted RDF triples are visualized
as a node-link diagram where each entity node can be clicked to
be expanded to explore its neighbors in the original RDF graph.
Figure 6(a) illustrates this diagram for the COLINDA dataset.



Figure 7: An example of data navigation.

Sample 2 (PCSG). This tab implements PCSG [49] to extract, from
the data, a representative subset of RDF triples about sets of inter-
connected entities which collectively have the most frequent EDPs.
The extracted RDF triples are visualized and interactable in the
same way as in the first tab. Figure 6(b) illustrates this visualization
for the COLINDA dataset.

Sample 3 (KSD). This tab implements KSD [48] which is an ex-
tension of IlluSnip where the extracted RDF triples also match the
most keywords in a given query. We omit to illustrate this tab.

Sample 4 (QPCSG). This tab implements QPCSG [49] which is
an extension of PCSG where the extracted RDF triples also match
the most keywords in a given query. We omit to illustrate this tab.

Navigation. This tab implements a standard faceted browsing
interface, allowing annotators to filter the entities in the data by
putting constraints on their classes and properties using drop-down
menus. Each entity can be clicked to be visualized in a node-link
diagram and expanded to explore its neighbors in the original RDF
graph. Figure 7 illustrates this interface for the COLINDA dataset.

3 TEST COLLECTION
To build a natural and representative test collection for ad hoc
dataset retrieval, we collected real datasets from popular open data
portals. Each dataset was processed to be accessible via the dash-
board described in Section 2, and then human annotators were
invited to create content-oriented dataset queries andmake content-
based judgments about the relevance of a dataset to a query with
the help of the dashboard. The test collection is referred to as Acor-
dar, short for Ad hoc COntent-based RDF DAtaset Retrieval. It
is available under the Apache License. Relevance judgments are
stored in TREC’s qrels format4 for ease of use.

3.1 Datasets
In CKAN,5 DataPortals.org,6 OpenData PortalWatch,7 and Socrata,8
we identified 1,131 unique data portals where 540 (48%) were acces-
sible at the time of experimentation. These data portals collectively
indexed 111,017 RDF datasets. For 31,589 RDF datasets (28%), their
dump files were successfully downloaded and parsed by Apache
Jena,9 and our test collection is based on these datasets; failures
were mainly due to broken links. Table 1 presents the distribution

4https://trec.nist.gov/data/qrels_eng/
5https://ckan.org/
6http://dataportals.org/
7https://data.wu.ac.at/portalwatch/
8https://dev.socrata.com/
9https://jena.apache.org/

Table 1: Source Distribution of Datasets

Data Portal #Datasets %

data.gov 8,700 27.54%
dati.gov.it 2,993 9.47%
data.cityofnewyork.us 1,172 3.71%
performance.smcgov.org 997 3.16%
data.wa.gov 942 2.98%
internal.open.piercecountywa.gov 821 2.60%
data.medicaid.gov 819 2.59%
opendata.utah.gov 774 2.45%
data.oregon.gov 608 1.92%
datahub.smcgov.org 576 1.82%
Others 13,187 41.75%
Total 31,589 100.00%

Table 2: Size Distribution of Datasets

Min Max Mean Median Total

#Triples 3 62.8 M 9.9 K 2.0 K 312.2 M
#Classes 0 153 0.9 1 29.3 K
#Properties 1 668 18.5 11 584.4 K

of data portals where these datasets were collected. Most of them
are open government data portals.

A dataset might be associated with multiple dump files. For each
dataset we merged all its dump files and removed redundant RDF
triples. After deduplication the total number of RDF triples in the
test collectionwas reduced from 317.8M to 312.2M. Table 2 presents
the size distribution of the datasets in the test collection, which
differ greatly in both data size (i.e., number of triples) and schema
size (i.e., numbers of classes and properties). These datasets contain
a median of 2.0 K RDF triples, being too large to be browsed directly,
which justifies the necessity of providing tools like the dashboard
described in Section 2. The total numbers of unique classes and
properties that occur in these datasets are 29.3 K and 584.4 K, re-
spectively, indicating a diverse and representative test collection.

3.2 Queries
Despite the availability of dataset queries published by previous
studies [5, 19, 21], we found that those queries were mainly derived
from posts published on online forums looking for datasets. While
representing real information needs, they are considered “hard
queries” since they were posted on online forums exactly because
their posters could not find relevant datasets. This was confirmed
by our preliminary experiment with those queries on the datasets
in our test collection. To avoid building a trivial test collection
containing few query-dataset pairs judged to be relevant, we need
to solicit queries in other ways.

