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Abstract
This article presents a study that aims to identify the boundary conditions of a railway bridge using system identification 
and artificial neural networks. Vibrations generated by three different train types recorded during a 24-h long measurement 
campaign is used to identify the modal frequencies and mode shapes of a single-span 50 m long railway bridge. Frequency 
Domain Decomposition and Stochastic Subspace Identification with Covariance methods were used to identify the modal 
properties from the recorded vibrations and the effect of the used Operational Modal Analysis on the identified modal proper-
ties was evaluated. An initial finite-element (FE) model based on the design drawings was not able to replicate the observed 
dynamic behavior of the bridge. Using a sensitivity analysis, the key parameters of the finite-element model that impact 
the vibration frequencies of the bridge was determined. 300 finite-element models were created by changing the values of 
these key parameters within their effective range and were used to identify the relationship between these parameters and 
the vibration frequencies using Artificial neural networks (ANNs). Leveraging this relationship, the values of the FE model 
parameters that minimizes the error between the measured and computed frequencies was determined. As a result, the mean 
error between the computed and the identified vibration frequencies was reduced from 27.3% for the initial model to 3.0% for 
the updated model. The study indicates that boundary conditions are among the most influential parameter on the dynamic 
behavior of bridges and can deviate significantly from the simplistic models generally used in the FE models.
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1  Introduction

Evaluation of the current state of existing bridge infrastruc-
ture remains a challenge for the engineering community. Use 
of numerical models under various loads is one of the most 
common methods to evaluate the state of the bridge under 
serviceability and ultimate limit states. While numerical 
models based solely on design drawings might be repre-
sentative of the structure immediately after its construction, 
they may not necessarily simulate the behavior of an existing 
bridge constructed decades earlier, because the key param-
eters affecting the behavior of an existing bridge can vary 
significantly over time due to aging and deterioration. In 
particular, the boundary conditions are susceptible to such 
variations due to effects, such as increased friction between 

the superstructure, the bearings and the abutments and piers. 
System identification, which consists of determining the key 
parameters of a structure and revising its finite-element (FE) 
model, provide an attractive option to ensure that the FE 
model can accurately simulate the behavior of the bridge and 
its boundary conditions. Monitoring the dynamic behavior 
of the bridge and calibrating the FE model such that the 
observed dynamic behavior can be simulated is a common 
method used for system identification. The modal param-
eters that are inherent characteristics of the structure can 
be identified from the recorded vibrations and can be used 
as indicators to evaluate the current state of the structures 
[1, 2]. In early research, to identify the modal characteris-
tic of the structures, forced vibration tests (input–output) 
were conducted using different excitation equipment, such 
as shakers or impact hammers [3]. The difficulties and costs 
of conducting this type of test on large structures encouraged 
researchers to develop methods that could be applied more 
efficiently leading to the development of the Operational 
Modal Analysis (OMA) methods. OMA uses the ambient 
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vibrations that are generated by sources such as wind and 
traffic and is also known as output-only method, because it 
does not use an input excitation [4, 5].

Once the modal parameters of the structure are identified 
from the recorded vibrations using OMA, the next step of 
the system identification process requires updating the FE 
model of the structure to minimize the difference between 
the computed and identified parameters. For this, various 
computational methods have been developed and applied 
on different bridge types [6–12]. Of the available numerical 
methods for FE model updating, Artificial Neural Networks 
(ANNs) was successfully implemented in several model 
updating studies and was recognized as a powerful tool. 
ANNs are known as robust computing tools to find com-
plex and hidden relationships in a data set, where an explicit 
formula is difficult to obtain, if not impossible. Hasancebi 
and Dumlupinar [13] employed ANN to develop an efficient 
technique for FE model updating of an aged concrete bridge. 
The network was trained using data sets from non-linear 
and linear analyses separately. This study demonstrated that 
ANN can be used reliably for model updating and prediction 
of structural parameters under a high level of complexity 
and uncertainties. Park et al. [14] evaluated the boundary 
conditions of a steel girder bridge using neural networks 
through laboratory and field tests. They used ANN to find 
the relationships between bridge response and the constrain-
ing effect of the boundary condition with a focus on the 
rotational stiffness at the boundaries of the FE model. Zapico 
et al. [15] used ANNs for the FE model updating of a small 
steel frame, where the network was employed to establish 
the relationship between key structural parameters and the 
natural frequencies. Chang et al. [16] proposed a model 
updating method and applied it on a suspension bridge 
using an adaptive neural network. They used an iterative 
procedure to reduce the differences between the predicted 
and measured frequencies, where the model updating pro-
cess and training the network were updated repeatedly until 
obtaining a satisfactory agreement between the computed 
and measured responses.

Due to the significance of the boundary conditions on 
the bridge behavior, several studies focused on the bound-
ary conditions of the bridges during the FE model updat-
ing process and reported that the in-situ conditions can dif-
fer significantly from the design drawings. Hester al. [17] 
studied the boundary conditions of a steel girder short-span 
highway bridge. The study revealed the real behavior of the 
support as pinned–pinned due to the friction on the bridge 
bearings, as opposed to the pinned-roller as suggested by the 
design drawings. Dilena et al. [18] applied FE model updat-
ing to identify the boundary conditions of a damaged rein-
forced concrete bridge. To represent both sliding and fixed 
constraining effects of boundary conditions, each support 
was modeled using an additional linear elastic spring acting 

along the bridge longitudinal direction, and then a sensi-
tivity analysis was conducted to identify the relationship 
between spring stiffness and natural frequencies. Brownjohn 
et al. [19] evaluated the strengthening and refurbishing of 
a highway bridge by model updating and dynamic testing. 
To reflect the structural change of the bridge after refurbish-
ment, the abutments were modeled with rotational stiffness 
rather than free-to-rotate pin supports as indicated in the 
design drawings.

