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Abstract: Long-term deterioration and durability concerns in harsh environments with acidic at-
tacks are considered as the weaknesses of ordinary Portland cement (OPC) concrete. Although the
performance of alkali-activated slag concrete (AASC) has been reported to be superior in acidic
environments, there is a poor understanding regarding the impacts of diverse mix design parameters
on AASC durability in an acidic environment. This research aims to understand the impact of mix
design parameters on the durability of AASC in the sulfuric acid (H2SO4) environment with pH = 3.
The type of alkaline solution, the molarity of alkaline solutions, the weight ratio of alkaline solutions
to slag, and the weight ratio of NaOH to Na2SiO3 are mix design parameters investigated in this
study. The compressive strength reduction and weight loss were monitored from early ages up to
180 days. Moreover, an OPC concrete sample was produced as a reference.

Keywords: alkali activated slag concrete; sulfuric acid; mix design parameters; AASC; durability

1. Introduction

High energy consumption and carbon dioxide emission during production (around
5% to 7% of all CO2 emissions) are the main disadvantages of ordinary Portland cement
(OPC) concrete [1]. Long-term deterioration and durability concerns in harsh environments
such as acidic attacks are other drawbacks of OPC concrete [2,3]. In the sewer system,
the sulfates in the wastewater convert to H2S. Absorption of H2S onto the moist upper
surfaces of the concrete pipe results in the formation of one of the most prevalent acids in
the environment, H2SO4, and other sulfur byproducts [4]. In acidic environments, OPC
concrete is penetrated by hydronium ions (H3O), resulting in a significant drop in pH levels
of pore solutions. A drop in the pH level of pore solution in OPC concrete results in the
decomposition of calcium hydroxide (CH), calcium silicate hydrate (CSH), and ettringite at
the pH of 12.6, 10.7, and 10.5, respectively [5]. Continuation of this process results in the
dissolution and/or decomposition of components such as CH and CSH and influences the
chloride binding mechanism [6]. A product of such reactions, calcium salts, will reduce
the compressive and flexural strength of OPC concrete. Alkali-activated concrete (AAC)
has been considered a potential replacement for OPC concrete and one of the methods to
produce more durable and environmentally friendly concrete [7–12]. This is due to the
high chemical resistance of their alternative binders compared to traditional cementitious
binders [13,14].

AAC is a cement-free concrete containing alumina-silica sources, such as fly ash and
slag, and alkaline solutions [14,15]. Alkaline activation of different industrial byproducts
such as slag, fly ash, and natural minerals produce these alternative binders that possess
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cementitious properties [15]. Activation of slag with an alkaline solution such as sodium
silicate (Na2SiO3) and sodium hydroxide (NaOH) can produce alkali-activated slag con-
crete (AASC) that has been reported to have superior acid resistance performance [16,17].
Properly designed AASC mortars showed sulfuric acid resistance, but the addition of
GGBFS led to the formation of expansive calcium sulfate resulting in a decrease in acid
resistance of AASC samples [18]. Slag is a byproduct of the steel making industry [19] that
is used as a supplementary cementitious material (SCM) in conventional concrete and as
an alumina-silica source in AASC. AASC can also be produced using similar equipment
to those available for OPC concrete production. AASC does not have CH in its hydration
products that react with acid agents and form expansive acid salts [3,5]. In addition, the
highly cross-linked three-dimensional aluminosilicate structure of AASC provides good
performance for these binders in acidic solutions [20].

A wide range of mix design parameters affects the acid resistance of AASC. The type
of ion in alkali activator [21], the application of nano-silica or micro silica modifications that
improve the microstructure of the matrix [22], and the chemical composition of aluminum
silica materials such as slag, fly ash, and micro-silica [4,17,23,24] are some of the underlying
factors that can influence the acid resistance of AASC. The most effective activator used
in development of high-strength AASC is Na2SiO3 solution [16,25,26]. Previous research
efforts confirmed that using Na2SiO3 with proper Na2O content and silica modulus creates
high-strength AASC [16,25,26]. The predominance of CSH and the volume of pores in
the size of the mesopores range characterize the blast furnace slag concrete activated with
sodium silicate. Hence, the development of high-strength concrete using Na2SiO3 and
NaOH is recommended [27,28]. AASC is reported to achieve a compressive strength of
more than 80 MPa at 28 days [16,26,29]. Although the application of alkaline solutions
contributes to CO2 emissions [30–32], the AASC emission level could be significantly lower
than OPC concrete if formulated properly [33].

