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Abstract
For a quantum-mechanical many-electron system, given a density, the Zhao–Morrison–Parr
method allows to compute the effective potential that yields precisely that density. In this work, we
demonstrate how this and similar inversion procedures mathematically relate to the
Moreau–Yosida regularization of density functionals on Banach spaces. It is shown that these
inversion procedures can in fact be understood as a limit process as the regularization parameter
approaches zero. This sheds new insight on the role of Moreau–Yosida regularization in
density-functional theory and allows to systematically improve density-potential inversion. Our
results apply to the Kohn–Sham setting with fractional occupation that determines an effective
one-body potential that in turn reproduces an interacting density.

1. Introduction

In cases where the one-body ground-state density ρgs of a quantum-mechanical many-electron system is
known, the Zhao–Morrison–Parr (ZMP) method [1, 2], among others [3–5], allows to determine the
effective potential of a reference system that reproduces exactly that density. Such inverse-problem methods
can either be used to directly match experimental data [6], or to gain valuable insight into approximations in
density-functional theory (DFT) [7–10]. The resulting density-potential map has been recently studied from
a mathematical point of view in great detail [11, 12]. In particular, these methods allow to determine the
effective potential, vKS, of a Kohn–Sham (KS) system [13] of non-interacting particles and thus also the
exchange-correlation potential, vxc. Specialized methods for inversion in KS systems have also been devised
[14, 15] and the time-dependent case recently received attention as well [16]. The ZMP method itself has
been implemented and used on numerous occasions, mainly in the context of KS-DFT [17–23].

In this work, we focus on methods for non-relativistic N-electron quantum systems. Here, v will be a
one-body potential and V the corresponding lifted N-body operator, i.e. V=

∑N
j=1 v(rj). Now take ρgs as a

ground-state density of some Hamiltonian H and H ref
0 a reference Hamiltonian. A motivating problem for

our discussion is as follows: How does the (effective) potential v needs to be chosen such that H ref
0 +V has

exactly the given ground-state density ρgs? For H modeling an interacting system in an external potential vext
and taking H ref

0 =− 1
2

∑N
j=1∇2

j =: K, we have v= vKS = vext + vH + vxc, i.e. the KS potential that contains

the external potential of H, the Hartree potential vH = ρgs ∗ | · |−1, and the exchange-correlation potential.
This effectively maps the interacting problem to a non-interacting one. Contrary to that, in the case
H=H ref

0 +V, our result addresses the direct density-potential inversion.
The ZMP method was originally derived using a penalty parameter λ with the density

constraint appearing in terms of a Coulomb integral. For a fixed value λ> 0 this method
defines:

vλ(r) = λ

ˆ
ρλ(r′)− ρgs(r′)

|r− r′|
dr′,
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where ρgs is a ground-state density of the Hamiltonian H. The pair (ρλ,vλ) is determined self-consistently
and the procedure is repeated for increasing values of λ. Finally, careful numerical extrapolation λ→∞
yields a potential vλ → v that has the ground-state density ρgs, as required [2].

In the following, we will demonstrate how the ZMP and related methods can be justified in a
mathematical precise manner by relying on the Moreau–Yosida regularization of a (not necessarily universal)
density functional on a suitably chosen function space. The possibility of such a connection between the
ZMP method and Moreau–Yosida regularization was already mentioned in [24], but has not yet been made
explicit.

1.1. Outline
In section 2.1, we briefly review the ZMP method for the reader’s convenience. Next, in section 2.2, we
discuss the necessary convex-analysis concepts and Moreau–Yosida regularization with applications to
DFT in mind. We then formulate our rather general setting in section 2.3, to which we will apply the
density-potential inversion procedure. Our main results are discussed in section 3, which contains the
derivation of the ZMP method with an additional correction term (theorem 3). This is achieved by first
formulating an abstract density-potential inversion procedure (procedure 1 and also procedure 2) by
exploiting a property of the derivative of the Moreau–Yosida regularized functional (theorem 2). We then
specialize the abstract procedure to obtain the ZMP method both on bounded (theorem 3), and on
unbounded domains (theorem 4). In section 3.4, we describe some of the numerical experiments. Section 4
summarizes the established results and gives an outlook to possible future work. The proofs of our results
may be found in section 5.

2. Preliminaries

2.1. The ZMPmethod
The main idea of the ZMP method [1, 2] is to rephrase the pointwise constraint ρ(r) = ρgs(r) to the
equivalent D(ρ− ρgs) = 0, where D(ρ) denotes the Hartree energy of ρ (see equation (12)), and add it to the
one-body energy with a penalty parameter λ> 0. We then arrive at the minimization problem

inf
〈ϕλ

j ,ϕ
λ
k 〉=δjk

1

2

N∑
j=1

ˆ
|∇ϕλ

j (r)|2 dr+
ˆ

vext(r)ρ
λ(r)dr+D(ρλ)+λD(ρλ − ρgs)

 ,

where we have set ρλ(r) =
∑N

j=1 |ϕλ
j (r)|2 and vext is the external potential. Requiring that the derivative of

the above functional with respect to the orbitals ϕλ
j vanishes, we obtain the KS-type equations of the ZMP

method [2]. These equations are then solved for λ→∞. We may summarize the method as follows.
Suppose that ρgs is a ground-state density for some interacting system with external potential vext. Let

ρλ(r) =
∑N

j=1 |ϕλ
j (r)|2, vλH(r) = (ρλ ∗ | · |−1)(r), and

vλ(r) = λ

ˆ
ρλ(r ′)− ρgs(r ′)

|r− r ′|
dr ′, (1)

where the ϕλ
j satisfy [

−1

2
∇2 + vext(r)+ vλH(r)+ vλ(r)

]
ϕλ
j (r) = eλj ϕ

λ
j (r). (2)

Then, formally

vxc(r) = lim
λ→∞

vλ(r) and ρgs(r) = lim
λ→∞

ρλ(r).