This article presents a holistic system identification study 
starting from the measurement campaign conducted on a 
simply supported single-span railway bridge to the calibra-
tion of its FE model using ANNs. The main purpose of the 
study is to identify the boundary conditions of the bridge and 
quantify the deviation of the identified boundary conditions 
from the ideal conditions specified in the design drawings. 
The bridge is a 50-m long bridge single-span beam bridge 
located on the Ofot line (Ofotbanen) in Northern Norway 
and is part of a vital railroad that carries the iron ores mined 
in Kiruna, Sweden to the harbor in Narvik, Norway. This 
bridge is exposed to various types of train crossings, rang-
ing from lightweight maintenance vehicles to heavy-haul 
trains carrying the iron ores. In the OMA process, the free 
vibrations recorded after the crossing of three types of trains, 
which are significantly different from each other as far as 
their mass is concerned, are used to identify the vertical and 
transverse modes of using FDD and the SSI–COV methods. 
The impact of the vibration source and the OMA algorithm 
used in the modal parameter identification process was eval-
uated and discussed.

The FE model of the bridge was then developed and 
calibrated using ANNs with special focus on the bound-
ary conditions. First, sensitivity analyses were conducted 
to identify the parameters that significantly impact the 
dynamic response of the bridge. A set of sample FE models 
replicating a wide range of the critical modeling parameters 
selected randomly from their effective ranges were created. 
Although the boundary conditions were designed as simple 
pin and roller supports, the rotational stiffness at both sup-
ports and the translational stiffness at the roller support is 
also included in the FE model updating process to ensure 
that potential variations in the boundary conditions were 
reflected in the final model A data set containing the val-
ues of the modeling parameters and the computed modal 
parameters was thus created. This data set was then used as 
the training data for an ANN to learn the invisible patterns 
between the bridge parameters and the bridge responses. 
Various networks consisting of different hidden layers and 
processing elements are tested. The modal parameters of 
the bridge identified from the field response were then fed 
into the trained ANN to estimate the values of the mod-
eling parameters that represent the current condition of the 
bridge. It is shown that the boundary conditions can vary 
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significantly from the design assumptions and these varia-
tions can be captured successfully by utilizing the predictive 
capabilities of ANNs.

2 � Bridge description, instrumentation, 
and vibration measurements

The Norddal bridge is a single-span, prestressed T-beam 
concrete bridge located on the Ofot line (Ofotbanen), which 
is part of a vital railroad that carries the iron ore mined in 
Kiruna, Sweden to the harbor in Narvik, Norway. As such, 
the bridge is exposed to very high axel loads from the iron 
ore trains crossing the bridge regularly. Figure 1a depicts the 
cross section of the bridge deck, which is a double tee sec-
tion with a width of 6.6 m and a total depth of 2.5 m. A pair 
of elastomeric bearings installed at the top of each abutment 
supports the superstructure; Fig. 1b.

The instrumentation deployed on the bridge consists of 
five triaxial micro–electro-mechanical systems (MEMS) 
accelerometers and data loggers to record the vibration 
data. The accelerometers were attached to the steel plates 
using very strong magnets. The steel plates were, in turn, 
mounted on the concrete on the bridge deck using high 
strength epoxy, as shown in Fig. 2. The location of the five 
accelerometers on the bridge deck is presented in Fig. 3. Of 
the five accelerometers, one was placed at the mid-span (S3 
in Fig. 3) effectively dividing the bridge into half. Two of 
the remaining accelerometers were placed 4.45 m away from 
each abutment (S1 and S5). The fourth accelerometer (S4) 
was placed approximately in the middle of the two accel-
erometers that are placed at the mid-span (S3) and one of 

the abutments (S5). The final accelerometer (S2) was then 
placed at 1/3 of the distance between the accelerometer at 
the other abutment (S1) and S3. A non-symmetrical sensor 
setup was used in the measurements to be able to obtain 
more information close to the abutments on one side while 
having evenly spaced sensors on the other side provides 
better information about the overall behavior of the bridge. 
Vibrations were recorded continuously on the bridge for a 
24-h period in August 2020 with a sampling frequency of 
250 Hz.

Vibrations induced by three different train types were 
recorded during the measurement campaign: loaded iron ore 
trains, unloaded iron ore trains carrying the empty wagons, 

Fig. 1   a Cross section of the Norddal Bridge (all dimensions are in cm) and b detailed view of the bridge abutments

Fig. 2   Triaxial accelerometers on the bridge deck
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and lightweight maintenance vehicles used for regular track 
maintenance. The iron ore trains are composed of 68 wagons 
with four axels on each wagon (i.e., a total of 292 axes) and 
have a total length of approximately 700 m. The axel load for 
the loaded iron ore trains is specified as 30 tons. The length 
of each wagon is approximately 10 m; thus, the maximum 
number of wagons that are on the bridge at the same time 
is five. As such, the fully loaded iron ore train adds around 
600t to the total mass of the bridge, while the total mass of 
the bridge itself is approximately 1100t. Thus, the total mass 
of the bridge increases by approximately 50% when the train 
is on the bridge potentially impacting the vibration frequen-
cies of the bridge [20]. On the other hand, the lightweight 
maintenance vehicles, which generally consist of just one 
locomotive, have a mass that is insignificant compared to the 
total mass of the bridge. Figure 4 presents the time variation 
of accelerations recorded during the crossing of each train 
type and indicates the relative length and mass of the iron 
ore trains and the lightweight maintenance vehicles.

In total, 23 train-induced excitations caused by eight 
loaded iron ore trains (designated by even numbers between 
T-9910 and T-9924), seven unloaded iron ore trains (desig-
nated by odd numbers between T-9909 and T-9921), and 

eight lightweight maintenance vehicles (designated by LW-1 
to LW-8) were recorded during the measurement campaign 
and used in the identification of the modal properties of the 
bridge.

In addition to the train-induced vibrations, ambient 
vibrations were also recorded during the 24-h measurement 
campaign.

The measured accelerations were first de-trended to 
remove any drift in the signals. The data was then filtered 
by a 4th order Butterworth bandpass filter with the cutoff 
frequencies at 0.1 Hz and 25.0 Hz, which are out of the fre-
quency range of interest for the modal identification process.

