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ABSTRACT
In today’s complex OTT multimedia streaming ecosystem, the task
of ensuring the best streaming experience to end-users requires ex-
tensive monitoring, and such monitoring information is relevant to
various stakeholders including content providers, CDN providers,
network operators, device vendors, developers, and researchers.
Streaming analytics solutions address this need by aggregating per-
formance information across streaming sessions, to be presented in
ways that help improve the end-to-end delivery. In this paper, we
provide an analysis of the state of the art in commercial streaming
analytics solutions. We consider five products as representatives,
and identify potential improvements with respect to terminology,
QoE representation, standardization and interoperability, and col-
laboration with academia and the developer community.

CCS CONCEPTS
• Information systems → Multimedia streaming; Data ana-
lytics; • General and reference → Metrics.

KEYWORDS
CMCD, CTA-2066, DASH, gap analysis, HLS, OTT, QoE, SAND,
streaming analytics
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1 INTRODUCTION
Video streaming is one of the top traffic contributors in  the In-
ternet. It is expected that streaming traffic will grow 4- fold for
video globally and 9-fold for mobile video between 2017 and 2022,
with nearly 79% of the world’s mobile data traffic coming from
video by 2022 [1]. HTTP Adaptive Streaming (HAS) application
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variants such as Dynamic Adaptive Streaming over HTTP (DASH)
and HTTP Live Streaming (HLS) are the dominant video delivery
technologies used today, both for Video-on-Demand (VoD) and live
streaming. Consequently, HAS is the biggest contributor to mobile
video traffic.

With the rising prevalence of online video applications in re-
cent years, corresponding video analytics practices and platforms
have also grown in number and diversity. Over-the-top (OTT)
video analytics platforms present data analytics related to OTT
media streaming content and services, and are most commonly
deployed as monitoring tools by broadcasters acting as Content
Providers (CPs). Streaming analytics is crucial for numerous stake-
holders and use cases. However, the development of online video
analytics platforms is largely undertaken without the inclusion of
the academic community, and research on the design, deployment,
and evaluation of such platforms is scarce. To our knowledge, there
is no taxonomy or comparative analysis of online video analytics
platforms in academic literature.

In this paper, we provide an analysis of the state of the art in
commercial streaming analytics solutions. We consider the top 5
products according to the Bitmovin Developer Report 2021 [12],
excluding Google Analytics, as representatives. These products
are offered by the companies Bitmovin [11], Conviva [19], Medi-
aMelon [41], Mux [49], and Nice People At Work (NPAW) [52], and
are listed in Table 1. Throughout this paper, we refer to the prod-
ucts with the name of their corresponding company, i.e., Bitmovin
(B), Conviva (C), MediaMelon (Me), Mux (Mu), and NPAW (N). If
multiple products are offered by the same company, we collectively
refer to this group in the singular, using the abbreviations given
above. All information presented in this paper is retrieved either
from online materials that are publicly accessible at the time of
writing or from explicit contact with company officials, and is valid
as of 02.2022.

In Section 2, we introduce a taxonomy for the various function-
alities of different products and propose a common terminology. In
Section 3, we provide an overview of the practices surrounding the
calculation and representation of Quality of Experience (QoE). In
Section 4, we introduce a number of standards which are relevant
for streaming analytics, and discuss interoperability. In Section 5,
we provide a motivation for and an overview of collaboration oppor-
tunities, including a survey of academic publications referencing
the products listed in Table 1. We conclude the paper in Section 6.
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Table 1: List of commercial products considered in this
study: company name, the year the company was founded,
and name of the product(s).

Company Founded Product(s)
Bitmovin 2013 Bitmovin Analytics

Conviva 2006

Conviva Stream Sensor
Conviva Experience Insights
Conviva Ad Insights
Conviva Experience Benchmarks
Conviva Precision

Mux 2015 Mux Data

NPAW 2008

Youbora Analytics
Youbora Ads
Youbora Users
Youbora Infrastructure

MediaMelon 2012
MediaMelon SmartSight QoE
MediaMelon SmartSight Ads
MediaMelon SmartSight QBR

2 TAXONOMY AND TERMINOLOGY
In this section, we provide a general overview of product functional-
ities. We introduce a taxonomy and propose a common terminology
for identifying different aspects of multimedia streaming analytics.