In [2] it was reported that solving equations (1) and (2) self-consistently as λ→∞, the procedure
converges, although it might not be easy to extrapolate to λ=∞.

Remark 1.

(i) We have included
´
vext(r)ρλ(r)dr and D(ρλ) in the minimization problem such that vλ targets vxc

only, as can be seen from equation (2). The Hartree potential in equation (2) is sometimes substituted
for a Fermi–Amaldi term, as for example in [2].
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(ii) The choice of D(·) as a penalty term in the minimization problem is rather ad hoc at this point, and [1]
suggested to use the L2-norm instead. One can imagine that a wide variety of functionals should work
and we will later show how the corresponding different ZMP schemes arise from different choices for
the basic function spaces.

(iii) Note that λ is here just a parameter introduced to penalize for densities differing too much from ρgs. In
our interpretation below, the regularization parameter ε replaces the penalty parameter λ.

2.2. Moreau–Yosida regularization in DFT
Differentiability of the exact universal (interacting or non-interacting) density functionals cannot be
guaranteed, they are in fact everywhere discontinuous in the standard formulation [25]. A way to achieve
differentiability of convex functionals, introduced in the context of DFT in [24] (see [26, 27] for recent
reviews), is by Moreau–Yosida regularization. This program was extended by two of the present authors in
[28, 29] to different DFT settings, and was also used to show convergence of a modified KS iteration on finite
lattices [30, 31]. In this section, we briefly review the basic properties of Moreau–Yosida regularization and
their consequences for DFT.

We start in the very general setting of a Banach space X, containing all densities under consideration, that
is reflexive and where both X and its dual X∗ are strictly convex. A normed space is strictly convex if the
function ρ 7→ ‖ρ‖2 is strictly convex. All Lebesgue spaces Lp, 1< p<∞, and in general every Hilbert space
verify these assumptions, they are even uniformly convex. We note that the non-reflexive spaces L1 and L∞

are excluded.
In the following, an important role will be played by the duality mapping J that maps elements from X to

X∗ in a canonical way. It is defined as

J(ρ) = {ξ ∈ X∗ | 〈ξ,ρ〉= ‖ρ‖2X = ‖ξ‖2X∗}.

The duality mapping is always homogeneous and in the given setting it is also single-valued and bijective
[32, Prop. 1.117], so J−1 : X∗ → X is well-defined.

The relevance of convex analysis to DFT was recognized very early [33], and so a series of definitions
from this very useful field are in order. We refer the reader to various textbooks [32, 34, 35] for more
information. As mentioned above, exact density functionals are (typically) not differentiable, however, a
more general concept of differentiation is applicable. The subdifferential ∂f : X→P(X∗) (mapping to the
power set of X∗) of a convex functional f : X→ R∪{+∞} at ρ ∈ X is defined as the set

∂f(ρ) = {v ∈ X∗ | ∀σ ∈ X : 〈v,σ− ρ〉⩽ f(σ)− f(ρ)}.

Intuitively, the convex set ∂f(ρ) collects all the supporting hyperplanes of the graph of f at the point (ρ, f(ρ)).
If f happens to be continuously differentiable at a point ρ, then ∂f(ρ) is the singleton set { f ′(ρ)}. If
∂f(ρ) 6= ∅, then we say that f is subdifferentiable at ρ. Analogously, the notion of the superdifferential ∂f can
be introduced for concave functions f via ∂f =−∂(−f). Similarly, whenever ∂f(ρ) 6= ∅, then we say that f is
superdifferentiable at ρ.

The Legendre transform f∗ : X∗ → R∪{+∞} of a functional f : X→ R∪{+∞} is defined as
f∗(v) = sup{〈v,ρ〉− f(ρ) | ρ ∈ X}. Similarly, the Legendre transform g∗ : X→ R∪{+∞} of a functional
g : X∗ → R∪{+∞} is defined as g∗(v) = sup{〈v,ρ〉− g(v) | v ∈ X∗}. The functionals f∗ and g∗ are always
convex (even if f and g are not). The famous biconjugation theorem says that whenever f is proper, lower
semicontinuous and convex, then f∗ is proper, (weak-∗) lower semicontinuous and convex, and furthermore
( f∗)∗ = f. This result is very important for the convex formulation of DFT.

The Moreau–Yosida regularization fε : X→ R with a fixed ε> 0 of a convex, lower semicontinuous
functional f : X→ R∪{+∞} is given by the lower envelope of the parabola ρ 7→ 1

2ε‖ρ‖
2
X tracing along the

graph (ρ, f(ρ)). In a formula this means

fε(ρ) = inf
σ∈X

[
f(σ)+

1

2ε
‖ρ−σ‖2X

]
. (3)

Since the parabola is strictly convex and X is reflexive, the above infimum is attained at a unique point.
Consequently, the following definition of the proximal mapping Πε

f : X→ Xmakes sense,

Πε
f (ρ) = arg minσ∈X

[
f(σ)+

1

2ε
‖ρ−σ‖2X

]
.