The queries in the test collection were solicited in two ways.
First, we invited human annotators to browse a dataset using the
dashboard described in Section 2 and then create a synthetic query
to which the dataset could be judged relevant, thus ensuring at least
a minimum number of relevant query-dataset pairs. Second, we

https://trec.nist.gov/data/qrels_eng/
https://ckan.org/
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https://dev.socrata.com/
https://jena.apache.org/


Table 3: Examples of Content Summaries and Queries

Content Summary Query

1 A dataset to record Maryland’s land protection
policies including their goals and definitions.
For example, one policy’s goal is nitrogen re-
duction to upgrade 18 wastewater treatment
plants to ENR standards.

nitrogen reduc-
tion plan in
Maryland

2 A dataset recording some programs to educate
children of different ages. The target population
include children, young adults, late adolescence
and so on. Some programs are to create values,
and some other programs are for their well-
being, second interest, etc. The dataset records
program descriptions and their ratings of how
effective for the target people.

education pro-
grams and target
population

3 A dataset recording the salary of senior civil
servants, including their salary and profession.

salary of senior
civil servants

4 This dataset describes chinook status in Wash-
ington state, as well as salmon populations.

chinook stock

5 This dataset mainly describes information
about introduction narrative for career paths. It
describes all kinds of career paths, about what
kinds of tasks one should complete, how much
one can earn by doing this job and so on.

career paths,
introduction of
each job, salary

observed that many queries in TREC’s Ad hoc Test Collections10 are
about general topics and have great potential for finding relevant
datasets. So those queries were reused for our test collection. Below
we describe the solicitation process in detail.

Synthetic Queries. We recruited 9 college students having a back-
ground in RDF as annotators to create content-oriented dataset
queries. Each annotator was assigned at most 30 random datasets.
The assigned datasets were controlled to contain at least a mini-
mum amount of data being readable by a large population, i.e., more
than 2% of the data elements were checked11 to have an English
label. Given a dataset the annotator was asked to create a keyword
query such that the dataset could be judged relevant to it. To en-
courage content-oriented (as opposed to metadata-oriented) dataset
queries, the annotator was instructed to take two steps to create
a query. In the first step, the annotator employed the dashboard
to comprehensively browse the dataset and write a summary of
the data describing its main content in 10-500 English words. The
annotator was thus obliged to look into the data rather than super-
ficially scanning the metadata for creating a query. In the second
step, the annotator extracted a few keywords from the summary
to form a query that was neither overly specific—with the intent
of finding this particular dataset, nor overly general—potentially
matching a broad range of datasets. We received 251 queries from
all the annotators. We checked each query and asked its annota-
tor to revise it if the query expressed a very vague intent. Table 3
exemplifies some data summaries and queries.

10https://trec.nist.gov/data/test_coll.html
11https://pypi.org/project/pyenchant/

Table 4: Length Distribution of Queries (#Keywords)

Min Max Mean Median

Synthetic Queries 1 14 4.1 4
TREC Queries 1 20 3.8 3
All Queries 1 20 3.9 3

TREC Queries. We imported all the 450 ad hoc topics used in the
English Test Collections of TREC 1–8,12 i.e., those numbered 1–450.
For each topic its title field was extracted as a query.

Table 4 presents the length distribution of the queries in the test
collection. Synthetic queries containing an average of 4.1 keywords
are generally longer than TREC queries containing 3.8 keywords.

3.3 Pooling
Annotating complete relevance judgments for all the 31,589 datasets
and 701 queries in the test collection would be infeasible. We fol-
lowed common practice in IR evaluation to use the pooling method
with a number of standard retrieval models to reduce the number
of required relevance judgments.

For pooling we indexed both the metadata and data of each
dataset in the test collection. Specifically, Apache Lucene13 was
used to construct an inverted index with eight fields representing
a dataset. For the metadata, four fields that often contain human-
readable information to match keyword queries were indexed: title,
description, author, and tags. For the data, all the elements in four
categories were indexed: literals, classes, properties, and entities.
Based on the index we implemented four standard retrieval models
measuring the similarity between a query and an indexed dataset:

• TF-IDF based cosine similarity,
• BM25F,
• Fielded Sequential Dependence Model (FSDM), and
• Language Model using Dirichlet priors for smoothing (LMD).