2.1 Collection of Metrics
Metrics, also called Key Performance Indicators (KPIs), refer to var-
ious measures of performance. Commercial products commonly
employ an approach called Real User Monitoring (RUM), which
refers to the strategy of measuring performance metrics from audi-
ence devices, rather than via synthetic monitoring solutions. We
identify 4 main categories of streaming analytics metrics.

• Audience: These metrics are related to the audience (view-
ers) of a streaming service. They are generally collected
from a service as a whole (in contrast to per-session metrics),
and might be of more importance to actors such as service
providers, who focus on avoiding churn and increasing mon-
etization, and developers, who focus on service and platform
stability and troubleshooting, rather than researchers, who
focus on quality aspects.

• Quality: These metrics are related to the quality of stream-
ing. They are generally collected per-session or per-subsession
(in the form of “event”s with audio/video segment or chunk
granularity).1 We further divide this category of metrics into
3 subcategories.
– Startup: These metrics are related to the time it takes the
media asset to load and/or play.

– Buffer: These metrics are related to buffering (also called
“rebuffering” or “stalling”), as well as seeking.

– Quality: These metrics are related to the adaptation for
adaptive streaming (e.g., quality levels and quality switches),
as well as picture quality for video (e.g., resolution and
re-scaling).

1Raw quality metrics can be aggregated: (1) across all sessions of a streaming service,
such as “Average Startup Time” which is the average of startup time across all sessions,
or (2) across a single streaming session as a per-session metric, such as a per-session
QoE score, which we elaborate upon in Section 3.

• Error: These metrics are related to errors which might occur
before or during a streaming session and interrupt playback.
They are collected per-session and provide an overview, as
well as troubleshooting opportunities, for various problems
which prevent the execution of a smooth streaming session.2

• Ad: These metrics are related to the advertisement content
that has been inserted into a stream (if applicable), which
are typically collected per-session. Note that similar met-
rics might appear under both the “Quality” and the “Ad”
categories, indicating that quality-related metrics are pre-
sented for the original content and ads separately. We do not
consider ad metrics in the rest of this paper.

Table 1 in the supplementary material provides an overview of
metrics collected by different products, grouped according to the
above categories. We note that a very large number of metrics are
provided, which are largely overlapping across products. However,
there are different levels of detail, and different naming schemes
across products, which, combined with the scarcity of public docu-
mentation, can make the meaning and use cases of certain metrics
unclear at times.3

2.2 Collection of Metadata
Metadata refer to the types of background information which pro-
vide a context for the streaming session, and therefore insights into
the interpretation of various performance metrics. We identify 6
main categories of metadata.

• Identifiers: These metadata are various identifiers for the
streaming session.

• Asset: These metadata are related to the original media as-
set (audio and/or video). Examples include type, codec, and
duration.

• Client: These metadata are related to the client device that
the streaming session is running on. Examples include device
model, platform, and Operating System (OS).

• Application and transport: These metadata are related
to the application that is running on the client, as well as
the underlying transport protocol. Examples include media
player, web browser, mobile apk, and transport protocol.

• Network: These metadata are related to the network layer
underlying the application and transport layers. Examples
include Internet Service Provider (ISP), Mobile Network Op-
erator (MNO), Autonomous System Number (ASN), Content
Delivery Network (CDN), and IP address.

• Spatio-temporal: These metadata are related to location
(country, city, etc.) and time (unix timestamp, time of day,
day of week, month, year, etc.).

Table 2 in the supplementary material provides an overview
of metadata collected by different products, grouped according to

2Note that the other categories of metrics are considered for sessions which have
no errors (e.g., a field such as “Startup Error” would be classified as an error metric,
instead of a startup quality metric).
3Since our survey is based on public information, and customer data from commercial
products are bound by various terms and conditions, we do not practically compare
the calculation of metrics across providers (e.g., instrumenting a player with different
analytics solutions, exposing it to a variety of controlled playback regimes, and com-
paring the data reported by the different products for the same metric). The results
from such a study would not be possible to present in a non-anonymized fashion.
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Table 2: Data export capabilities of different products (B: Bit-
movin, Me: MediaMelon, Mu: Mux).