Both the regularization of a functional and the proximal mapping are exemplified in figure 1.
We now collect all the relevant properties of the Moreau–Yosida regularization, the proofs of which may

be found in [24, 28, 32, 35].
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Figure 1. Visualization of the Moreau–Yosida regularization of a function f : R→ R with regularization parabolas and three
proximal mappings displayed.

Theorem 1. Let X be a strictly convex, reflexive Banach space such that X∗ is also strictly convex. Let
f : X→ R∪{+∞} be a convex, lower semicontinuous functional. Then the following properties hold true for the
Moreau–Yosida-regularized functional fε : X→ R.

(i) (Smoothing) fε is convex, Gâteaux differentiable (in particular continuous) and fε is finite everywhere in
X.

(ii) (Domination) inf f⩽ fε(ρ)⩽ f δ(ρ)⩽ f(ρ) for all ρ ∈ X and 0⩽ δ < ε. In particular,
inf fε = inf f δ = inf f.

(iii) (Pointwise convergence) fε(ρ)↗ f(ρ) as ε→ 0 for every ρ ∈ X.
(iv) The subdifferential ∂fε : X→P(X∗) of fε is the singleton ∂fε(ρ) = {( fε) ′(ρ)}, where ( fε) ′(ρ) is the

Gâteaux derivative of fε at ρ ∈ X.
(v) The proximal mapping Πf

ε is always single-valued and obeys the limit Πε
f (ρ)→ ρ as ε→ 0.

(vi) ( fε) ′(ρ) = 1
ε J(ρ−Πε

f (ρ)).

(vii) For any ρ,ρε ∈ X the relation ρε =Πε
f (ρ) is equivalent to

1
ε J(ρ− ρε) ∈ ∂f(ρε).

(viii) (Legendre transform) The Legendre transform ( fε)∗ : X∗ → R of fε is given by
( fε)∗(v) = f∗(v)+ ε

2‖v‖
2
X∗ for all v ∈ X∗.

Let us briefly discuss the consequences of these properties on a concrete example furnished by the convex
and (weakly) lower semicontinuous [33], but the everywhere discontinuous [25] (hence nowhere
differentiable) Lieb functional F : X→ R∪{+∞},

F(ρ) = inf
Γ7→ρ

Tr((K+W)Γ), W=
1

2

∑
j 6=k

|rj − rk|−1, (4)

on either the Hilbert space X= L2(Λ)' X∗, where Λ⊂ R3 is a finite box [24], or, X= L3(R3),
X∗ = L3/2(R3). The Lieb functional may also be defined through the concave ground-state energy
E : X∗ → R via Legendre transformation as

F(ρ) = (−E(−·))∗(ρ) = sup
v∈X∗

[
E(v)−〈v,ρ〉

]
, (5)

which is sometimes referred to as the Lieb variational principle [27]. As usual, the dual pairing between
potential and density means 〈v,ρ〉=

´
v(r)ρ(r)dr.

Now, consider the Moreau–Yosida regularization fε of F. The regularized ground-state energy Eε (more
specifically, the energy corresponding to the regularized functional) given by−Eε(−·) = (Fε)∗ can then be
expressed using property (viii) above simply as

Eε(v) = E(v)− ε

2
‖v‖2X∗ . (6)

The one-parameter family of convex and (Gâteaux-) differentiable functionals {Fε}ε>0 converges pointwise
and increasingly to the original, unregularized F from below as ε→ 0 by property (iii) above. The regularized

4
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ground-state energy Eε(v) also converges to the true ground-state energy E(v) according to equation (6), and
Eε(v) is shifted from E(v) by a calculable constant. Further,

∂Eε(v) = ∂E(v)+ εJ(v),

since J is just the derivative of the concave functional− 1
2‖v‖

2
X∗ . This also means that the degeneracy of the

ground state, manifested through multiple ground-state densities ∂E(v), is retained exactly for the
regularized case. These facts reflect the ‘lossless’ character of the Moreau–Yosida-regularization, i.e. no
information is lost in the regularization process. Note, however, that the Moreau–Yosida regularization of fε

does not make Eε differentiable. Nevertheless, it makes Eε superdifferentiable everywhere, while in the
unregularized case E is superdifferentiable only at potentials v ∈ X∗ that support a ground state (a.k.a.
binding potentials). In such a case, ∂E(v) is the set of densities coming from ensemble ground states
associated to v.

By the biconjugation theorem, the well-known duality relation between F and E [33], sometimes called
the Hohenberg–Kohn variational principle,

E(v) = inf
ρ∈X

[
F(ρ)+ 〈v,ρ〉

]
, (7)

also holds in the regularized setting,

Eε(v) = inf
ρ∈X

[
Fε(ρ)+ 〈v,ρ〉

]
. (8)

According to theorem 1 (i), fε is finite everywhere (i.e. even at densities which are not representable by a
wavefunction), so the minimizer ρ in equation (8) might be unphysical: ρ can be negative, might not
integrate to N, or

´
|∇√

ρ|2 drmight diverge (see [33]). This is in contrast to minimizers of equation (7),
which are of course always physical.