In the mix design of AASC, molarity and type of alkaline solutions are two essential
elements affecting the mechanical properties and durability of the product [34]. In other
words, variance in the chemical composition of slag may affect its durability, which may
have a direct impact on concrete resistance in acidic environments [35]. The impact of mix
design parameters on the mechanical properties and durability of AASC in acid attack
for up to 56 days due to sulfates, chlorides, and nitrates was investigated in [36]. Their
results indicated that NaOH molarity has the highest level of impact on the mechanical
strength and durability of AASC [36]. Influential factors on the workability and mechanical
properties of fly ash and slag-based geopolymer concrete were studied in [37]. It was
concluded that an increase in the molarity of NaOH solution and slag content coupled
with a decrease in alkaline activator solution improved the compressive strength of the
concrete [37,38]. AASC is more resistant to acid deterioration compared to OPC concrete of
a similar grade, and the predominant deterioration mechanism was CSH declassification
and the formation of a soluble salt (calcium acetate) [18]. The sulfuric acid resistance of
alkali-activated mortars using different silica materials, including micro silica and rice husk
ash, was investigated in [23]. The ground granulated blast furnace slag (GGBFS) was to
mix design samples as a source of calcium. The effect of mix design on the performance
of AASC in HCl acid attack is evaluated in [29]. Although researchers investigated the
diverse properties of AASC [39,40], there is a poor understanding regarding the impacts of
diverse mix design parameters on AASC durability in an acid environment.

The ever-increasing demand for more durable concrete compared to OPC concrete
validates the research for the performance of alternative binders in such a harsh envi-
ronment. Acid-resistant concrete is needed in acidic environments such as sewer and
agricultural structures, biogas plants, and marine structures. In the review of the existing
literature, a limited number of studies focusing on a systematic approach to understanding
the effect of AASC mix design parameters on its performance and durability in harsh acidic
environments were identified. Moreover, the impacts of acid attacks on the short-term
and long-term performance of AASC have been investigated. Nevertheless, there is a poor
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understanding regarding the impacts of diverse mix design parameters on AASC durability
in the sulfuric acid environment. This research aims to understand the impact of four main
mix design parameters: molarity of alkaline solutions, type of alkaline solution, the weight
ratio of alkaline solutions to slag, and the weight ratio of alkaline solutions to sodium
silicate, on the durability of AASC samples. The samples were submerged in H2SO4 of
pH = 3 for up to six months, and variations in compressive strength and weight loss were
recorded at 7, 14, 28, 90, 120, and 180 days. The results show that an increase in the alkaline
solution to slag ratio increased compressive strength reduction and weight loss. In addition,
the application of KOH-activated slag concrete negatively affected mechanical performance
and increased the production cost of AASC.

2. Materials and Test Procedure
2.1. Material Properties

In this study, GGBFS with a specific gravity of 2.85 gr/cm3, Blaine fineness of 400
m2/kg, the Al2O3/SiO2 weight ratio of 0.447, and CaO/SiO2 weight ratio of 1.079 was
used as a silica-aluminate source. OPC concrete specimens were produced as reference
concrete. Table 1 shows the oxide content of GGBFS and OPC. Hydration modulus (HM =
(CaO + MgO + Al2O3)/SiO2) is an important parameter regarding the reactivity of GGBFS.
It was reported that HM should be greater than 1.40 to guarantee a satisfactory hydration
property [41]. In this study, HM was 1.77 based on oxide contents for GGBFS.

Table 1. Chemical compositions of OPC and GGBFS (wt.%).

Materials CaO SiO2 Al2O3 MgO TiO2 MnO S K2O Fe2O3 NaO2 SO3 LOI *

OPC 63.50 21.50 5.10 2.30 - - - 0.93 3.80 - 2.00 0.70

GGBFS 36.52 38.35 10.88 8.77 1.48 1.25 1.21 0.93 0.52 0.49 - 0.26

* Loss On Ignition.

A combination of NaOH (as the most commonly used activators) and Na2SiO3 or KOH
and Na2SiO3 were used as alkaline solutions. To evaluate durability and the performance
of AASC after acid attacks, both NaOH- and KOH-activated slag concrete were cast and
monitored in this study. NaOH and KOH with a purity of 98% are white flake solids. They
were dissolved in water to make a solution with a desirable concentration at least 15 min
prior to the commencement of the mixing process. Three concentrations of 6, 10, and 14
were used for NaOH and KOH solutions. Na2SiO3 was in liquid form with a SiO2/Na2O
ratio of 2.5, water mass content of 51%, and Na2O and SiO2 contents were 14% and 35%,
respectively. Limestone aggregates are widely used in most projects in Iran due to their
lower cost and abundance. Thus, coarse aggregate (crushed limestone) with a maximum
aggregate size of 19.5 mm and fine aggregate (crushed sand) were used in this study. The
aggregate grading was as per ASTM C33. Table 2 presents the physical properties of
aggregates. Sand equality, water absorption of fine aggregates, specific gravity in saturated
surface dry (SSD) condition, and water absorption of coarse aggregates were measured
according to ASTM D2419, ASTM C128, and ASTM C127, respectively.

Table 2. Aggregates physical properties.