Product Product
Cloud B Me Mu Custom B Me Mu
AWS Kenesis ✓ API ✓ ✓ ✓

AWS S3 ✓ ✓ ✓ Formats B Me Mu
Azure Blob Storage ✓ Apache

Parquet
✓ ✓

Azure DataLake ✓ CSV ✓ ✓ ✓

GCP Cloud Storage ✓ ✓ JSON ✓

GCP Pubsub ✓ Protobuf ✓

the above categories. Similarly to the metrics, we see that there
is a slight difference in the focus placed on different metadata
categories by different products, despite the large overlap of fields
across products.

2.3 Data Export
The possibility of exporting raw data pertaining to a certain stream-
ing service, such as the metrics and metadata described above, is of
tremendous importance for academic or commercial in-house data
analytics. Table 2 gives an overview of the data export capabilities
of different products. Note that products differ in the means of data
export they support, and not all of them provide such services.4

2.4 Dashboards and Visualization
All of the products we investigate are accompanied with a visualiza-
tion functionality, in the form of an aggregate analytics dashboard.
These can be accessed online with a valid account [13, 50] or via a
demo request [21, 42, 53].

Individual playback sessions:Bitmovin,MediaMelon andMux
additionally provide details on individual streaming sessions in the
form of an event timeline, updated in real-time (“Session details”
for Bitmovin, “Microscope” for MediaMelon, and “Views” section
for Mux). Details about individual sessions can be helpful to under-
stand what happens during a playback, especially when a playback
session has problems. Such interfaces are especially helpful for sup-
port teams trying to understand what a viewer actually experienced
during playback, but developers will also be able to identify root
causes from the timelines by recognizing similar playback expe-
riences in ways that aren’t easily expressed by metrics alone. A
common workflow is to identify a population of viewers that are
having poor experience, using the metrics, and then to look at the
individual sessions that make up the aggregation, in order to better
understand if and how there are commonalities across the playback
sessions.

Live streaming: Bitmovin, MediaMelon, and Mux provide real-
time dashboards (advertised latency for MediaMelon and Mux is
around 30s), in addition to the VoD dashboard. These types of inter-
faces generally support fewer types of metadata, fewer metrics, and
shorter retention for performance reasons, mostly due to operators
wanting to focus only on the most important aspects that are likely
to identify outages or issues in real-time.

4Conviva and NPAW have been removed from this analysis due to the lack of publicly
available information.

Table 3: Integration capabilities of different products (B: Bit-
movin, C: Conviva, Me: MediaMelon, Mu: Mux, N: NPAW).

Product
Integrations B Me Mu
Google Data Studio ✓

Grafana ✓ [8] ✓ ✓

Tableau ✓ [9] ✓

DataCoral (Cloudera) ✓

Datadog ✓

BigQuery ✓ ✓

Big data and analytics integrations: In addition to visualiza-
tion with their own analytics dashboard, some products also sup-
port integrations with external platforms for big data and analytics
services. Table 3 gives an overview of these capabilities.4

2.5 Aggregate Views of Metrics
An aggregate view of a selected metric across different metadata
dimensions is of crucial importance for data analysis and research.
Consider the example: “the median of total startup time for all
streaming sessions in Norway”. Here, median serves as a statistical
aggregator, total startup time is the metric of interest, and in Nor-
way is a metadata dimension (namely, country) which is used as a
breakdown (also called “filter”). Multiple filters, corresponding to
different metadata dimensions, can also be used in cascade (e.g., “in
Norway and using a Chrome browser”). Breakdowns and filters are
the dimensions along which data can be aggregated before selected
metrics are presented. These have many use cases ranging from per-
formance benchmarking (across countries, networks, and devices,
for instance) to troubleshooting and A/B testing. This functionality
is provided in all dashboards.

2.6 Benchmarks
Two products allow their users to compare their service across
the complete database of the company in an anonymized fashion,
where explicit volunteer participation is required for the data from
a particular service to be used in these “industry” comparisons.
Bitmovin provides this information as “Industry Insights” [10],
Conviva aggregates this information in their “State of Streaming”
reports [22], and Mux exposes the average top line viewer score
across all Mux customers. We refer to these comparisons as industry
benchmarks.