All these models rely on field weights representing possibly dif-
ferent degrees of importance in scoring. To tune the weight of each
field in each model we constructed a pre-validation set consisting
of 522 query-dataset pairs where the queries are disjointed with
those in the test collection, and each pair was manually annotated
using a graded relevance scale of 0–2 with 0 meaning irrelevant,
1 meaning partially relevant, and 2 meaning highly relevant. Based
on the pre-validation set, grid search was performed to tune each
weight from 0 to 1 in 0.1 increments and an optimal setting in terms
of NDCG@10 was adopted for each model.

For each query in the test collection, we employed each retrieval
model to fetch 10 top-ranked datasets and then took the union of
the retrieved datasets over all the models. For 13 TREC queries no
dataset was retrieved, since their keywords could not be matched
by any dataset in the test collection. The remaining 688 queries
collectively produced 15,038 query-dataset pairs.

3.4 Relevance Judgments
We, again, invited the 9 human annotators who participated in
creating synthetic queries in Section 3.2 to make content-based
12https://trec.nist.gov/data/topics_eng/index.html
13https://lucene.apache.org/
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Table 5: Relevance Distribution of Query-Dataset Pairs

#Queries #Q.-D. Pairs Rel. Scale #Q.-D. Pairs (%)

Synthetic Queries 241 5,303
0: none 3,140 (59.2%)
1: partial 1,233 (23.3%)
2: high 930 (17.5%)

TREC Queries 252 5,368
0: none 3,802 (70.8%)
1: partial 1,129 (21.0%)
2: high 437 (08.1%)

All Queries 493 10,671
0: none 6,942 (65.1%)
1: partial 2,362 (22.1%)
2: high 1,367 (12.8%)

judgments about the relevance of a dataset to a query. Given a
query-dataset pair the annotator was asked to judge relevance
after comprehensively browsing both the metadata and data of
the dataset by exploiting the dashboard described in Section 2.
Relevance was given using a graded scale of 0–2 with

• 0 representing irrelevant,
• 1 representing partially relevant, and
• 2 representing highly relevant.

Resembling the definition used by TREC, we suggested the follow-
ing definition of relevance to be used by all the annotators.

If you were writing a report or developing an appli-
cation on the subject of the topic and would use the
information contained in the dataset in the report or
application, then the dataset is relevant.

To ensure annotations of high quality, each query-dataset pair
was assigned to two independent annotators for relevance judg-
ments. If their annotations were identical, this consensus annota-
tion would be taken. Otherwise, such a query-dataset pair would
be assigned to a third annotator for calculating a major vote. If
the three annotations were different from each other, a partial rele-
vance (i.e., 1) representing their average would be taken. Overall,
the inter-annotator agreement measured by Krippendorff’s 𝛼 is 0.59,
indicating a fairly acceptable level of reliability.

For 10 synthetic queries and 185 TREC queries, all their retrieved
datasets were judged irrelevant and hence they were removed from
the test collection. Table 5 presents the relevance distribution of
the remaining 10,671 query-dataset pairs involving 493 queries.
Synthetic queries are generally associated with more partial or
highly relevant datasets (40.8%) than TREC queries (29.2%).

3.5 Training, Validation, and Test Sets
To allow future evaluation results on the test collection to be com-
parable with each other, we specified and released a split of the
test collection into training, validation, and test sets. Specifically,
the query-dataset pairs in the test collection were partitioned by
query into 5 approximately equally sized subsets 𝑃0, . . . , 𝑃4 to sup-
port 5-fold cross-validation. The partition was randomized but
stratified with respect to the proportions of synthetic and TREC
queries in each subset. For 0 ≤ 𝑖 ≤ 4, the 𝑖-th fold should use
𝑃𝑖 , 𝑃 (𝑖+1)%5, 𝑃 (𝑖+2)%5 as the training set, 𝑃 (𝑖+3)%5 as the validation
set, and 𝑃 (𝑖+4)%5 as the test set. Evaluation results should then be
aggregated from the test sets in all the 5 folds.

4 EXPERIMENTS
We conducted two experiments. The first experiment provided
insights into our test collection. The second experiment analyzed
the usefulness of our dashboard in building the test collection.

4.1 Dataset Retrieval
We evaluated the effectiveness of a number of standard retrieval
models on the test collection to analyze its difficulty and provide
insights into the ad hoc content-based dataset retrieval task.

4.1.1 Experimental Setting. The four retrieval models used for pool-
ing in Section 3.3 were evaluated on the test collection: TF-IDF,
BM25F, FSDM, and LMD. To analyze the usefulness of metadata
and data for ad hoc dataset retrieval, each model has three configu-
rations using different sets of fields to represent a dataset:

• by default, using all the eight metadata and data fields,
• [m]: using only the four metadata fields, and
• [d]: using only the four data fields.