3 � Identification of modal parameters using 
operational modal analysis

The recorded accelerations were then used to identify the 
modal parameters of the bridge via operational modal analy-
sis (OMA). Over the two last decades, OMA procedures 
have developed rapidly, and the forced vibration tests have 
been replaced by OMA in many engineering applications 
[21]. Accordingly, a variety of OMA algorithms have been 

Fig. 3   Location of the accelera-
tion sensors on the bridge deck

Fig. 4   Vertical acceleration 
time histories at the midspan 
of the bridge through different 
train crossings
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developed and numerous studies have been conducted on 
modal parameter identification of bridges using differ-
ent OMA techniques to compare their performance and to 
evaluate their accuracy. The theoretical basis of the OMA 
techniques has been studied and developed in both fre-
quency- and time-domain approaches. OMA methods in 
the frequency-domain identify the modal parameters using 
the power spectrum density (PSD) functions of output 
responses. In frequency-domain methods, measured signals 
are transformed from the time domain into the frequency 
domain through the Fourier transform. The peak picking 
(PP), frequency domain decomposition (FDD), and the 
enhanced frequency domain decomposition (EFDD) meth-
ods can be mentioned as the most common techniques in the 
frequency domain [22]. The time-domain approach is based 
on analysis of the time history response or the correlation 
functions and arguably tends to provide more accurate and 
better results specifically in the case of a large number of 
closely spaced modes [23]. Several OMA techniques in the 
time domain have been developed and successfully applied 
to identify the modal parameters of bridge structures, such 
as natural excitation technique (NEXT), stochastic sub-
space identification (SSI), auto-regressive moving average 
(ARMA), and eigensystem realization algorithm (ERA) [24, 
25]. Different output-only frequency and time-domain sys-
tem identification algorithms have been applied to extract 
the modal parameter of the bridge structures, such as the 
golden gate suspension bridge [26], the Sutong bridge [27], 
the Millau Viaduct [28], and the Humber bridge [29].

OMA techniques are performed under principal assump-
tions of stationary excitation, system linearity, lightly 
damped structure, and broadband white noise input sig-
nals with a Gaussian distribution that has a constant power 

spectrum density [25, 30]. In general, ambient vibrations 
are preferred for OMA applications as they, in general, 
satisfy these principal assumptions. However, the ambi-
ent vibrations are often affected by noise and the results 
extracted from OMA techniques using ambient vibrations 
highly depend on the signal noise ratio (SNR) [23]. The 
monitored bridge is in a remote area with no roads and 
traffic in the vicinity and the only ambient vibration source 
is the wind, which had a very low intensity during the 
measurement campaign. Therefore, the recorded ambient 
vibration has very low acceleration amplitudes and suf-
fers from very low signal-to-noise ratios (SNRs). In the 
absence of satisfactory SNR from the ambient vibrations, 
the train-induced vibrations provide an opportunity for a 
reliable basis for the modal identification. Figure 5 shows 
an overview of different types of vibrations recorded on 
a railway bridge before, during and after a train crossing. 
Window 1 in Fig. 5 shows the forced vibrations induced 
by the train, while window 3 depicts the ambient vibra-
tions. Indicated by window 2 in Fig. 5 is the free decay 
portion that commences immediately after the train leaves 
the bridge and ends when the train induced vibrations are 
completely damped out. The modal identification based 
on the vibrations during the forced vibration phase of the 
train crossing (i.e., window 1 in Fig. 5) are prone to con-
tamination from the forcing frequency of the train and, 
possibly, the increase in the mass of the bridge due to 
the train mass. Furthermore, the train induced vibrations 
violates the basic assumptions of the OMA methods as 
the input excitation is non-stationary [23, 31]. To identify 
the modal parameters and to minimize the contamination 
of the frequency content of the bridge dynamic response, 
the free decay response that starts immediately after the 

Fig. 5   Types of different vibra-
tions recorded on a railway 
bridge before, during and after a 
train crossing
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train leaves the bridge (window 2 in Fig. 5) provides an 
attractive alternative that is used as a reliable excitation 
source to identify the modal parameters [31–33] and is 
used in this study.

Even though evaluation of just one free decay response 
induced by a random train can provide an initial insight into 
the bridge modal parameters, statistical analysis of the iden-
tified modal parameters from a set of excitations induced by 
different train types provides a more reliable set of modal 
parameters. Therefore, the modal identification is performed 
separately on all the 23 train crossings recorded during the 
measurement campaign.

To determine the length of the window that defines the 
free decay response (window 2 in Fig. 5) that will be used 
in the modal identification process, a sensitivity study on 
the effect of the length of the free decay on the identified 
modal frequencies proposed first by Ulker and Karoumi [34] 
was used. Accordingly, the length of the free-decay response 
was varied between 2 and 20 s and the identified frequencies 
were monitored. A 7-s window starting from the moment the 
train leaves the bridge was determined to be the optimum 
window for modal identification. Use of shorter data led to 
instabilities in the identified frequencies while using longer 
data resulted in the contamination of the data with noise due 
to the low SNR of the ambient vibration, which started to 
creep into the window when data longer than 7 s was used.

Acceleration measurements were analyzed using stochas-
tic subspace identification with covariance (SSI–COV) [35] 
and Frequency Domain Decomposition (FDD) techniques 
[36] to evaluate the variation in the identified modal param-
eters with the OMA algorithm used. In the application of 
the SSI–COV technique, the stabilization diagram is used to 
identify the modal parameters. In the stabilization diagram, 
the physical modes appear with consistent frequencies, while 
spurious modes tend to be more scattered and show erratic 
behavior. This diagram is very valuable in separating the 
true system poles from the spurious numerical poles. Cor-
responding poles to a model order are compared with those 
of the former model order to recognize the stable or unstable 
poles which are determined and plotted with different sym-
bols [37]. In this study, to build the stabilization diagrams, 
a series of modal parameters are identified across the fre-
quency range by increasing the model orders from 0 to 70. 
If the change in the frequency and the damping ratio of the 
two consecutive model orders were within 1% and 5% of 
each other, respectively, and the modal assurance criterion 
(MAC) of the mode shapes was higher than 98%, these poles 
were assumed to be stable poles. If the poles did not meet 
these criteria, the first one was discarded and the second one 
was compared to the subsequent pole. Regarding the FDD 
method, the basic concepts behind this method in the form 
of Complex Mode Indication Function (CMIF) have been 
proposed by Shih et al. [38], and a complete definition of this 

method was developed by Brinckler [36]. Identification of 
the modal parameters using the FDD method was performed 
by Complex Mode Indicator Function (CMIF) that shows the 
resonant peaks and returns the singular values (SV) of the 
cross-power spectrums as a function of frequency.