2.7 Errors and Root Cause Analysis
Analytics solutions provide an abundance of information related to
streaming sessions, but this information is only useful to operators
and content/service providers as far as it can deliver actionable
insights. One of the most important and challenging tasks is to
quickly understand why, where and when errors happen and how
to resolve them. This translates to the need for near real-time de-
tection of issues in viewer experience, and the diagnosis of root
causes. In this context, metrics and metadata cannot directly and
definitively deliver answers, but instead serve as starting points for
investigations in support of various troubleshooting efforts.
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Streaming analytics products commonly market themselves as
effective tools for root cause analysis [66]. Efforts in this direction
range from help documents on metric and dashboard understand-
ing [39, 51, 55] and error reporting [14, 57] to the use of Artificial
Intelligence (AI) [20, 40, 46]. Video AI Alerts from Conviva [2] and
Anomaly Detection from MediaMelon [40] are examples of the
growing trend towards leveraging machine learning to enhance the
speed and accuracy of root cause analysis.

3 QUALITY OF EXPERIENCE (QOE)
In this section, we focus on the representation of QoE.5 We intro-
duce different approaches to modeling QoE, and discuss these in
relation to the practices of commercial products.

3.1 Modeling QoE
Composite/aggregate scores are commonly used provide an overall
estimation of the QoE of individual streaming sessions. As opposed
to the multitude of individual raw metrics, such scores function as a
summary, and provide a means of quick comparison across sessions.
There are numerous models proposed by various stakeholders, such
as researchers, standardization bodies, and the industry, for the
purpose of quantifying QoE as a single score.

Authors in [7] classify QoE models into 4 categories: a) sig-
nal-based models, b) parametric models, c) bitstream models, and
d) hybrid models. Signal-based models, also known as pixel-based
or media-layer models, utilize the decoded audio/video signal to
estimate the video quality. Since such models do not use any codec
specific information, they are widely used in codec comparison
and optimization of unknown systems. Based on the amount of
source (reference) information required, these can be further cate-
gorized as Full Reference (FR), Reduced Reference (RR), and No
Reference (NR).6 Parametric models use measured or expected
packet/network related parameters to estimate quality. These can
be further classified into packet-layer models and planning mod-
els. Bitstream models take into account the encoded bitstream and
packet layer information. Features such as bitrate, frame rate, and
Quantization Parameter (QP) are extracted and used as input. Such
models are relatively computationally inexpensive and can be used
for real-time QoE monitoring. Hybrid models combine two or more
of the models mentioned above and hence can use much more
information as input compared to any of the standalone models.
Below, we list example models from different stakeholders.

Standardized models
• P.1203: The International Telecommunication Union (ITU)
Recommendation P.1203 [54] defines a bitstream model for
Mean Opinion Score (MOS) as a key perceptual metric. This

5As a measure of the overall level of customer satisfaction with a video streaming ser-
vice, QoE incorporates various components. These include perceptual quality (picture
quality of the video presentation), streaming artifacts related to the playback (startup,
buffering, errors) or the client (player software, UI elements), as well as the physical
conditions in which a streaming session is conducted (distance to streaming device,
hardware). For the sake of simplicity, we refer to any and all of these components as
“QoE” in the following.
6The requirement for the reference information heavily affects the practical applica-
bility of NR and RR models in streaming analytics products, as this information may
or may not be available to the analytics integration in runtime, as well as the model
requiring a lot more CPU power than most users have.

models is used by authors in [60] to investigate the impact of
individual objective metrics such as initial delay, stalling, and
adaptation, on the output QoE score for streaming sessions.
Model limitations include the lack of consideration of user-
initiated state transitions such as pause, play, seek, end, and
quality change, and the fact that the model is validated on
relatively short viewing sessions ranging between 30𝑠 and
5𝑚𝑖𝑛 in duration.