We followed Section 3.5 to perform 5-fold cross-validation. Since
all the above retrieval models are unsupervised, in each fold the
training set was ignored and the validation set was used to tune
the field weights in each model. The tuning process resembled the
one described in Section 3.3 using grid search and NDCG@10.

The evaluation metrics used on the test sets are NDCG@5,
NDCG@10,MAP@5, andMAP@10.When calculatingMAP, graded
relevance in human annotations was converted to binary relevance
by treating both highly and partially relevant as relevant.

4.1.2 Experimental Results. Table 6 presents the evaluation results
of each retrieval model in each configuration averaged over syn-
thetic queries, over TREC queries, and over all the queries.

Comparison between Retrieval Models. In the default configura-
tion, FSDM consistently outperforms the other retrieval models on
both synthetic and TREC queries in terms of all the four evaluation
metrics. BM25F is better than LMD on synthetic queries while LMD
slightly surpasses BM25F on TREC queries. They both noticeably
exceed TF-IDF. In the [m] configuration using only metadata fields,
BM25F outperforms the other retrieval models.

Difficulty of Queries. Table 7 aggregates the evaluation results
of all the retrieval models in the default configuration. The mean
values over all the queries are moderate, indicating that the test
collection is neither trivial nor too difficult for current techniques,
and there is much room for novel models for ad hoc content-based
dataset retrieval. According to the values, TREC queries generally
seem more difficult than synthetic queries. It is consistent with
the relevance distribution in human annotations described in Sec-
tion 3.4. This is no surprise as TREC queries were not originally
designed for the dataset retrieval task, while synthetic queries were
created for specific datasets. Figure 8 presents the NDCG@10 dis-
tribution of all the retrieval models in the default configuration on
each query. The mean values are almost evenly distributed over
the queries, indicating that the test collection contains queries at
all levels of difficulty. Table 8 exemplifies the five easiest and five
hardest synthetic queries. Figure 9 aggregates the results by query
length. There is no explicit correlation between NDCG@10 and



Table 6: Mean Evaluation Results of Each RetrievalModel in
Each Configuration

NDCG@5 NDCG@10 MAP@5 MAP@10

Synthetic Queries
TF-IDF 0.6158 0.6293 0.3409 0.4560
TF-IDF [m] 0.5603 0.5766 0.3081 0.4161
TF-IDF [d] 0.2367 0.2376 0.1241 0.1455
BM25F 0.6611 0.6868 0.3780 0.5103
BM25F [m] 0.6171 0.6150 0.3481 0.4494
BM25F [d] 0.2768 0.2720 0.1729 0.1889
FSDM 0.7348 0.7193 0.4430 0.5434
FSDM [m] 0.6117 0.6015 0.3530 0.4325
FSDM [d] 0.3104 0.3131 0.1801 0.2109
LMD 0.6437 0.6654 0.3764 0.4927
LMD [m] 0.5108 0.5207 0.2967 0.3775
LMD [d] 0.3004 0.3037 0.1775 0.2031

TREC Queries
TF-IDF 0.4066 0.4649 0.2358 0.3417
TF-IDF [m] 0.3923 0.4306 0.2290 0.3230
TF-IDF [d] 0.1473 0.1568 0.0766 0.0955
BM25F 0.4513 0.4932 0.2642 0.3645
BM25F [m] 0.3969 0.4390 0.2264 0.3209
BM25F [d] 0.1584 0.1696 0.1058 0.1226
FSDM 0.4579 0.5156 0.2791 0.3806
FSDM [m] 0.3644 0.3947 0.2044 0.2742
FSDM [d] 0.1918 0.2105 0.1169 0.1422
LMD 0.4537 0.4992 0.2789 0.3748
LMD [m] 0.3651 0.3967 0.2138 0.2896
LMD [d] 0.1819 0.2030 0.1071 0.1328

All Queries
TF-IDF 0.5088 0.5452 0.2871 0.3976
TF-IDF [m] 0.4743 0.5019 0.2676 0.3685
TF-IDF [d] 0.1910 0.1963 0.0998 0.1199
BM25F 0.5538 0.5877 0.3198 0.4358
BM25F [m] 0.5045 0.5250 0.2859 0.3838
BM25F [d] 0.2163 0.2196 0.1385 0.1550
FSDM 0.5932 0.6151 0.3592 0.4602
FSDM [m] 0.4853 0.4958 0.2770 0.3516
FSDM [d] 0.2497 0.2606 0.1478 0.1758
LMD 0.5465 0.5805 0.3266 0.4324
LMD [m] 0.4363 0.4573 0.2543 0.3325
LMD [d] 0.2398 0.2523 0.1415 0.1672