Figure 6a, b shows the stabilization diagrams for the 
SSI–COV method and CMIF plots used in the FDD method 
obtained using the free decay of the vertical accelerations 
after the passage of loaded iron ore (T-9924), unloaded iron 
ore (T-9919), and lightweight maintenance (TW-8) trains, 
respectively. Also plotted in Fig. 6 are the indicated modal 
peaks corresponding to the first three modes of the bridge 
in the vertical direction.

A total of six modes of interest, three in the vertical direc-
tion and three in the transverse direction, were identified 
from a total of 23 train crossings. However, a minority of 
the train crossings did not provide enough information for 
identification all the mode shapes. Of the 138 cases (6 modes 
and 23 train crossings) investigated, FDD could successfully 
identify 126 cases (91.3% success rate), while SSI–COV 
could successfully identify 125 cases (90.5% success rate). 
Although the lightweight maintenance vehicles created 
much lower excitations compared to the iron trains, this did 
not hinder the modal identification process as the identifica-
tion process was equally successful for all three train types 
considered.

Table 1 and Fig. 7 provide a comparative overview of 
the identified mean frequencies and the associated stand-
ard deviation for different train types and OMA algo-
rithms. The transverse mode shapes are identified using 
the prefix “T” in the mode shape name in Table 1, while 
the vertical modes shapes have the prefix “V” followed 
by the number of the mode in that direction. The mean 
frequencies summarized indicate that the mass of the train 
that induces the free decay used in the modal identifica-
tion process has a significant effect on the identified fre-
quencies, particularly for the first mode in both directions. 
While the mean first vertical frequency is identified as 
2.54 Hz using the FDD algorithm and the free decay from 
loaded iron ore trains, it increases to 2.93 Hz when the 
free decay from lightweight maintenance vehicle is used 
in the identification process. The impact of the train mass 
is much less pronounced for the second and third modes in 
each direction. In addition, the variation in the modal fre-
quencies is much higher for the heavier trains compared to 
those identified from the lightweight train crossings. The 
identified frequencies for the first transverse and vertical 
modes are constant at 2.93 and 3.41 Hz, respectively, for 
all eight cases of lightweight train crossings leading to a 
standard deviation of 0.0 (Fig. 7b). On the other hand, the 
frequencies vary from one loaded train crossing to another 
as indicated by the standard deviation in parentheses for 
each mode shape in Table 1. This can be attributed to the 
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impact of the train mass on the vibration frequency of the 
bridge. The lightweight maintenance vehicle has an insig-
nificant mass compared to the mass of the bridge and, thus, 
the identified frequency is virtually equal to the natural 
frequency of the bridge and does not vary from one train 
crossing to the other. On the other hand, the mass of the 
loaded train and, to some extent, the unloaded train, is 
significant compared to that of the bridge leading to a shift 
in the vibration frequencies. Although a consistent method 
was used to extract the free decay data from the train 
crossings, it is likely that the impact of the train crossing 
on the free decay varies between the train crossings as it 

is impossible to eliminate the contamination of the free 
decay data from the forced vibrations, particularly when 
the mass of the train relative to the bridge is so high. This 
leads to a higher variation in the identified vibration fre-
quencies for the unloaded and loaded trains compared to 
the lightweight maintenance vehicles.

The OMA algorithm used in the modal identifica-
tion process also has an impact in the identified vibra-
tion frequencies as FDD and SSI–COV algorithms pro-
vide slightly different vibration frequencies. However, 
the variation is not systematic as one algorithm provides 
higher frequencies for one mode, while it provides lower 

Fig. 6   a Stabilization diagram from the SSI–COV algorithm and b CMIF plots associated with the FDD technique for the free decay of the verti-
cal accelerations induced by different train types

Table 1   Mean and standard 
deviations (in parentheses) of 
the identified frequencies across 
different excitation cases and 
methods

Mode Natural frequency (Hz)

Loaded train Unloaded train Lightweight vehicle

FDD SSI–COV FDD SSI–COV FDD SSI–COV

T1 2.54 (0.41) 2.78 (0.08) 2.86 (0.17) 2.81 (0.04) 2.93 (0.00) 2.87 (0.01)
V1 2.81 (0.32) 2.85 (0.30) 3.00 (0.31) 2.99 (0.25) 3.41 (0.00) 3.31 (0.06)
T2 7.99 (0.42) 8.08 (0.41) 8.23 (0.17) 8.20 (0.57) 8.30 (0.00) 8.40 (0.33)
V2 9.58 (1.17) 9.55 (1.04) 10.33 (0.95) 9.60 (1.02) 9.58 (1.13) 9.55 (1.03)
T3 16.27 (1.75) 16.54 (2.09) 17.22 (2.12) 17.56 (1.58) 16.16 (1.62) 16.16 (0.95)
V3 17.62 (1.15) 17.97 (0.84) 17.96 (0.90) 17.88 (0.70) 18.06 (1.10) 17.53 (0.85)
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(a)

(b)

Fig. 7   Identified natural frequencies through free decay responses after different train crossings (V vertical, T transverse), a SSI–COV method, b 
FDD method
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frequencies for the other mode rendering it difficult to 
make a general conclusion about the effect of the algo-
rithm used in the identified modal properties. Further-
more, the variation in the identified frequencies using the 
two methods is not significant enough to warrant further 
evaluation.

The damping ratios of the first six modes of the bridge 
were identified using the SSI–COV method and summa-
rized in Table 2, where the mean and standard deviation 
of damping values are presented. The range of identified 
damping ratios is between 1.2 and 5.77% for the first three 
modes in each of the vertical and transverse directions. 
The damping ratios identified using the excitations from 
the lightweight vehicles are lower compared to their coun-
terparts from loaded and unloaded iron ore trains. This 
can be attributed to the fact that the damping ratio tends 
to increase with an increase in the amplitude of vibrations 
and lightweight vehicles produce lower vibration ampli-
tudes compared to the other two train types. Since iden-
tification of the damping ratio is not the main aim of this 
study and considering the well-documented observation 
that there are higher levels of uncertainty associated with 
identification of damping ratios compared to frequencies 
and mode shapes using OMA [39–41] the identified damp-
ing ratio values were not evaluated in further detail.