• P.1204: ITU-T Recommendation P.1204 [58] is a NR bit-
stream model that predicts the subjective score of the video
quality. The model has been trained on a large number of
databases that includes videos with wide range of latest
codecs and higher resolution up to 4K. However, it is not
designed to model the impact of stalling and quality switches
during the stream.

Academic models

• FINEAS: FINEAS [56] is a parametric statistical model that
computes a QoE score on the basis of average quality levels
and their standard deviations during the stream. The model
also accounts for the impact of stall frequency and average
stall duration. Specific weights are given to the impacts based
on the studies [18, 25].

• MPC: Xiaoqi Yin et al. [69] proposed a parametric model to
estimate the user precieved QoE based on selected bitrate,
stalling and video quality switches during a stream. The score
is then used to improve the client-side bitrate adaptation
strategy using a Model Predictive Control (MPC) approach.

Industry models

• VMAF: Developed by Netflix, VMAF [37] is a FR model that
fuses several temporal and spatial quality metrics to estimate
a score on a linear scale of 1− 100. The model is trained over
subjective test data from non-expert observers determining
the visual degradation in encoded streams.

• SSIMPLUS: Developed by SSIMWAVE, SSIMPLUS [62] is a
FR viewer metric using a linear scale of 0 − 100 similar to
VMAF, and is claimed to account for a variety of content
complexity levels, frame rates, resolutions, dynamic range,
and end-user devices.

Table 4 presents an overview of raw metrics and metadata re-
quired for the computation of four selected models.

3.2 Commercial Practices
Current commercial practices related to the calculation of aggregate
session scores include the following.

• Bitmovin: Raw metrics displayed without any aggregate
score.

• Conviva: Custom score called Streaming Performance In-
dex (SPI) [20], calculated using Video Start Failure (VSF),
Exits Before Video Start (EBVS), rebuffering, Video Play-
back Failures (VPF), Video Startup Time (VST), and picture
quality.

• MediaMelon: Custom score called Q-Metric, calculated us-
ing Startup Failures, Startup Delays, Average Bitrate, Buffer-
ing Ratio, and Visual Quality (MOS).
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Table 4: List of raw metrics and metadata required for the
computation of different models.

Raw Metrics P.1203 P.1204 FINEAS MPC
Startup delay ✓ ✓
Highest quality ✓
Used quality level ✓ ✓ ✓ ✓
Num. quality switches ✓ ✓
Stall duration ✓ ✓ ✓
Number of stalls ✓ ✓
Rebuffering ratio ✓
Average bitrate ✓

Metadata P.1203 P.1204 FINEAS MPC
Codec ✓ ✓
Distance from screen ✓ ✓
Client screen resolution ✓ ✓
Frame rate ✓ ✓
Duration ✓ ✓ ✓

• Mux: Custom score called Viewer Experience Score [48],
composed of Playback Success Score (calculated using EBVS),
Startup Time Score (calculated using startup time), Smooth-
ness Score (calculated using rebuffer count and rebuffer per-
centage), and Video Quality Score (calculated using average
and maximum upscale percentage).

• NPAW: Custom score called Happiness Score, public docu-
mentation unavailable.

The most notable observation is that the practices related to
the calculation of a session score are not fully compatible across
different products, as well as with standardized and academic ap-
proaches mentioned earlier. This is exacerbated by the fact that
existing industry standards by ISO/IEC and CTA do not specify any
composite session score, apart from the relatively well defined raw
metrics and events.

As products already collect the majority of raw metrics required
by various existing models (see Table 4 above and Table 1 in the
supplementary material), it would technically be possible to com-
pute an aggregate score as defined by one of these models, instead
of presenting a custom score or none at all. However, there are a
number of challenges associated with the integration of established
models in a commercial context.

License/patent issues: Standardized models can be costly to
use7. Academic models do not traditionally have any costs asso-
ciated, but are sometimes patented (e.g., when they incorporate
machine learning models trained on researchers’ own datasets).

Implementation: The possibility and complexity of integrating
new calculations into existing workflows depend on the software
frameworks and development practices used by different products.