Aggregate
Type

Fineness
Module Sand Equality Specific Gravity (SSD)

(gr/cm3)
Water

Absorption (%)

Fine 2.99 77 2.47 2.06
Course - - 2.59 0.76
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2.2. Mix Proportions and Casting

The mix design procedure of AASC was selected based on [42]. In all mix designs, the
water-to-solid materials ratio and weight percentage of the aggregates were 0.50 and 77%,
respectively, considering the water content of NaOH solution when mix proportions were
calculated. To have a constant workability for all AASC specimens, a naphthalene-based
superplasticizer (SP) was used. In this study, the four selected parameters were the type of
alkaline solution, the molarity of alkaline solutions, the weight ratio of alkaline solutions to
slag (A/S), and the weight ratio of NaOH (or KOH) to Na2SiO3 (NO/NS). Based on these
parameters, 15 mix designs and 540 cubic specimens (100mm × 100mm × 100 mm) were
made. Table 3 shows mix codes and corresponding proportions.

Table 3. AASC mix designs (A/S: the weight ratio of alkaline solutions to slag, NO/NS and KO/NS:
the weight ratio of NaOH (or KOH) to Na2SiO3).

Mix Code Alkaline
Solution Molarity A/S NO/NS

(KO/NS)
Alkaline

Solution (Kg/m3)
Slag

(Kg/m3)

N6041 NaOH 6 0.4 1 158 394
N6043 NaOH 6 0.4 3 158 394
N10041 NaOH 10 0.4 1 158 394
N10043 NaOH 10 0.4 3 158 394
N14041 NaOH 14 0.4 1 158 394
N14043 NaOH 14 0.4 3 158 394
N60404 NaOH 6 0.4 0.4 158 394
N100404 NaOH 10 0.4 0.4 158 394
N10061 NaOH 10 0.6 1 207 345
N6063 NaOH 6 0.6 3 207 345
N10063 NaOH 10 0.6 3 207 345
K6041 KOH 6 0.4 1 158 394
K6043 KOH 6 0.4 3 158 394
K10043 KOH 10 0.4 3 158 394
K10061 KOH 10 0.6 1 207 345

NaOH and KOH solutions were prepared at desirable molarity prior to the mixing
process and were added to the mixture in liquid form. It should be noted that alkaline
solutions were made 30 min prior to addition to the mixture. Therefore, their temperature
almost reached the ambient temperature. A sixty liters mixer was used for mixing the
materials. The mixing process was as follows: First, aggregates and GGBFS were mixed for
3 min. Then, the alkaline solutions were gradually added to the blended materials. Finally,
water and SP were added to the mixture. Subsequently, the materials were mixed for 5 min,
and then, the mixture was allowed to rest for 1 min. Finally, the mixture was remixed for
another 3 min.

The prepared mixture was poured into cubic samples, and to minimize water evapora-
tion, the molds were covered with plastic sheets in the first 24 h at a controlled temperature
of 23 ± 2 Celsius. Reference OPC concrete samples were also made. OPC concrete samples
were made using the same aggregates used in AASC mixtures. The water-to-cement ratio
was set at 0.28, and the same SP was used to enhance the workability of specimens. OPC
concrete samples were cured in water for 28 days before exposure to sulfuric acid and
were designed to have comparable compressive strength (60 MPa at 28 days) to AASC
specimens. Table 3 presents mixed design proportions of AASC samples.

2.3. Curing Methods and Test Procedure

The molds were placed in a water bath for two weeks before transferring them to an
H2SO4 bath. It should be noted that this curing time (two weeks) is enough for AASC
samples to gain nearly 80% of their 180 days of compressive, as will be discussed in
Section 3.1. After two weeks of water curing, the specimens were removed from the water
and kept in a room with a controlled temperature of 23 ± 2 Celsius for three hours. Prior to
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a weight measurement, specimens were sandpapered on all six sides. The samples were
weighed before immersing in an H2SO4 bath with a pH of 3. To keep the pH level constant,
the pH of the bath was measured with strips pH meter twice a week. In case of disparity in
pH level of the bath, H2SO4 98% was added.

As stated earlier, a standard procedure for assessing acid attacks on concrete is yet
to emerge. In this study, the acid resistance of AASC and OPC concrete was tested by
exposing the samples to an H2SO4 solution with a pH of 3 for up to six months. The pH
was selected based on [18,21,35,43]. Subsequently, reduction in compressive strength and
weight loss were measured to address the study’s main objective. At the age of 28, 90, 120,
and 180 days, three replicate cubes from each mix design were removed from the acid and
water baths for the compressive strength test and weight loss measurement. The reduction
in compressive strength (RCS) was calculated using the following equation:

RCS =
A − B

A

where A is the average compressive strength of three cubic samples cured in potable
water, and B is the average compressive strength of three cubic companion samples cured
in an H2SO4 bath. The compressive strength test was conducted as per EN 12390-3 at
predetermined intervals. Furthermore, the chemical compositions of slag and Portland
cement were measured using the X-ray fluorescence (XRF) test.