Mode shapes arguably provide the most valuable 
information about the dynamic properties of the bridge, 
because they provide not only global information about the 
structure but also localized insight that assists in a better 
understanding of the dynamic behavior of the structure 
compared to the global information, such as the vibration 
frequencies [40]. Figures 8 and 9 present a comparison 
of the identified mode shapes using the SSI–COV and 
FDD techniques for all the train crossings, respectively. 
Each row in these figures illustrates one of the identified 
modes, while each of the first three columns depicts the 
mode shapes identified using each train crossing for one 
of the train types. The fourth column depicts the mean 
mode shapes identified for each train type to enable the 
comparison of the results from different excitation sources.

To be able to evaluate the boundary conditions of the 
bridge objectively, the plotted modal displacements at the 
ends of the bridge were not assigned prescribed values but 
were computed by fitting a third-degree polynomial to the 
identified modal displacements at the five sensors.

Figures 8 and 9 show some variation in the mean mode 
shapes identified using the two algorithms from the different 
types of train crossings. To evaluate this variation quantita-
tively, modal assurance criterion (MAC) values between the 
mean mode shapes identified using the SSI–COV algorithm 
from the vibrations induced by lightweight maintenance 
vehicles and unloaded and loaded iron trains in the vertical 
direction were computed and plotted in Fig. 10.

The results indicate that, although the train type has a 
significant impact on the identified vibration frequencies, 
it does not affect the identified mode shapes significantly. 
Particularly for the first mode in both directions, whose 
frequencies were affected most by the train type, the mode 
shapes identified using free decay data induced by all three 
train types are essentially identical leading to a MAC value 
of 0.99. Only in the third mode, the excitation source led 
to a variation in the mode shapes but even for this mode, a 
relatively high MAC value was obtained for the two extreme 
cases, i.e., the loaded train and the lightweight maintenance 
vehicle (Fig. 10b). Although the results are presented only 
for the vertical modes in Fig. 10 for brevity, the MAC values 
obtained for the transverse modes identified from different 
train crossings were very similar to those for the vertical 
modes.

Figure 11 presents the correlation of the identified mode 
shapes in the vertical and transverse directions obtained 
using the FDD and SSI–COV method for the lightweight 
maintenance vehicles. The mode shapes identified using the 
two algorithms show very strong correlation, especially in 
the vertical direction. Only for the third mode in the trans-
verse direction, the MAC value falls below 0.90. This devia-
tion stems most likely from the complex vibration mecha-
nisms of the higher mode modes, which can be governed by 
structural characteristics as well as measurement errors [23].

Table 2   Modal damping ratios 
identified using the SSI–COV 
method for the first three 
vertical (V1–V3) and transverse 
(T1–T3) modes

Mode Damping ratios

Loaded train Unloaded train Lightweight vehicle

Mean (%) Std (%) Mean (%) Std (%) Mean (%) Std (%)

V1 4.13 1.25 5.77 2.02 3.25 1.66
V2 2.85 0.96 2.42 1.53 2.43 1.02
V3 1.91 0.45 1.87 0.98 1.21 0.72
T1 3.79 2.96 3.6 1.36 1.52 0.44
T2 1.43 0.55 3.39 2.55 2.01 1.51
T3 2.08 0.49 1.99 0.74 1.68 1.19
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As a result of the comprehensive modal identification study 
carried out using three different excitation sources and two dif-
ferent algorithms, it was decided to use the modal parameters 
obtained using the free decay induced by lightweight main-
tenance vehicles in the next phase of the study. This decision 
is mainly based on the insignificant mass of the lightweight 
vehicle compared to the bridge mass leading to identified 
modal frequencies that are virtually identical to the natural 

frequencies of the bridge. Furthermore, the mode shapes were 
shown to be insensitive to the excitation source and, as such, 
each of the three excitation sources provide similar identified 
mode shapes. Finally, for the lightweight maintenance vehicle, 
the OMA algorithm used in the modal identification process 
was shown to have very little impact on the identified modal 
parameters. This observation is in accordance with previ-
ous studies, all of which reported minimal variation in the 

(a)

(b)

Fig. 8   Mode shapes identified using the SSI–COV method in a vertical direction, b transverse direction
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(a)

(b)

Fig. 9   Mode shapes identified using the FDD method in a vertical direction, b transverse direction
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identified mode shapes and frequencies using various OMA 
algorithms [31, 40–42]. Therefore, the modal frequencies 
and the mode shapes identified using SSI–COV algorithm is 
used as the benchmark in the finite-element model updating 
process, although those from the FDD algorithm could have 
been chosen as the two algorithms provide essentially identical 
modal parameters.

4 � Initial finite‑element model

An initial FE model of the bridge was developed in the 
SAP2000 R21 computational environment based on the 
available design drawings and the information obtained 
from the in-situ observations. The bridge deck was mod-
eled using linearly elastic Bernoulli beams discretized at 

Fig. 10   Correlation between the mean vertical mode shapes identified using from the free decay induced by lightweight maintenance vehicle and 
a unloaded iron ore train b loaded iron ore train the SSI–COV algorithm

Fig. 11   Correlation between the mean mode shapes identified through the FDD and SSI–COV using the free vibration after the lightweight vehi-
cle crossing; a vertical modes, b transverse modes
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every 1 m. Using the cross section provided in Fig. 1a, the 
moment of inertia of the deck in the transverse and vertical 
directions are computed as 5.46 m4 and 16.89 m4, respec-
tively, while the cross-sectional area is equal to 6.81 m2.