The way out from this apparent difficulty is the following. We know from general convex-analysis
considerations [32, prop. 2.33] that ρ is an optimizer in equation (8) if and only if−v ∈ ∂Fε(ρ), in other
words (theorem 1 (iv)), if and only if

−v= (Fε)′(ρ).

Combining this with theorem 1 (vi), this is equivalent to (recall that we use the notation ρε =Πε
F(ρ))

−v=
1

ε
J(ρ− ρε).

Inverting this equation, we find that a minimizer ρ of equation (8) is always of the form

ρ= ρε − εJ−1(v). (9)

We call ρε the proximal density of ρ. It is important to note that ρε will always be physical: ρε ⩾ 0,´
ρε dr= N and

´
|∇√

ρε|2 dr<∞. This is because ρε is indeed a minimizer of equation (7) by
theorem 1 (vii). Again, we see the ‘lossless’ character of Moreau–Yosida regularization: from a possibly
unphysical minimizer ρ (a.k.a. a quasidensity) of equation (8), we can always reconstruct a unique physical
density ρε = ρ+ εJ−1(v). We can conclude that solving the original minimization problem equation (7) is
completely equivalent to solving a regularized problem equation (8). One simply needs to combine
equation (6) and equation (9) to obtain the ground-state energy E(v) and the respective ground-state density.

Similar considerations hold true for the (mixed state) kinetic-energy functional

T(ρ) = inf
Γ7→ρ

Tr(KΓ), (10)

which is also convex and lower semicontinuous [33], but discontinuous everywhere. One obtains the
regularized functional Tε with equivalent properties as before. However, it is important to note at this point
that the functional

TS(ρ) = inf∑N
j=1

|ϕj(r)|2=ρ(r)

⟨ϕj,ϕk⟩=δjk

1

2

N∑
j=1

ˆ
|∇ϕj|2 dr,

used in conventional KS-DFT is not convex [33], so that the Moreau–Yosida regularization (or the
convex-analysis approach) is not directly applicable in this case. Therefore, Moreau–Yosida regularized KS

5
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methods will always involve fractional occupation numbers since one considers density matrices in
equation (10). We note in passing, that in the case ρ is (non-interacting) v-representable with a
non-degenerate ground state, then T(ρ) = TS(ρ).

We are now ready to recognize that the ZMP minimization problem initially posed in section 2.1 really
has the form of a Moreau–Yosida regularization, where the regularization parabola 1

2ε‖ρ−σ‖2X in
equation (3) is given by λD(ρ− ρgs), albeit with a non-convex functional TS + vext +D. In order to show that
this is not just a accidental similarity and to be able to really formulate the ZMP method rigorously in terms
of a Moreau–Yosida regularization, we have to find the suitable setting with a convex functional.

2.3. Model setting
In KS-DFT the universal density functional (introduced above in equation (4))

F(ρ) = inf
Γ 7→ρ

Tr((K+W)Γ),

is split into

F(ρ) = T(ρ)+D(ρ)+ Exc(ρ), (11)

where

D(ρ) = D(ρ,ρ), D(ρ,σ) =
1

2

ˆ ˆ
ρ(r)σ(r ′)

|r− r ′|
drdr ′, (12)

are the Hartree energy and Coulomb inner product. The crucial object in equation (11) is the
exchange-correlation energy Exc that accounts for the non-classical contributions and that actually gets
defined through equation (11). Exc has been referred to as ‘nature’s glue’ [36].

To set the stage, we will relate ground-state densities and their corresponding potentials through convex
energy functionals. First, we introduce the density functional F(ρ), given below as a constrained-search
functional over density matrices, FCS(ρ), and an additional term, a convex (and lower semicontinous)
functional G(ρ)>−∞, i.e.

F(ρ) = FCS(ρ)+G(ρ), FCS(ρ) = inf
Γ7→ρ

Tr(H ref
0 Γ). (13)

The flexibility provided by G(ρ) is discussed in remark 2. The functional F(ρ) is defined on the Banach
space X of densities and for H ref

0 6= 0 is set to F(ρ) = +∞ whenever ρ does not represent a physical state.

Remark 2.

(i) The functional G will typically be non-linear and differentiable.
(ii) If H ref

0 contains only ‘internal’ parts and further G(ρ) = 0 then F(ρ) is indeed a universal density
functional, like F(ρ) = T(ρ) or F(ρ) = F(ρ).

(iii) Relevant for the forthcoming discussion is the choiceH ref
0 = K together with G(ρ) = 〈vext,ρ〉+D(ρ), so

that the potential from the inversion procedure is just the exchange-correlation potential. This will be
further explained in section 3.1 below.

(iv) Another possibility is to follow [4] and set H ref
0 = 0 and for G(ρ) use, e.g. one of the functionals

D(ρ),

ˆ
ρ1+α dr,

1

2

ˆ
|∇√

ρ|2 dr,

where α> 0. These functionals are all convex (and lower semicontinuous).