3. Results and Discussion
3.1. Mix Design Effects on Compressive Strength of AASC

Figure 1a shows the compressive strength development of AASC and OPC mixes cured
in water for up to 180 days. As shown in this graph, changing the mix design parameters
drastically impacts strength development from an early age. The OPC specimens, as
expected, showed a sharp strength development up to 90 days, from nearly 36 MPa at
7 days to 68.5 MPa at 90 days. After that, the compressive strength of OPC only increased
by about 8%. KOH-activated slag concrete showed higher early and final compressive
strength compared to OPC and NaOH-activated slag samples.
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Figure 1. (a) Compressive strength development; (b) Compressive strength obtained at different ages
of OPC and AASC samples before acid exposure.

Figure 1b depicts how much compressive strength was obtained at varying ages. After
28 days of curing in water, the compressive strength for AASC samples ranged from 60 MPa
to 79.2 MPa. However, the N10063 mixture showed lower strength from 14 days compared
to OPC concrete. Low strength of mix code N10063 is associated with simultaneous adverse
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effects of a high A/S ratio (0.6) and No/NS ratio (3), leading to a considerable amount of
water in the mix design and reducing compressive strength.

The general trend was that AASC gained considerably high strength in the early ages.
If we consider the compressive strength at 180 days as the ultimate strength, samples
containing KOH gained more than 80% of their final strength after two weeks. Higher
molarity and A/S ratio of KOH-activated slag specimens resulted in the highest compres-
sive strength.

Apart from N60404, the inclusion of NaOH also resulted in archiving at least 75% of the
ultimate strength at 14 days. The results clearly indicated that selecting a proper mix design
proportion for AASC would lead to having substantially high compressive strength values.
The underlying reason is attributed to reaction kinetics and microstructure development
in AASC. Compared to Portland cement, slag contains higher silica (SiO2), almost 38%,
two times more aluminum oxide (Al2O3), and roughly 40% lower calcium oxide (CaO)
contents. Unlike Portland cement, CH is not a product in the AASC structure [14]. Slag
is amorphous, and its hydration leads to the formation of calcium silicate hydrates (CSH)
which have high silica content. In addition, three other hydration products are hydrotalcite,
ettringite, and monosulfate [44].

Highly alkaline environments provided by alkaline solutions resulted in the very fast
dissolution of the slag of AASC and formed hydration products in the early hours. The
rapid formation of hydration products for AASC was reported after 3 h [44]. The type of
activator and its molarity directly impact the rate of hydration products and microstructure
development.

Figure 2 depicts the impacts of four mix design parameters on strength development.
As illustrated in Figure 2a, KOH activated slag achieved higher strength after 7 days of
curing than the NaOH-activated slag concrete, and the differences between compressive
strength at 28 and 90 days are more than 10 MPa. Thus, KOH is more promising compared
to NaOH in terms of compressive strength results. The KOH solution, due to a higher
molecular mass [45] and degree of hydration [46] compared to NaOH, increased the
compressive strength. The results showed that when the A/S and NO/NS ratios were
constant, an increase in molarity of NaOH from 6 to 10 and then to 14 improved the
compressive strength constantly from early ages to 180 days (Figure 2b). The main reason
is that a higher concentration of alkaline solutions increased the reaction rates and thus led
to higher compressive strength values. Higher solution concentrations mean an increase in
solid NaOH in the solution leading to an increase in the rate of ionization of slag particles
and the rate of crystallization of products. Moreover, higher solution molarities would
increase the solubility of anions (silicate and aluminate) and cations (calcium) in slag.

In NaOH-activated slag samples with a molarity of 10 and A/S ratio of 0.4, the higher
ratio of NO/NS reduced the strength after 90 days, as illustrated in Figure 2c. The same
trend was observed at a molarity of 10 and an A/S ratio of 0.4 after 28 days. The main reason
is that NaOH contains a high volume of water which negatively impacts the microstructure,
and the excessive water forms higher porosity in the AASC microstructure leading to lower
compressive strength. Moreover, Na2SiO3 is a rich source of silica which can contribute to
forming higher content of CSH in the concrete microstructure. Hence, a low NO/NS ratio
(higher Na2SiO3) in solution would potentially increase the CSH in the concrete leading to
higher mechanical properties. Roughly 77% of NaOH and 52% of Na2SiO3 consist of water.
The lowest NO/NS ratio (0.4) contains higher Na2SiO3 content due to its high viscosity
and reduced concrete workability. Slag needs enough alkaline solution to react, and the
excessive amount of alkaline, which consists of a considerable amount of water, causes
capillary cavities in the microstructure and negatively impacts the compressive strength.
Figure 2d displays that the lower the A/S ratio, the higher the compressive strength. The
difference in compressive strength was even higher at early ages. The main reason is that
when the A/S ratio increases from 0.4 to 0.6, the amount of binder is reduced. Thus, there
is not enough binder to cover aggregates and form an integrated structure which was also
reported in [16,47,48].
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Figure 2. The effects of mix design parameters on compressive strength: (a) solution type
(molarity = 6, A/S = 0.4, NO/NS = 1), (b) molarity (Solution = NaOH, A/S = 0.4, NO/NS = 1),
(c) NO/NS ratio (Solution = NaOH, molarity = 6, A/S = 0.4), and (d) A/S ratio (Solution = NaOH,
molarity = 10, NO/NS = 3).