For simplicity, the parapets and other non-structural ele-
ments are not considered in FE modeling as they have vir-
tually no effect on the stiffness of the bridge. The concrete 
class is considered C45/55 with an elasticity modulus of 
36 GPa based on the available information in the design 
drawings. The unit weight of the prestressed concrete deck 
including all the reinforcements, tendons, and prestressing 
cables is assumed to be 25 KN/m3. In addition to the self-
weight of the reinforced concrete, additional mass due to 
the non-structural elements such as ballast, sleepers, and 
parapets was also considered in the analysis. For this, a 
normalized mass parameter (Cm) defined as the ratio of the 
total bridge mass (i.e., self-weight of the bridge deck plus 
the additional mass of the non-structural elements) to the 
self-weight of the bridge deck is introduced. For the ini-
tial FE model, the mass of the non-structural elements was 
assumed to be 25% of the self-weight of the bridge deck, i.e., 
Cm = 1.25 was used in the initial model.

The boundary conditions were modeled according to 
the specifications in the design drawings. Figure 12 shows 
the springs used at both abutments to simulate the bound-
ary conditions at the abutments. For the initial model, at 
both ends, the supports were modeled as free to rotate 
(i.e., KRv = KRt = 0). The spring stiffnesses in the transla-
tional and vertical directions were computed based on the 
specified material and geometric properties of the elasto-
meric bearings. According to the design specifications, the 
stiffness of the elastomeric bearings in the vertical direction 
(Kv) was computed to be 1.63 × 106 kN/m, while, in the two 
horizontal directions, the stiffnesses (Kt and Kl) were com-
puted as 2667 kN/m using the shear stiffness of the bearings.

Fig. 12   Overview of the boundary conditions of the numerical model 
with translational and rotational springs
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As a result of the modal analysis, the frequencies of the 
first three modes in the vertical direction was computed 
to be 1.86 Hz, 7.31 Hz, and 16.01 Hz. These frequencies 
deviate up to 43% from the identified frequencies (Table 3) 
and indicate that the behavior of the bridge in the vertical 
direction is much stiffer compared to the model based on 
the design drawings as the frequencies identified from the 
recorded vibrations are much higher compared (Sect. 4) to 
their counterparts computed using the initial FE model. In 
the transverse direction, the frequencies of the first three 
modes were computed as 0.34 Hz, 0.62 Hz, 7.11 Hz from 
the initial FE model, respectively. These values are signifi-
cantly lower than the observed frequencies of the bridge 
(Table 3) indicating that the initial FE model underestimates 
the stiffness of the bridge in the transverse direction. This 
is most likely due to the spring stiffness of the bearings in 
the horizontal direction that is based on the design values. 
Although the mode shapes in the vertical direction obtained 
from the FE model had a high correlation with the identified 
mode shapes, the significant discrepancy in the frequencies 
computed using the initial FE model and those identified 
from the recorded vibrations show that the initial FE model 
fails to capture the dynamic behavior of the bridge indicating 
the need for updating the finite-element model.

5 � Selection of updating parameters 
and sensitivity analysis

One of the most critical steps of finite-element model updat-
ing process is the identification of the structural parameters 
that will be used in the process. Depending on the com-
plexity of the FE model there are several parameters, either 
material or geometric, that can potentially be used in the FE 
model updating process. However, not each of these poten-
tial parameters necessarily impact the dynamic response 
of the bridge significantly. Therefore, identification of the 
parameters that significantly affect the bridge response not 
only reduces the computational cost but also improves the 
accuracy of the final FE model. In this section, a parametric 
study that is carried out to determine the parameters that 
significantly impact the dynamic response of the bridge is 
summarized.

5.1 � Boundary conditions

The boundary conditions, arguably, is the most complex part 
of the FE model of a structure, especially for a single-span 
beam bridge. Although often modeled as idealized roller 
or hinge supports for simplicity, the actual behavior of the 
boundary conditions can be more complex. In addition, 
actual boundary conditions tend to alter during the bridge 
service life due to aging or deterioration. For example, the 

friction between the superstructure and the substructure as 
well as the shear keys located at the ends of the abutments 
can create a very effective restraint in translational directions 
that are assumed to be free in simplified numerical mod-
els. To account for these effects, the translational springs 
are defined in three perpendicular directions with differ-
ent spring stiffnesses, Kv, Kt, Kl, where three perpendicular 
directions are designated as ‘v’, ‘t’ and ‘l’ corresponding to 
vertical, transverse, and longitudinal directions, respectively. 
In addition, although the bridge supports are designed to 
be free to rotate, there are several potential factors that can 
create rotational stiffness at the ends of the bridge, such as 
continuity of the railway track and the ballast. To be able to 
consider the potential effect of these factors on the dynamic 
behavior of the bridge, two rotational springs, one for the 
rotation about the transverse axis, KRt, and one for the rota-
tion about the vertical axis, KRv, is introduced to the model 
(Fig. 12). The first of these springs, KRt, is likely to impact 
the vertical modes, while the latter, KRv, can impact the 
transverse and longitudinal modes.

To determine the influence of the spring stiffnesses on 
the modal parameters, the frequencies of the first six modes 
of the analytical model were recorded, while the value of 
the spring stiffness was modified until no significant change 
is observed in the modal frequencies. The results are pre-
sented in Figs. 13 and 14, for the translational and rota-
tional springs, respectively. Figure 13 shows that the trans-
lational spring coefficients in the vertical and transverse 
directions significantly impact the vibration frequencies. 
On the other hand, the spring stiffness in the longitudinal 
direction has virtually no effect on the vibration frequen-
cies. Based on these observations, the longitudinal spring 
stiffness was decided to be an insignificant parameter as far 
as finite-element model updating is concerned. In addition, 
Fig. 14 shows that the rotational stiffness about the vertical 
axis (KRv) has virtually no impact on the frequencies of the 
bridge, while the KRt impacts the frequencies in the vertical 
direction, particularly when the value of KRt is in the range 
between 105 and 108 kNm/rad. Hence, the rotational stiffness 
about the vertical axis was not considered in the FE updating 
process and was set to be equal to zero.