Table 7:Mean EvaluationResults of All theRetrievalModels
in the Default Configuration

NDCG@5 NDCG@10 MAP@5 MAP@10

Synthetic Queries 0.6638 0.6752 0.3846 0.5006
TREC Queries 0.4424 0.4932 0.2645 0.3654
All Queries 0.5506 0.5821 0.3232 0.4315

query length, indicating that query length might not be a decisive
factor in the difficulty of this task.

Usefulness of Metadata and Data. Table 9 aggregates the evalu-
ation results of all the retrieval models by configuration over all

(a) Synthetic Queries

(b) TREC Queries

Figure 8: Distribution of (box-plot) and mean (curve)
NDCG@10 of all the retrieval models in the default config-
uration on each query.

Table 8: Easiest and Hardest Synthetic Queries

Easiest Queries Hardest Queries

1 IEEE conferences immunocompetent people
2 Finnish municipalities Austin’s park development

comments
3 Civil Penalties of Columbia River-

keeper
education expenditure

4 Southampton airport senior manager of data and
assessment

5 comments for clean fuels program Public Act

(a) Synthetic Queries (b) TREC Queries

Figure 9: Distribution of (box-plot) and mean (curve)
NDCG@10 of all the retrieval models in the default config-
uration over all the queries of each length.



Table 9:Mean EvaluationResults of All theRetrievalModels
in Each Configuration over All the Queries

NDCG@5 NDCG@10 MAP@5 MAP@10

Default 0.5506 0.5821 0.3232 0.4315
[m] 0.4751 0.4950 0.2712 0.3591
[d] 0.2242 0.2322 0.1319 0.1545

the queries. The default configuration outperforms the other con-
figurations, indicating that metadata and data are both useful for
ad hoc content-based dataset retrieval. For example, NDCG@10
drops considerably by 0.0871 after excluding data fields, showing
the usefulness of content in ad hoc dataset retrieval.

4.2 Dataset Browsing
We also evaluated the effectiveness of each tab in our dashboard in
browsing datasets for building the test collection. As a preliminary
user study, it would benefit future research in dataset browsing.

4.2.1 Experimental Setting. Each human annotator was invited to
complete a post-experiment questionnaire rating and commenting
on the usefulness of each tab in browsing datasets for creating
queries and for making relevance judgments. Rating was given
using a graded scale of 0–2 with

• 0 representing rarely useful for the annotations,
• 1 representing moderately useful for the annotations, and
• 2 representing frequently useful for the annotations.

4.2.2 Experimental Results. Figure 10 presents the rating distri-
bution of each tab. For both query creation and relevance judg-
ments, all the tabs were rated frequently or moderately useful by
some annotators. Metadata received the highest ratings, followed
by Element Clouds and Sample 1 (IlluSnip). Sample 2 (PCSG) and
Navigation are also relatively useful (mean ≥ 1) for query creation.

We identified several representative comments on the less use-
ful tabs. Element Statistics was not considered more useful than
Element Clouds for the annotation tasks. For exploring the data
structure, the tabs visualizing data patterns were not favored since
they are less intuitive than data elements and samples.

4.3 Main Findings and Discussion
Below we summarize and discuss our empirical findings.

Our test collection contains queries at all levels of difficulty and
in general the difficulty is moderate and suitable for evaluation.
It remains to be seen what, except query length, determines the
difficulty of an ad hoc dataset retrieval task.

All the tested models benefit from incorporating data fields into
retrieval, supporting recent research on content-based dataset re-
trieval. The models display varying degrees of competence to ex-
ploit metadata and data. BM25F and FSDM achieve the best results
onmetadata and data fields, respectively, suggesting future research
on specialized retrieval models for a hybrid of metadata and data.

Besides metadata, data-oriented tabs in our dashboard including
element clouds, data samples, and navigation are helpful for users
to comprehend retrieved datasets and judge relevance, while such
capabilities are currently under-exploited in deployed systems.

Figure 10: Distribution of (bar) and mean (curve) ratings of
each tab over all the annotators.