OPC concrete needs sufficient water curing and time to progress its hydration prod-
ucts and form the concrete structure. However, AASC, given an alkaline solution for
alumina silicate powder, substantially increases the rate and intensity of reactions leading
to obtaining high mechanical properties in the early ages. The water absorption was also
measured for AASC samples which were between 2.3% to 3.88%. The KOH-containing
specimens showed higher water absorptions compared to NaOH-containing samples. The
water absorption for KOH-activated slag concrete was more than 3%, and NaOH-activated
slag had an average water absorption of 2.7%.

3.2. Mix Design Effects on the Performance of AASC in the Acidic Environment
3.2.1. Type of Alkaline Activator

Based on the literature review, the most commonly used activators are NaOH and
Na2SiO3 [16,18,31,49] due to their reasonable cost and promising results. In this paper, all
mix designs contained a combination of two alkaline solutions, NaOH and Na2SiO3 or
KOH and Na2SiO3. Brough et al. [45], Ye et al. [50], and Park et al. [51] reported KOH-
activated slag as an alternative option for NaOH-activated slag concrete with comparable
mechanical and durability results. The application of KOH in AASC faces a severe challenge
mainly due to its cost. Due to the high cost of activators, OPC concrete is preferred in
construction [52]. Thus, selecting a proper mix design for AASC, including the type of
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activator and its concentration, can play a key role in cost analysis [53]. The corrosive
alkaline solutions can cause severe challenges in transportation, storage, and mixing with
slag. Moreover, in terms of durability in acidic attacks, KOH inclusion in the AASC mix
design did not provide promising results based on Figure 3.
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Figure 3. The effects of KOH replacement on compressive strength reduction at a molarity of 6,
A/S = 0.4 and (a) NO/NS = 1, and (b) NO/NS = 3.

Figure 3 displays the compressive strength reduction of AASC containing KOH and
NaOH after acid exposure up to 180 days. The results revealed that KOH-activated slag
samples experienced higher compressive strength reduction at all ages. Although AASC
mixes containing KOH showed higher compressive strength after water curing in all ages
than NaOH-activated slag concrete, their performance in sulfuric acid solution was inferior.
When NO/NS = 1, KOH-activated slag showed a 6.24% higher strength reduction after
180 days of exposure to acid compared to NaOH-activated slag concrete, as illustrated in
Figure 3a. When NO/NS = 3 (see Figure 3b) difference between the strength reduction
of samples containing KOH and NaOH is 9.19% after 6 months of immersion in the acid
solution. The core cause is that KOH reacts with slag particles and an intense exothermic
reaction occurs that forms spherical hydration products, which are not uniformly dispersed
in the structure [48].

Hence, countless unfilled voids and cavities are created in microstructures that are
mainly connected. When acid enters such a porous structure, cavities are filled with acid
agents, and the acid moves through connected porosity all around the concrete structure
leading to reactions with hydration components and severe deterioration [17]. As a result,
the incorporation of KOH creates a less homogeneous microstructure. The replacement
of KOH at a molarity of 10 and NO/NS ratio of 3 was also tested. However, due to the
resilience of the results, they are not mentioned in this section.

Figure 4 shows the weight loss reduction for AASC samples containing KOH and
NaOH at different molarities, A/S, and NO/NS ratios. As illustrated in Figure 4a, the
replacement of KOH at a molarity of 6 and NO/NS of 1 caused higher weight loss. AASC
samples containing KOH experienced roughly 47% and 34% higher weight loss than NaOH-
activated slag samples at the age of 120 and 180 days, respectively. The results also showed
that the replacement of KOH at a molarity of 6 and NO/NS of 3, Figure 4b, considerably
increased weight loss which was 5.3 times greater than specimens made with NaOH. The
comparison was also made using an A/S ratio of 0.6, Figure 4c, and a molarity of 10,
Figure 4d, which resulted in the same trend. The worse results with KOH inclusion can be
attributed to the pore microstructure of KOH-activated slag concrete, as discussed earlier.
KOH application as an activator, due to the nature of its reaction with slag, caused a porous
microstructure and made it more vulnerable to acid attacks.
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Figure 4. The weight loss of samples with (a) A/S = 0.4, molarity = 6 and NO/NS = 1, (b) A/S = 0.4,
molarity = 6 and NO/NS = 3, (c) A/S = 0.6, molarity = 6, and NO/NS = 1, and (d) A/S = 0.4,
molarity = 10 and NO/NS = 3.