Although the frequencies are observed to be sensitive to 
the rotational stiffness about the transverse axis (KRt), this 
does not necessarily validate the inclusion of this param-
eter in the finite-element model, because the supports at the 
abutments were originally designed to rotate freely. How-
ever, the significant difference between the identified first 
mode frequency in the vertical direction (3.3 Hz) and that 
computed from the initial FE model (1.8 Hz) shows that 
the bridge is much stiffer in the vertical direction than the 
design assumptions used in the FE model suggests. As a 
test study, the initial FE model was modified to maximize 
the frequency of the vertical mode without considering the 
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rotational stiffness. For this, the bridge was modeled using 
pin supports at the ends, i.e., all the translational springs 
were set to be infinitely rigid, the modulus of elasticity of 
concrete was set to be 54 GPa (50% higher than the design 
value) and the total mass of the bridge was set to be 1.15 
times the self-weight of the concrete bridge deck. This 

model represents the extreme case, where the modulus of 
elasticity of concrete was set to arguably its maximum real-
istic value, while the total mass of the bridge was set to its 
minimum value. Here, it should be noted that, the total mass 
of the bridge includes the ballast, track, sleepers, and other 
non-structural elements. Adding the fact that all translational 

Fig. 13   Change of the natural frequencies of the bridge FE model vs. translational stiffnesses; a vertical stiffness, b transverse direction, c longi-
tudinal stiffness

Fig. 14   Change of the natural frequencies of the bridge FE model vs. rotational spring stiffnesses; a about the transverse axis, b about the verti-
cal axis
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springs were set to be rigid, it is not possible to have a higher 
frequency from a model, where the ends of the bridge are 
free to rotate unless either the modulus of elasticity of con-
crete or the mass of the bridge is set to unrealistic values. 
As a result of the modal analysis of this extreme model, 
the frequency of the first vertical mode was computed to 
be 2.4 Hz, i.e., 27.5% lower than the identified frequency. 
Further evaluation of the results indicated that including a 
rotational stiffness about the translational axis at the abut-
ments that simulate different mechanisms such as continuous 
nature of the railway and aging in the elastomeric bearings is 
the only option to reach the frequencies identified from the 
recorded vibrations. As such, this parameter was included 
in the finite-element model updating process.

5.2 � Modulus of elasticity of concrete

Modulus of elasticity of (Ec) is another parameter that 
influences the stiffness of the structure and hence its modal 
parameters. To quantify the impact of Ec on the vibration 
frequencies in the vertical and transverse directions of the 
bridge, modal analyses were carried out for a range of Ec 
while keeping the other parameters constant at their design 
values. It should be highlighted that a single value of Ec is 
considered for whole the bridge in FE modeling. Any local 
variation in Ec is due to factors such as deterioration or non-
homogenous characteristics of concrete is assumed to be 
insignificant as far as the global behavior of the bridge is 
concerned and not considered.

The modulus of elasticity of concrete is a highly vari-
able parameter that is difficult to specify or predict. Con-
ventionally, modulus of elasticity of concrete is expressed 
in terms of compressive strength in the design standards 
worldwide. More than 3000 data collected [43] on the rela-
tionship between the modulus of concrete and compressive 
strength of concrete depict the variability of Ec for a given 
concrete compressive strength. The experimental data shows 
that Ec varies between 18 and 45 GPa for a compressive 
strength of 45–50 MPa. Considering the potential increase 
in the modulus of elasticity of due to aging of the concrete 
material, upper bound value of the modulus of elasticity of 
concrete was assumed to be 54 GPa, while the lower bound 
value was chosen as 18 GPa. Figure 15 shows that vibration 
frequencies vary significantly with the modulus of elasticity 
of concrete indicating that this parameter needs to be consid-
ered in the finite-element model updating process.

Fig. 15   Variation of natural frequencies with the elasticity modulus 
of concrete

Fig. 16   Variation of natural 
frequencies with the normalized 
mass parameter (Cm)
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5.3 � Mass of bridge deck

Apart from the stiffness of the structure, mass is the only 
other parameter that influences the vibration frequencies and 
the mode shapes of a structure. Although the self-mass of 
the bridge can be computed accurately and can safely be 
assumed to be constant during its lifetime, the additional 
mass on an existing bridge deck due to the trackbed includ-
ing the ballast and sleepers and other nonstructural parts 
of the bridge cannot necessarily be computed with suffi-
cient accuracy. In this article, a normalized mass parameter 
(Cm), defined as the ratio of the total mass of the bridge deck 
including all the non-structural elements to its self-weight 
is considered for simplicity. The range of (Cm) used in the 
sensitivity analysis was determined as 1.15–1.40 based on 
the site observations and previous experience. As shown in 
Fig. 16, the normalized bridge mass has an effect, albeit not 
as significant as some other parameters considered, on the 
vibration frequencies.

As a result of the sensitivity analysis carried out, five 
parameters out of the eight investigated were determined to 
significantly affect the vibration frequencies of the Nord-
dal bridge and were considered in the finite-element model 
updating process. These parameters are the translational 
spring coefficients in the vertical and transverse directions 
(Kv and Kt), rotational spring coefficient about the trans-
verse axis (KRt), the modulus of elasticity of concrete (Ec), 
and the normalized mass of the bridge (Cm). Furthermore, 
the effective range of the parameters, where the vibration 
frequencies are sensitive to the variations in the parameters 
were determined to be 1.15–1.40 for Cm, 18–54GPa for Ec, 
105–1010 for Kv and Kt, and 105–108 for KRt.

6 � Neural network‑based model updating

Artificial neural networks (ANN) provide an attractive alter-
native for FE model updating, since it is a robust computing 
tool to find hidden and complex relationships between a set 
of data. ANN can learn from events, experiences, and exist-
ing patterns by capturing functional relationships between 
a set of inputs and outputs using the training data. A trained 
network can then classify and examine new data sets that are 
in the same characteristics as the training data set and make 
a prediction for patterns that are not considered during learn-
ing [16]. A typical feed-forward neural network consists of 
an input layer, and output layer and one or more hidden com-
putational units (neurons) that are interconnected. One of 
the strengths of artificial neural networks is their ability to 
reproduce and perform nonlinear processes through nonlin-
ear transformation of the weighted sum of inputs to produce 

an output making them a suitable choice for finite-element 
model updating tasks [13].