Model selection: Different models might emphasize different
aspects of QoE, require different types of information, and ulti-
mately be more suited to different target applications and audi-
ences. For instance, implementing FR models such as VMAF might
be unfeasible where reference information is not available to the
analytics product. Similarly, while bitstream based models show

7For a commercial license, respective rights holders of the standards ITU-T Rec. P.1203,
ITU-T Rec. P.1203.1, ITU-T Rec. P.1203.2, and ITU-T Rec. P.1203.3 need to be contacted.
See https://www.itu.int/en/ITU-T/ipr/Pages/default.aspx.

comparatively higher correlation with subjective quality scores and
are well-suited for real-time computation, they can only be used for
specific codecs. As different models are influenced differently by
raw metrics [59, 64], it is important to identify the relevant metrics
based on streaming service type, asset length, content category,
maximum screen resolution, and social/production value. It is also
necessary to distinguish between VoD and live streaming.

Overall, there is no “silver bullet” model. However, it is possible
to jointly establish an adaptive multi-model approach for the cal-
culation of aggregate session scores, which is frequently adopted
and interoperable across products, through well defined and realis-
tic use cases, transparent methodology, open documentation and
standardization.

4 STANDARDIZATION AND
INTEROPERABILITY

In this section, we discuss the possibility of increasing interoperabil-
ity across different analytics products through the use of standards.

• SAND: Server andNetwork Assisted DASH (SAND) is a stan-
dard specified in ISO/IEC 23009-5 [33] which defines how
clients (e.g., video players), servers (e.g., CDNs), and net-
works (e.g., ISPs) should communicate with each other. Per
SAND specifications, clients, servers and networks should
exchange real-time status information, such as network met-
rics (e.g., bandwidth) and video player metrics (e.g., buffer
level). In doing so, different network components can become
aware of the current network conditions and adjust their
behaviour to improve bandwidth utilization and streaming
experience. SAND builds upon ISO/IEC 23009-5 Annex D
for metric reporting.

• CMCD: Common Media Client Data (CMCD), or CTA-5004
is a specification published by the Consumer Technology
Association (CTA) in the Web Application Video Ecosystem
(WAVE) project [24]. The main idea behind CMCD is to en-
hance object requests from a video player to the CDN with
information that can be useful in log analysis, quality of
service monitoring and content delivery optimization.

• CTA-2066: Streaming Quality of Experience Events, Prop-
erties and Metrics (CTA-2066) [23] aims to standardize how
streaming quality is measured and in this way makes com-
parisons of performance across media players and analytics
solutions more objective. It prescribes standardized termi-
nology and a minimum set of QoE events to be reported by
media players, as well as a minimum set of QoE metrics to
be computed by analytics solutions.

Interoperability across standards: CMCD metrics are object-
based and meant for CDN optimizations. SAND (23009-1 Annex D)
provides raw streaming metrics for time series data, which can only
be partially mapped to CMCD. CTA-2066 provides a common termi-
nology. Most of these metrics and events can be mapped to SAND.
While the choice between SAND and CMCD metric reporting de-
pends on the use case (end-user monitoring vs. CDN optimizations),
we recommend aligning metric taxonomy with the definitions pro-
vided in CTA-2066. Table 1 in the supplementary material provides
examples of relevant metrics defined by standards that correspond

66

https://www.itu.int/en/ITU-T/ipr/Pages/default.aspx


MHV ’22, March 1–3, 2022, Denver, CO, USA Midoglu et al.

to product metrics, indicating a large gap in the current state of
commercial practices.8

Interoperability across products: Interoperability also relates
to the export of raw data (Section 2.3) in a cross-product context. If
streaming analytics solutions use the same taxonomy to describe
various metrics and metadata, the same raw dataset can be applica-
ble for use by multiple products (e.g., visualization) through basic
import/export operations. As long as the same taxonomy is used
across different platforms, missing fields cease to be a problem.9

5 RESEARCH AND COLLABORATION
Finally, we focus on a number of possible areas for collaboration
between the industry, academia, and the developer community.
In Table 5, we present a list of academic publications referencing
the product in Table 1. We use ACM Digital Library (ACM DL) [3]
and IEEE Xplore [32] as literature search databases and use the
company and product names listed in Table 1 as search strings.
Overall, we see 3 academic publications using Bitmovin, and 22
publications using Conviva. Note here that almost all publications
using commercial products are themselves authored by persons
with company affiliation.