Visual inspection clearly shows that samples containing NaOH and Na2SiO3 per-
formed better in the acidic environment than specimens containing KOH and Na2SiO3.
Figure 5 shows KOH-activated slag concrete samples exposed to acid for 6 months. The
surface layer leached out, and the main part of the binder was removed in all six faces.
Moreover, as discussed in Section 3.1, samples activated by KOH have higher water absorp-
tion, meaning they have higher porosity and permeability. Hence, when the samples were
exposed to acid, more acids could ingress the specimens, leading to higher deterioration.
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3.2.2. NaOH Molarity

Figure 6 shows the impacts of change in molarity of NaOH from 6 to 14 on the
compressive strength of AASC after acid exposure for up to six months. The increase
in NaOH concentration means an increase in solid NaOH in solution. Although the
compressive strength of samples containing a higher molarity of NaOH cured in water
increased, as discussed in Figure 2b, the trend was not the same when samples were
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exposed to the acid solution. The increase in molarity was twofold. First, it brought an
increase in the crystallization rate of products in NaOH-activated slag. Moreover, more
CSH forms and denser microstructures were created in the No/NS ratio of 1 compared to 3
due to the higher amount of Na2SiO3. Secondly, at higher molarity, the rate of reaction and
the amount of ionization of slag particles uncontrollably increased, leading to the formation
of an irregular structure in concrete.
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Figure 6. The effects of NO/NS ratio of compressive strength reduction after acid exposure
(a) NO/NS = 1 and (b) NO/NS = 3.

The effects of molarity change were investigated in two NO/NS ratios of 1 and 3. In
the NO/NS ratio of 3, Figure 6b, due to the lower content of Na2SiO3 as a source of Si for
the formation of CSH compared to the NO/NS ratio of 1, the impacts of irregular and weak
microstructure were more significant than higher crystallization of slag particles. Another
factor that should be taken into consideration is that the higher molarity means a higher
production cost which is not favorable.

Figure 7 displays the weight loss of AASC samples when NaOH concentration changes
from 6 to 14 at two NO/NS ratios of 1 and 3. It should be noted that after nearly 60 days
of exposure to acid, a soft white layer was formed on the surface of the samples. This
loose layer was removed from the samples before weighing; otherwise, the weight loss
would have been lower after 180 days of acid exposure compared to 120 days owing to the
increasing formation of this white layer. The results showed that the lowest weight loss was
observed at all immersion ages at a molarity of 6. The trend was the same in two NO/NS
ratios of 1 and 3. In both ratios, the molarity of 14 caused higher weight loss compared
to lower concentrations. The main reason is that the formation of irregular structures
due to more intensive reactions at high concentrations causes pore structure contents to
easily leach out when exposed to acid agents. Therefore, based on the results, increasing
NaOH concentration is not economically desirable and causes more compressive strength
reduction and weight loss in the sulfuric acid environment, especially when NO/NS is
higher than 1.
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Figure 7. The effects of NaOH molarity on weight loss of AASC with (a) NO/NS = 1 and (b)
NO/NS = 3 after acid exposure.
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3.2.3. NaOH to Na2SiO3 Ratio

The impacts of the NO/NS ratios ranging from 0.4 to 3 on the performance of AASC
samples immersed in sulfuric acid solution with pH = 3 were investigated at A/S = 0.4 and
the three different NaOH molarities of 6, 10, and 14, as shown in Figure 8. The effects of
increasing the NO/NS ratio of AASC performance were worth investigating due to two
main reasons. First, NaOH is a less expensive activator compared to Na2SiO3. Second,
a high amount of Na2SiO3, which means a lower NO/NS ratio, leads to low concrete
workability. This is an essential fresh property. Workability can affect casting, molding, and
even all properties of concrete because concrete owes its durability to chemical reactions
that start in the early hours when the binder reacts with alkaline solutions.

Materials 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. The effects of NO/NS ratios on compressive strength reduction at a molarity of (a) 6, (b) 

10, and (c) 14. 

Figures 8 and 9 display the impacts of an increase in NO/NS ratio on the compressive 

strength reduction and weight loss reduction of AASC after acid exposure. At a molarity 

of 6, Figure 8a, the lowest NO/NS ratio (0.4) showed a 14.55% strength reduction after 180 

days of exposure which was slightly lower than other modalities. As illustrated in Figure 

8b,c, the higher NO/NS ratio resulted in higher compressive strength reduction for sam-

ples with molarities of 10 and 14. Regarding weight loss, the higher NO/NS ratio results 

in increasing weight loss of specimens as well. After 6 months of exposure, the weight loss 

values were 0.99%, 1.74%, and 1.84% for the ratios 0.4, 1, and 3. Therefore, the increase in 

the NO/NS ratio could reduce the production cost but worsen AASC performance in the 

acid attack. A high NO/NS ratio decreases Na2SiO3 content and increases NaOH weight 

in a concrete mixture, causing the reduction of silica, and an increase in free water in the 

mixture results in the creation of a weak AASC microstructure. 