5 RELATEDWORK
5.1 Test Collections for Dataset Retrieval
There have been several test collections for ad hoc dataset retrieval
released in the literature. Among others, bioCADDIE-2016 [13] is
one for the biomedical domain, containing 15 queries created by
instantiating templates resembling search questions collected from
potential users of dataset retrieval. Another is BEF-China [31] built
in a similar manner for the biodiversity domain. The NTCIR-15
(English) test collection [21] is built on open government datasets
and contains 192 free-form queries translated from information
needs mined from online forums. Table 10 compares these test
collections with the one built in this paper. Our test collection is
distinguished by its content-based nature: not only the queries
are created in a content-oriented fashion, but also the pooling
and relevance judgments of query-dataset pairs are based on both
metadata and data, while these activities in building previous test
collections mainly rely on metadata. Therefore, our test collection
is more suitable for supporting the trending research on content-
based dataset retrieval [2, 32, 51, 52].

There are some research directions that may not be referred to as
dataset retrieval but are potentially related. Ad hoc table retrieval is
one such task. There have been a number of test collections for this
task [7, 42, 53] where retrieval often relies on the content of a table.
However, it is arguable whether a table can be viewed as a dataset.
Different from the datasets considered in this paper and in other
test collections for ad hoc dataset retrieval, a table is not always
self-contained but usually exists as part of and is contextualized
by a webpage. Therefore, such Web tables are rarely registered as
datasets on open data portals.

5.2 Dataset Retrieval Systems
Existing data portals, including Google Dataset Search [1], mainly
support ad hoc dataset retrieval based on metadata. The research
community have recognized the usefulness of data in dataset re-
trieval and leveraged data to infer missing domains [34] or generate
schema labels [6] to enhance retrieval models. There are also ef-
forts to mine inter-dataset relationships from their data for dataset
recommendation [33] and combination [32]. As to RDF datasets,
there have been several ad hoc content-based retrieval systems.
For example, LODAtlas [35] indexes classes and properties in the



Table 10: Comparison between Test Collections for Ad Hoc Dataset Retrieval

bioCADDIE-2016 [13] BEF-China [31] NTCIR-15 (English) [21] Acordar (This Paper)

Domain biomedical biodiversity government open-domain
#Datasets 795.0 K 372 46.6 K 31.6 K
Data Format not mentioned not mentioned Excel, CSV, PDF, XML, JSON, RDF, text RDF
#Queries 15 14 192 493
Query Form template-based question template-based question free-form free-form
Query Creation imitating user questions imitating user questions translated from user needs extracted from content summaries
#Query-Dataset Pairs 20.2 K 5.2 K 10.5 K 10.7 K
Basis for Pooling metadata n/a (pooling all datasets) metadata + table headers + entities metadata + data
Basis for Relevance Judgments metadata + linked articles expert knowledge webpage (metadata) dashboard (metadata + data)

data to match keyword queries, and visualizes graph-level data
patterns [15]. CKGSE [51, 52] extracts data snippets [48] to facil-
itate relevance judgments. Their counterpart for tabular datasets
is Auctus [2] which indexes data summaries and presents data
samples. However, the effectiveness of these systems has not been
systematically evaluated due to the lack of test collections for ad
hoc content-based dataset retrieval. Our work fills this gap.

6 LIMITATIONS AND FUTUREWORK
While Acordar represents the first evaluation effort to support
the trending research on content-based, as opposed to metadata-
based, ad hoc dataset retrieval, its current version is restricted to
datasets containing RDF data. Beyond this standard and popular
model for data exchange on the Web, there are numerous datasets
published in other formats such as CSV. Therefore, a natural next
step for extending the test collection would be to include other
types of data, which in turn requires extending our dashboard for
browsing datasets. This is not deemed a research challenge but
more of a feasible engineering work thanks to the high availability
of methods for summarizing and visualizing data of major types.

When building Acordar, the standard yet shallow retrieval
models used for pooling may find insufficient datasets and miss
those that are only implicitly relevant to a query. Dense models
could partially address this issue, but questions would arise as to
whether and how they can effectively scale to a huge amount of
data in a dataset, establishing an attractive research direction.

We also anticipate reusing some tabs in our dashboard to enhance
existing content-based dataset search engines.

Moreover, an important future work for us is to adjust Acordar
to industrial and in particular to manufacturing settings with pro-
duction RDF datasets and knowledge graphs since we whiteness an
explosion thereof [23, 56], e.g., in Bosch [20, 55], Siemens [24, 25],
Equinor [22], and other large production companies.
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