The density functional F can then be used to compute the (reference) ground-state energy EF (v) of a
system described by F (H ref

0 and G) with an additional potential v,

EF (v) = inf
ρ∈X

[
F(ρ)+ 〈v,ρ〉

]
. (14)

Apart from a difference in sign, EF (v) is the convex conjugate of F(ρ), and as such, a concave function. We
can also revert back from EF (v) to F(ρ) by duality as

F(ρ) = sup
v∈X∗

[
EF (v)−〈v,ρ〉

]
, (15)

6
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just like in equation (5). The condition for a density being a minimizer in equation (14) can be equivalently
rephrased as (see section 2.2)

− v ∈ ∂F(ρ). (16)

This equation already constitutes a density-potential map and will serve as the starting point for the
development of a more practical method. The inversion of this relation, mapping from potentials to
densities, entails solving the corresponding KS-type (SCF-) equation with potential v and determining the
ground-state density (or densities, in case of degeneracy). By the reciprocity theorem [32, prop. 2.33], this
amounts to the superdifferential of the convex conjugate functional EF ,

ρ ∈ ∂EF (v),

which is just the condition for v being a maximizer in equation (15). In order to establish a relation to the
notion of v-representability, we consider the case when G is differentiable, such that

∂F = ∂FCS +G ′. (17)

For a potential−v ∈ ∂F the difference to ∂FCS just appears as a fixed shift+G ′ and the cardinality of the set
∂FCS is the same for ∂F . This allows to discern three qualitatively different cases when it comes to solutions
of equation (16):

(i) The subdifferential is empty when ρ is not v-representable with some Hamiltonian, which in this case
means v-representability with Hamiltonian H ref

0 +V.
(ii) The subdifferential only contains a single element if ρ is v-representable and if we are in a setting where

the Hohenberg–Kohn theorem holds [37].
(iii) Finally, the subdifferential can also contain multiple elements in cases where the density is

non-uniquely v-representable, a situation recently discovered in finite lattice system with ground-state
degeneracy [38].

Now, returning to the general case, the situation would be much simpler if the functional F(ρ) could be
assumed to be functionally (i.e. Gâteaux-) differentiable, since then the subdifferential always contains exactly
one element (the functional derivative). As we discussed above, this is typically not the case, and in particular
not the case for exact functionals. To remedy the situation, we recall that the desired differentiability do hold
for the regularized functionals. It will be shown below that by appropriately combining these ideas,
Moreau–Yosida regularization serves as a basis for the rigorous reformulation of ZMP and related methods.

3. Main results

3.1. Abstract density-potential inversion
The main concrete example for the forthcoming discussion is the(fractional occupation number) KS scheme,
which we choose to model with the functional

FKS(ρ) = T(ρ)+ 〈vext,ρ〉+D(ρ),

that was already mentioned in Remark 2 (iii). The functional FKS is convex and lower semicontinuous for
every vext ∈ X∗. In the KS setting, ρ ∈ X is noninteracting v-representable if and only if ∂FKS(ρ) 6= ∅. Note
that we have chosen the functional FKS to be such that only the exchange-correlation energy is left out as the
remaining, unknown contribution. Then, comparing with equation (17) above, the set of KS potentials reads

VKS(ρ) := {vext + vρH + vρxc | vρxc ∈ −∂FKS(ρ)}.

This is because (〈vext, ·〉) ′ ≡ vext and D ′(ρ) is just the Hartree potential. Using this language, the
density-potential inversion consists of finding a representative of−∂FKS(ρgs), where ρgs is a ground-state of
the interacting problem. The following fundamental result says that it is always possible to find this potential
as the limit of the functional derivative−(Fε

KS)
′(ρ) of the regularized functional Fε

KS(ρ) as ε→ 0. We state
the result in its full generality, since we want to apply it in different situations, i.e. not just for FKS.

7
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Theorem 2. Suppose that X is a strictly convex Banach space and X∗ a uniformly convex one. Let
F : X→ R∪{+∞} be a convex, lower semicontinuous functional. Let ρgs ∈ X be such that the subdifferential is
nonempty, ∂F(ρgs) 6= ∅. Setting ρε := Πε

F (ρgs) as before, we have that the (strong) limit of the sequence

−(Fε)′(ρgs) =
1

ε
J(ρε − ρgs) ∈ −∂F(ρε) (as ε→ 0),

in X∗ is the unique element v ∈ −∂F(ρgs)⊂ X∗ with minimal norm.

The proof can be found in an even more general form in section 5. Recall that (Fε) ′(ρgs) always exists
due to to regularization. To implement the procedure suggested by the theorem, one needs to determine the
proximal density ρε and vε := 1

ε J(ρ
ε − ρgs) ∈ −∂F(ρε), and let ε→ 0. Of course, in general, neither step is

trivial.
Here, the relation vε ∈ −∂F(ρε) is equivalent to ρε ∈ ∂EF (vε) by the reciprocity relation, where

EF (v) = infρ[F(ρ)+ 〈v,ρ〉]. This step avoids the necessity to calculate the proximal mapping. For instance, if
F = FKS, then solving ρε ∈ ∂EFKS(v

ε) for ρε amounts to solving the (fractional occupation number) KS
equations with vε in place of the exchange-correlation potential. We return to this case in more detail below.

All this suggests the following abstract self-consistent scheme. Suppose that besides the ground-state
density ρgs ∈ X, the initial vε0 and ρε0 are given. In a general step we compute ρεi ∈ ∂EF (vεi ) and then update
the potential via

vεi+1 :=
1

ε
J(ρεi − ρgs). (18)

When sufficiently converged, this is repeated for smaller values of ε to facilitate the limit ε→ 0 in the form of
an extrapolation.