 

Figure 9. The effects of NO/NS ratios on weight loss at a molarity of (a) 6, (b) 10, and (c) 14. 

3.2.4. Alkali Solution Content to Slag Ratio 

The effects of an increase in the A/S ratio from 0.4 to 0.6 on the compressive strength 

reduction at two molarities are shown in Figure 10. The higher A/S ratio means a higher 

alkaline solution in the mixture, and the results showed that the more alkaline solution 

leads to higher compressive strength reduction after 120 and 180 days of acid exposure. 

As shown in Figure 10a, at a molarity of 6 and A/S ratio of 0.6, AASC samples experienced 

90d 120d 180d
-2.0

-1.6

-1.2

-0.8

-0.4

90d 120d 180d
-2.0

-1.6

-1.2

-0.8

-0.4

90d 120d 180d
-2.0

-1.6

-1.2

-0.8

-0.4

 % (NO/NS= 0.4)

 % (NO/NS= 1)

 % (NO/NS= 3)

Age (days)

W
ei

g
h
t 

lo
ss

 (
%

)

a

W
ei

g
h
t 

lo
ss

 (
%

)

Age (days)

b

W
ei

g
h
t 

lo
ss

 (
%

)

Age (days)

c

Figure 8. The effects of NO/NS ratios on compressive strength reduction at a molarity of (a) 6, (b) 10,
and (c) 14.

Figures 8 and 9 display the impacts of an increase in NO/NS ratio on the compressive
strength reduction and weight loss reduction of AASC after acid exposure. At a molarity
of 6, Figure 8a, the lowest NO/NS ratio (0.4) showed a 14.55% strength reduction after
180 days of exposure which was slightly lower than other modalities. As illustrated in
Figure 8b,c, the higher NO/NS ratio resulted in higher compressive strength reduction for
samples with molarities of 10 and 14. Regarding weight loss, the higher NO/NS ratio results
in increasing weight loss of specimens as well. After 6 months of exposure, the weight loss
values were 0.99%, 1.74%, and 1.84% for the ratios 0.4, 1, and 3. Therefore, the increase in
the NO/NS ratio could reduce the production cost but worsen AASC performance in the
acid attack. A high NO/NS ratio decreases Na2SiO3 content and increases NaOH weight
in a concrete mixture, causing the reduction of silica, and an increase in free water in the
mixture results in the creation of a weak AASC microstructure.
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Figure 9. The effects of NO/NS ratios on weight loss at a molarity of (a) 6, (b) 10, and (c) 14.

3.2.4. Alkali Solution Content to Slag Ratio

The effects of an increase in the A/S ratio from 0.4 to 0.6 on the compressive strength
reduction at two molarities are shown in Figure 10. The higher A/S ratio means a higher
alkaline solution in the mixture, and the results showed that the more alkaline solution
leads to higher compressive strength reduction after 120 and 180 days of acid exposure. As
shown in Figure 10a, at a molarity of 6 and A/S ratio of 0.6, AASC samples experienced
roughly 15%, 20%, and 23% compressive strength reduction, respectively, after 90, 120,
180 days of exposure to acid, which is 5.8%, 10%, and 7.8% higher strength reduction
compared to A/S ratio of 0.4 at the same ages. The same trend was observed at a molarity
of 10 (Figure 7b) after 120, 180 days of exposure to acid. The results of weight loss are
shown in Figure 11. This figure shows that after 180 days of exposure to acid, an increase in
the A/S ratio increases weight loss from 1.11% to 1.53%. The same results were observed at
a molarity of 10 and NO/NS ratio of 3, in which the weight loss increased from 1.09% to
2.08%.
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Figure 10. The effects of the alkaline solution to slag ratio on compressive strength (a) at a molarity
of 6 and (b) at a molarity of 10 (A/S: the weight ratio of alkali solution content to slag).

The main reasons for lower performance at a higher A/S ratio were insufficient binder
volume in the mixture and excessive alkaline solutions consisting of free water. A higher
A/S ratio led to a reduction of slag from 394 Kg/m3 to 345 Kg/m3 in one cubic meter of
concrete, causing a reduction in the binder in the mixture.
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Figure 11. The effects alkaline solution to slag ratio on weight loss after acid exposure (a) molarity= 6
and NO/NS = 3, (b) molarity = 10 and NO/NS = 3, and (c) molarity = 10 and NO/NS = 1.