Commercial products provide tremendous opportunities to the
academic community for research, with their numerous player in-
tegrations, extent of metrics and metadata, easy visualization func-
tionalities, and ability to scale. However, as shown in Table 5, the
academic popularity of the products in terms of independent, non-
affiliated research is relatively low. Initiatives by the companies such
as free product trials and scientific conference/workshop/challenge
involvements could facilitate such interactions, along with the in-
tegration of established QoE models into product workflows, as
mentioned in Section 3. Community resources such as reports,
case studies, and white papers [15, 22, 43], alongside technical
documentation, also play an essential role in facilitating research
interactions.

Research topics which could benefit from industry collaboration
include the evaluation of network operators and ISPs [45], devel-
opment of adaptation algorithms [5, 35] and new QoE models [6],
investigation of the influence of different transport protocols [45]
and network generations [44] on streaming performance, media
player benchmarks [45, 65], and the integration of AI into CDN
selection and analytics pipelines [47].

6 CONCLUSION
In this paper, we provide an analysis of the state of the art in
commercial streaming analytics solutions, using 5 products as rep-
resentatives. We identify potential improvements with respect to
terminology, QoE representation, standardization and interoperabil-
ity, and collaboration with academia and the developer community.
Our work is limited to information retrieved from online materials

8Perhaps the most suitable standard for establishing interoperability across different
products through common terminology and calculations, CTA-2066 is ironically not
implemented by its own commercial contributors.
9However, interoperability is not only related to field naming, as data types and units
need to be aligned as well. For instance, consider the seemingly small difference
between s vs. ms, or Int vs. Decimal, and the complex repercussions of transferring
a dataset of more than 50 fields, using one such schema, across multiple analytics
platforms which might each have a slight mismatch for one or two different fields.

Table 5: List of academic publications using different prod-
ucts, sorted according to publication year. (*) Indicates au-
thor affiliation(s) from the corresponding company.

Publication Year Product
Chu et al. [31] 2002 Conviva*
Gummadi et al. [29] 2003 Conviva*
Stoica et al. [63] 2003 Conviva*
Chu et al. [17] 2004 Conviva*
Sripanidkulchai et al. [61] 2004 Conviva*
Greenberg et al. [28] 2005 Conviva*
Yan et al. [68] 2007 Conviva*
Zaharia et al. [71] 2008 Conviva*
Hindman et al. [30] 2009 Conviva*
Chowdhury et al. [16] 2011 Conviva*
Dobrian et al. [26] 2011 Conviva*
Jiang et al. [35] 2012 Conviva*
Zaharia et al. [70] 2012 Conviva*
Liu et al. [38] 2012 Conviva*
Balachandran et al. [6] 2013 Conviva*
Xin et al. [67] 2013 Conviva*
Ganjam et al. [27] 2015 Conviva*
Jiang et al. [34] 2016 Conviva*
Mukerjee et al. [47] 2017 Conviva*
Jiang et al. [36] 2017 Conviva*
Akhtar et al. [4] 2018 Conviva*
Akhtar et al. [5] 2018 Conviva*
Midoglu et al. [44] 2019 Bitmovin
Midoglu et al. [45] 2019 Bitmovin*
Taraghi et al. [65] 2020 Bitmovin*

that are publicly accessible at the time of writing, or from explicit
contact with company officials.

Throughout the paper, we advocate for increased communica-
tion and cooperation between various stakeholders involved in the
end-to-end multimedia delivery pipeline. Given that monitoring
information is crucial to many stakeholders, this exchange is very
relevant, albeit challenging. In this respect, we plan to undertake
a more detailed analysis of what we call “the incentive problem”
as future work. The incentive problem refers to the inherent chal-
lenges related to the exchange of information between independent
stakeholders who operate in a commercial and privacy-sensitive
context. We also aim to present a proof-of-concept for an open-
source lightweight community analytics solution which can serve
as an interoperable core for collaborative analytics, with the goal
of encouraging practices similar to those surrounding the develop-
ment of Dash.js, and demonstrating the potential benefits of open
resources and community contributions.
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