We summarize the above considerations in a form of an algorithm. We use mixing to facilitate
convergence, like in the optimal-damping algorithm for electronic-structure calculations [39].

Procedure 1 (abstract density-potential inversion algorithm). Fix a strictly decreasing sequence εk → 0 and
a mixing parameter 0< µ < 1. For a given v-representable ρgs ∈ X, choose corresponding initial values vk0. In
each i-iteration determine the ground-state density ρki ∈ ∂EF (vki ) and calculate the succeeding potential as

vki+1 = (1−µ)vki +
µ

εk
J(ρki − ρgs). (19)

Switch to the next k-iteration when vki is sufficiently converged to some vk and finally let vk → v as k→∞.

Here, the initial value vk0 for the effective potential may be chosen to be the zero potential or the result
from the previous k-iteration.

It must be noted that in general the convergence of the given procedure is not assured (see section 3.4 for
a numerical test and some remarks about the choices on µ and the ε-sequence). Especially the occurrence of
degeneracies—when ∂EF (v) includes multiple elements to choose from—will be problematic. Yet the
potentials that produce such degeneracies are expected to be rare in potential space and thus they are unlikely
to be hit by an iteration step vki . Procedure 1 can be simplified by letting the mixing parameter µ go to zero,
while keeping α := µε−1

k constant, thereby dropping the extrapolation steps in k. This gives an alternative
procedure.

Procedure 2 (simplified abstract density-potential inversion algorithm). Fix a parameter 0< α < 1. For a
given v-representable ρgs ∈ X choose an initial value for the potential v0. In each iteration step determine the
ground-state density ρi ∈ ∂EF (vi) and calculate the succeeding potential as

vi+1 = vi +αJ(ρi − ρgs).

Stop when vi is sufficiently converged.

Clearly, the choice of function space X determines the duality mapping J that is crucial for concrete
realizations and we now explore a few possibilities that will include two variants of the ZMP method as
special cases.

3.2. Interpretation of the ZMPmethod
We already presented the original ZMP approach to density-potential inversion in section 2.1. It is now fairly
straightforward to interpret the method in a rigorous way as the density-potential inversion following
equation (18). The two procedures developed for abstract density-potential inversion would then already

8
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serve as possible refinements. Additionally, the discussed cases also add correction terms to the usual ZMP
method.

Theorem 3 (ZMPmethod on bounded domains). Let Ω⊂ R3 be a bounded domain and set X=H−1(Ω),
X∗ =H1

0(Ω). Then J−1 =−∆D, the Dirichlet–Laplace operator, and J means solving Poisson’s equation with
zero boundary conditions on the domain Ω, which gives just the Hartree potential with a boundary term. Then
the potential update step equation (18) reads

vεi+1(r) =
1

4πε

ˆ
Ω

ρεi (r
′)− ρgs(r ′)

|r− r ′|
dr ′ − 1

ε
gε,Ωi (r), (20)

where

gε,Ωi (r) =

ˆ
Ω

ϕrΩ(r
′)
(
ρεi (r

′)− ρgs(r
′)
)
dr′.

Here,∆ϕrΩ = 0 on Ω and ϕrΩ(r
′) = (4π|r ′ − r|)−1 on ∂Ω. For every ε> 0, this can be solved self-consistently

with ρεi ∈ ∂EF (vεi ) and extrapolated to ε→ 0. For F = FKS and assuming convergence of vεi → vε in the limit
i→∞, the potentials vε then give the exchange-correlation potential as its (strong) limit, vxc = limε→0 vε.

Furthermore, by setting λ= (4πε)−1, the first term in the right-hand side of equation (20) corresponds
exactly to the ZMP method equation (1), while the second term is a correction that depends on the shape of
Ω.

For the choice X∗ =H1
0(Ω), the Sobolev embedding theorem [40, 4.12, I.C and III] yields X∗ ⊂ L6(Ω)

and Ω bounded allows X∗ ⊂ L6(Ω)⊂ L3(Ω)⊂ L1(Ω). Thus by duality and denseness of X∗ in the Lp spaces
above, X includes the usual choice L1(Ω)∩ L3(Ω) = L3(Ω) for the space of densities [33]. Further, it is
interesting to note that the same choice of potential space H1

0(Ω), with the density as an additional weighting
function, already occurred in a study of time-dependent DFT [41].

The setting Ω= R3 is the one usually presented in molecular DFT. In order to formulate the ZMP
method on a unbounded domain, we may proceed as follows. Let X=H−1(R3) and X∗ =H1(R3). Instead of
Poisson’s equation we have the screened Poisson equation (−∆+ γ2)v= ρ for a fixed choice γ > 0 with
solution, sufficient regularity assumed,

v(r) =
1

4π

ˆ
R3

e−γ|r−r′|

|r− r′|
ρ(r′)dr′,

which gives J(ρ) = v. The integral kernel 1
4π |r|

−1e−γ|r| appearing here is known as the Yukawa potential. We
can therefore conclude

Theorem 4 (ZMPmethod on unbounded domains). Let X=H−1(R3) and X∗ =H1(R3). Then the
potential update step of equation (18) reads

vεi+1(r) =
1

4πε

ˆ
R3

ρεi (r
′)− ρgs(r′)

|r− r′|
e−γ|r−r′| dr′.