3.3. Comparative Study on the Performance of AASC and OPC in Sulfuric Acid Attack

OPC samples were used as a reference to better understand AASC performance in
the acid attack. As shown in Figure 12, the surface layers of OPC samples are completely
removed, and aggregates are clearly visible.
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Figure 13 displays the strength reduction and weight loss of OPC samples immersed
in the acid bath for up to 180 days. The average strength reduction for OPC samples was
roughly 25.5% and 59.8% after 28 and 180 days of acid exposure, respectively. As explained
in the previous section, for AASC samples, the lowest compressive strength reduction
was 14.5% which is one-fourth of OPC concrete. The highest strength reduction for poorly
designed concrete is 31.6% which is around half of OPC compressive reduction. The results
revealed that cement-free concrete can achieve considerably lower strength reduction,
especially at higher ages. In other words, selecting a proper mix of design parameters
can sustainably impact the durability performance of concrete. Accordingly, a concrete
element made by OPC concrete that deteriorated after two years due to acid attacks would
acceptably work for at least 8 years if built by a well-designed AAS. Figure 13b shows the
weight loss of OPC samples in sulfuric acid solution. The results showed that almost 10%
of the weight was lost after 6 months of exposure to acid. For AASC, the lowest weight loss
was 0.99%, roughly one-tenth of conventional concrete. The immersion of AASC in such a
strong acid as H2SO4 caused decomposition of aluminum and destruction of Si-O-Al in
AASC concrete leading to reducing mechanical properties as well as weight loss.
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The underlying reason for such a superior performance is attributed to the different
microstructure of these two concretes. Cement is the most expensive and most vulnerable
ingredient in conventional concrete. The acid attack on OPC includes attacks on hydration
products and converting calcium-containing phases such as CH, CSH, and calcium alumi-
nate hydrate to calcium salt. This reaction causes expansion, cracking, and deterioration of
conventional concrete. The CaO content in cement and slag is 63.50% and 36.52% (Table 1).
Hence, AASC contains considerably lower calcium-containing components compared to
OPC. In addition, there is no sign of CH as a hydration product in the AASC structure.
This phase that reacts with acid agents and forms calcium salts in conventional concrete
does not play a role in the acid attack mechanism of AASC.

4. XRF Results

The XRF was conducted on the other layer, which was removed from the sample using
sandpaper to determine its chemical composition. As discussed in the previous section,
a soft white layer is formed on AASC samples after exposure to sulfuric acid. The XRF
results are presented in Table 4. The results show that three main phases are SiO3, SiO2, and
CaO, which consist of roughly 78% of the composition. It also should be mentioned that the
powder did not dry before conducting the XRF test. Water content in the samples justifies
high (14.86%) loss of ignition (LOI) values. The high percentages of SO3 are due to exposure
of samples to sulfuric acid. The results reveal that the SiO2, Al2O3, and CaO contents are
reduced compared to the chemical composition of slag, which indicates that acid agents
break the silica-aluminate bonds, and these phases are leached out of the structure.

Table 4. Oxide composition of the surface layer of AASC samples after 180 days of exposure to acid
(weight percentage).

CaO SiO2 SO3 Al2O3 Fe2O3 MgO K2O NaO2 TiO2 P2O5 LOI

20.43 29.88 27.55 3.89 0.8 0.36 1.03 0.59 0.45 0.09 14.86

5. Conclusions

In this study, the impacts of four mixed design parameters on the performance of
AASC exposed to sulfuric acid attack were investigated. For this purpose, samples were
cured in water and immersed in acid baths and were tested on the same days to determine
the compressive strength reduction as well as weight loss. Moreover, an XRF test was
also conducted to understand the phase changes before and after acid exposure. The tests
were conducted on specimens at 7 days for up to 180 days. Moreover, an OPC sample
was utilized as a reference. The results reveal that the compressive strength reduction and
weight loss of AASC samples compared to OPC concrete were near one-fourth and one-
tenth, respectively. The main hydration products of AASC before and after acid exposure
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were the same, and there were no signs of gypsum and ettringite. While an increase in the
weight ratio of NaOH to Na2SiO3 is economically desirable, it would not have any impact
on either strength resistance or weight loss.

The increase in the alkaline solution to slag ratio, which reduces the binder content,
increased the compressive strength reduction and weight loss due to excessive alkaline
solution in the mixture. This mixture has relatively high-water content. Furthermore, the
application of KOH-activated slag concrete negatively affected mechanical performance
and also increased the production cost of AASC. The reduction of SiO2, Al2O3, and CaO
contents indicated the breaking of silica-aluminate bonds in structure and leaching of these
components out of the concrete. AASC samples cured in water reached a high compressive
strength at early ages and gained more than 70% of final compressive strength (compressive
strength at 180 days) after 7 days.

In future works, the authors recommend performing chloride permeability and water
impermeability tests. The microstructure of AASC after acid attacks using thermogravimet-
ric analysis and SEM is encouraged. The feasibility of the production of precast anti-acid
AASC tiles should be investigated. Furthermore, the same studies should be done on
one-part alkali-activated materials apart from the two-part alkali-activated materials inves-
tigated in this study.
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