With this we can proceed like in theorem 3.

3.3. Density-potential inversion on Lp spaces
Before presenting our numerical results in section 3.4, we wish to discuss the Hilbert-space setting
X= L2(Ω), X∗ = L2(Ω), Ω⊆ Rd. This choice implies J= J−1 = id. Irrespective of Ω being bounded or not, X
does not include the space L1 ∩ L3, so the setting is unsuited for dealing with densities in the continuum.

This changes in a discrete setting that represents a finite lattice, since for X= RM,M the number of
vertices, all Lp norms, p⩾ 1, are equivalent. Using the identity map in procedure 1, we get the naïve update
scheme

vki+1 = (1−µ)vki +µε−1
k (ρki − ρgs),

which tells us to choose a positive (repulsive) potential where the current density is larger than the target
density and a negative (attractive) one if it is smaller. Similarly, procedure 2 is just

vi+1 = vi +α(ρi − ρgs).

This update scheme already appeared in the reverse-engineering procedure in [42] on quantum rings that is
itself inspired by the density-potential inversion method of [3]. The same method was used in [43], but with

9



Electron. Struct. 5 (2023) 014009 M Penz et al

Figure 2. Comparison of different density-potential-inversion methods implemented on a quantum ring with one particle and
M= 50 lattice sites. A target density was given, then different inversion schemes (procedures 1 and 2 and the standard non-linear
optimization algorithm BFGS) were applied to get the potential and to calculate again the ground-state density from there. The
left panels show the respective functions, the right panels show the difference to the target density (for densities) and to the BFGS
result (for potentials) in a logarithmic scale.

an adaptive parameter αi. The discrete L2 Hilbert-space setting will be further discussed with a numerical
experiment in section 3.4 where we compare the different methods.

We also briefly comment on the choice X= L3(Ω), X∗ = L3/2(Ω), Ω⊆ Rd. This example does not consist
of Hilbert spaces and it is chosen especially in order to include L1 ∩ L3 in X [33]. It was previously featured in
[28], where the regularized KS iteration was generalized to such density spaces. An example of how the
duality mapping looks like for the case Lp([0,1]) can be found in [44, prop. 3.14], but it is not a simple
expression even in just one dimension (d= 1).

3.4. Numerical illustration
In this section, we consider a numerical example based on a single system that serves as a basic
proof-of-concept of the density-potential inversion method. The system under consideration for our
numerical exploration is a quantum ring withM= 50 lattice sites, next-neighbor hopping τ =−1, and a
single spinless particle. The space choice is X= X∗ = RM with the standard L2-norm. We fix a periodic target
density ρgs and solve for the corresponding effective potential by three different methods. The first is just
applying a standard non-linear optimization algorithm (BFGS, in its scipy implementation) to equation (5),
while the other two are procedures 1 and 2. The parameter choice is µ= 0.05, α= 0.5, and the relatively
short ε-sequence (1,0.7,0.4,0.1). (Note that these parameters cannot be considered universal, a different
setting requires a recalibration, so a more careful choice including system size and other parameters seems
desirable.) Then all three potentials are again put into the Schrödinger equation and we solve for the
ground-state density that is then compared to the target density. Since the potential from the BFGS method
turns out to be the most accurate one, the other two potentials are compared to this one. We summarize the
results in figure 2. For the chosen tolerance, convergence was achieved in 136 iterations in procedure 2 while
in every ε-iteration between 43 and 70 steps were required to converge the inner i-iteration (with a total of
211 iterations) in procedure 1. This means that within this very specific example, procedure 1, our
generalization of the ZMP method, has no benefit compared to the simpler procedure 2, neither regarding
iteration speed nor accuracy. Yet, this finding was only established for the given example and other setups
might show a more pronounced difference between the two procedures built upon Moreau–Yosida
regularization. Still, both procedures have comparable overall convergence speed, while the reference
optimization algorithm BFGS has a considerably longer runtime (by a factor of 10 in the chosen example).

Note that here the L2-norm was mainly chosen for practicability, since it yields the trivial duality
mapping J= id. A different, non-uniform choice of norm could for example focus on specific areas of
interest and help to suppress problems with low-density regions.
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4. Summary and future work

Starting from the original ZMP method [1, 2], we have formulated a general framework aimed at
understanding the density-potential mapping using the Moreau–Yosida regularization scheme applied to
DFT. For the convenience of the reader, we reviewed the Moreau–Yosida regularization in detail and
summarized its consequences for DFT (section 2.2). Next, we formulated our rather general setting that
allows to handle a wide variety of density functionals (section 2.3). Our main results were stated in section 3,
which also contain our reformulation of the ZMP method. We first proposed an abstract density-potential
inversion procedure (procedure 1) by exploiting a property of the derivative of the
Moreau–Yosida-regularized density functional (theorem 2). Further, procedure 2 yields an even simpler
density-potential inversion scheme that was already considered in the literature before [42, 43]. We then
specialized the abstract procedure to obtain the ZMP method both on bounded domains (theorem 3) and on
unbounded domains (theorem 4). In the bounded case, we found that a correction term to the original ZMP
method, equation (1), is necessary, which accounts for the finite size of the domain. In the unbounded case,
the integration kernel of the original ZMP method gets changed to a Yukawa potential. This means that a
refinement of the current ZMP inversion algorithms seems entirely possible, e.g. by considering such
additional terms or by switching to different, more appropriate spaces for density and potential. Section 3.4
finally describes a small proof-of-concept of the different inversion schemes within a numerical experiment.

We stress that the focus of this work is not the immediate development of a new and more efficient
practical density-potential inversion method, but to understand the ZMP method and related techniques
within a generalized setting based on the Moreau–Yosida regularization. In conclusion, our findings provide
a framework for devising and analyzing density-potential inversion procedures. It would be also interesting
to see how the proposed modifications of the ZMP method perform in practice. Possible modifications are
the inclusion of the additional terms derived in theorems 3 and 4 or the choice of an altogether different
density space X, which influences the method through the corresponding duality mapping.

5. Proofs

We first restate theorem 2 in a slightly more general way. The theorem itself is then an immediate
consequence if one just remembers that uniform convexity of a space implies it is reflexive and that if a space
is reflexive, also its dual space has this property.

Lemma 1. Suppose that X,X∗ are both strictly convex and reflexive. Let f : X→ R∪{+∞} be a convex, lower
semicontinuous functional and x ∈ X such that the subdifferential ∂f(x) is nonempty. Then there is a unique
ξ ∈ ∂f(x)⊆ X∗ with minimal norm that is the weak limit of

( fε)
′(x) = ε−1J(x−Πε

f (x)) ∈ ∂f(Πε
f (x)), (21)

for ε↘ 0. Moreover, if X∗ is uniformly convex then strong convergence holds.

Proof. Since f is convex and lower semicontinuous, its subdifferential is a maximal monotone operator from
X to X∗ [32, th. 2.43]. Then the first equality and weak convergence follow directly from a result for maximal
monotone operators [32, prop. 1.146 (iv)]. We will just add a note about the notation in the reference for the
reader’s orientation. In [32], the parameter ε is replaced by λ, the duality mapping J is called f, and the
subdifferential ∂f is the operator A, while the gradients ( fε) ′ are Aλ. The connection with regularization is
made in section 2.2.3 [32]. That the density is in the domain of the subdifferential means that the
subdifferential is not empty at this point. That there exists a unique element with minimal norm in ∂f follows
from a basic theorem of functional analysis [45, cor. 5.1.19].

We finally show the set membership in equation (21). Taking the definition of the proximal mapping as
the minimizer in equation (3) and translating that into the condition that the subdifferential includes zero at
the minimum, we have

∂f(Πε
f (x))− ε−1J(x−Πε

f (x)) 3 0.

Here we first used that the subdifferential is additive for convex functions and then that ∂ 1
2‖ · ‖

2
X = J [32,

Ex. 2.32].

Proof of theorem 3. As usual X∗ =H1
0(Ω) is the Sobolev space with norm ‖v‖X∗ = (‖v‖2L2 + ‖∇v‖2L2)1/2

(here∇ is the weak gradient operator) and zero trace on ∂Ω. The Poincaré inequality [40, 6.30] gives an
equivalent norm ‖v‖X∗ = ‖∇v‖L2 that we will henceforth choose. The dual space X=H−1(Ω) consists of
distributions as explained in [40, 3.12]. Now since with the inverse duality mapping and a potential v ∈ X∗ it
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must hold 〈v, J−1(v)〉= ‖v‖2X∗ = ‖∇v‖2L2 = 〈v,−∆v〉, we just get J−1 =−∆D, the Dirichlet-Laplace operator
on Ω. (This also corresponds to the Riesz–Fréchet map since we are in the Hilbert space setting.) To obtain
v= J(ρ) we must thus solve−∆v= ρ, v|∂Ω = 0, i.e. Poisson’s equation with homogeneous Dirichlet
boundary conditions. If ρ is continuous and we assume a twice continuously-differentiable solution v to
exist, then this solution is given by an integral involving the Green function for the domain Ω [46, §2.2.4],

v(r) =

ˆ
Ω

ρ(r′)G(r,r′)dr′.

This Green function can be expressed as G(r,r ′) = Φ(r− r ′)−ϕrΩ(r
′) with Φ(r) = 1/(4π|r|) the

fundamental solution of Laplace’s equation and ϕrΩ(r
′) the corrector function solving∆ ′ϕrΩ(r

′) = 0 on Ω
with boundary condition ϕrΩ(r

′) = Φ(r ′ − r) on ∂Ω. Inserting this into equation (18) gives the stated
formula. The convergence to the exchange-correlation potential is then an application of theorem 2.

Proof of theorem 4. The only difference between the previous proof is a change in the duality map (because
the function space has been changed). The usual norm of X∗ =H1(R3) is ‖v‖X∗ = (‖v‖2L2 + ‖∇v‖2L2)1/2 but
for any γ > 0 one has ‖v‖X∗ = (γ2‖v‖2L2 + ‖∇v‖2L2)1/2 as an equivalent norm. Then the condition for the
duality map is 〈v, J−1(v)〉= γ2‖v‖2L2 + ‖∇v‖2L2 = 〈v,γ2v〉+ 〈v,−∆v〉 and thus J−1 =−∆+ γ2.
Consequently, application of J means solving the screened Poisson equation.
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