In the ANN-based FE updating of the Norddals bridge, 
the first six natural frequencies of the bridge identified from 
the recorded vibrations, three in the vertical direction and 
three in the transverse direction, (fv1, fv2, fv3, ft1, ft2, ft3), are 
used as the inputs, and the bridge parameters (Kv, Kt, KRv, 
E, Cm) are the outputs of the network. The neural network-
based model updating procedure consists of the following 
steps:

1.	 Determination of the updating parameters and their 
effective range.

2.	 Identification of the bridge modal parameters from the 
field test.

3.	 Generating a training data set by repeated FE analyses 
by randomly changing the values of the updating param-
eters in their effective range and obtaining the FE model 
frequency responses.

4.	 Choosing the suitable network and training the network 
by use of the training data set to learn the relationship 
between inputs (fv1, fv2, fv3, ft1, ft2, ft3) and outputs (Kv, 
Kt, KRv, E, Cm).

5.	 Feeding the identified modal parameters of the bridge 
into the trained network and obtaining the predicted 
parameters.

6.	 Updating the FE model using the predicted parameters 
and analyzing the FE model to obtain the response of the 
updated model.

7.	 Comparison of the field-measured responses with simu-
lated responses to quantify the accuracy of the updated 
model and the success of the updating process.

The following subsections present further details and 
implementation of the model updating process.

6.1 � Generating the training data set and training 
the network

After performing the sensitivity analysis, five bridge param-
eters (Kv, Kt, KRv, E, and Cm) are selected as the most impor-
tant parameters affecting the natural frequencies and their 
effective range was determined. The best training process 
is performed with the use of a data set created by randomly 
selecting different combinations of updating parameters 
within their effective range as reported by Atalla and Inman 
[44]. The training data set used in this study was generated 
through 300 FE analysis, where the values of each parameter 
was selected randomly within the predetermined range for 
that parameter. The frequency response from each set of 
parameters was computed via FE analysis and a database 
was created.
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Hadi [45] evaluated the application of neural networks 
to concrete structures using different learning algorithms of 
back-propagation. Backpropagation with Levenberg–Mar-
quardt (LM) algorithm was found to be the most effective 
algorithm to use in the finite-element model updating of 
concrete structures. It has the advantage of spending fewer 
epochs and less time to converge compared to other algo-
rithms. As such, Backpropagation with Levenberg–Mar-
quardt algorithm was selected for the finite-element model 
updating of the Norddal bridge.

The most widely used network model in structural engi-
neering applications is a multi-layered feed-forward neural 
network and a typical feed-forward neural network consists 
of an input layer, an output layer, and one or more hidden 
(inner) layers [46]. To choose the suitable network archi-
tecture, no specific recommendation is outlined in former 
studies that uses ANN for finite-element model updating 

and a trial-and-error approach is required to reach the 
most suitable network architecture. For this, ten differ-
ent networks with one and two inner layers with different 
numbers of neurons varying from 8 to 12 were evaluated 
considering the set of network parameters listed below.

•	 Share of training sets: 80%.
•	 Share of cross-validation sets: 20%.
•	 Number of input layer neurons: 6.
•	 Number of output layer neurons: 5.
•	 Activation functions: Sigmoid, Relu function.
•	 Normalization range: (0.0–1.0).
•	 Termination rule: minimum cross validation error or 

maximum epoch.

All ten networks were trained using the training data 
set and subsequently the identified frequencies from the 
recorded vibrations were fed into the networks. FE model 
of the bridge was updated based on each network’s output 
and the simulated and measured bridge responses were then 
compared to quantify the performance of the network. The 
best performance of the network is obtained with one hid-
den layer including eight neurons. Hence, the architectural 
form of the network 6–8–5 illustrated in Fig. 17 was found 
to minimize the error between the identified and estimated 
vibration frequencies. Furthermore, the activation function 
of Sigmoid had a better performance in predicting the vibra-
tion frequencies compared to the Relu activation function.

To evaluate the success of the training algorithm, the 
prediction error between the training and test samples are 
plotted in Fig. 18. The results show that the ANN model 
does not suffer from overfitting as indicated by the difference 
between the training and testing errors.

Fig. 17   Network architecture used for the model updating process

Fig. 18   Prediction errors 
between training and test 
samples



1241Journal of Civil Structural Health Monitoring (2022) 12:1223–1246	

123

6.2 � Estimation of the updated parameters using 
the trained ANN

After training the ANN, the identified frequencies from the 
crossing of the lightweight vehicle using the SSI–COV algo-
rithm are introduced to the trained network as input and 
the predicted parameters (Kv, Kt, KRt, E, Cm), which are 
outputs of the trained network, are obtained and presented in 
Table 3. The FE model is updated according to these param-
eters and a modal analysis was performed. The first six natu-
ral frequencies of the updated FE model are presented in 
Table 3 and compared to the identified modal frequencies 
from the lightweight maintenance vehicle crossings using 
the SSI–COV algorithm. Also presented in Table 3 are the 
vibration frequencies computed using the initial FE model 
based on the design drawings and design material proper-
ties. The model updated using the ANN provides very good 
estimates of the identified vibration frequencies. For the six 
modes, i.e., the first three modes in the vertical and trans-
verse directions, the average error between the identified and 
estimated frequencies from the updated model is 3.0% with 
a maximum error of 8.2% for the second transverse mode 
(Table 3). On the contrary, the average error between the 
identified frequencies and those computed using the initial 
FE model is 27.3% with a maximum of 43.8% observed for 
the first vertical mode.

Table 3 also shows that, the identified frequencies are 
much higher compared to those estimated using the initial 
model in the vertical direction while being much lower than 
the same in the transverse direction. This indicates that the 
spring coefficient in the transverse direction used in the ini-
tial FE model is much higher compared to the real behav-
ior. This should be expected as infinite stiffness was used 
as this spring coefficient in the initial FE model, while a 
finite stiffness coefficient (1.485e6 kN/m) is predicted by 
the ANN. The bearing stiffness in the transverse direction 
at the abutments is estimated to be 550 times higher than 
the shear stiffness of the bearing (1.485e6 kN/m vs. 2667 
kN/m). This discrepancy is most likely due to the shear keys 
that are often used to prevent excessive movements in the 
transverse direction. However, the details of the shear keys 
were not available in the design drawings rendering it impos-
sible to compute a realistic value to use in the initial FE 
model. Therefore, the spring in the transverse direction was 
modeled using the shear stiffness of the bearing, while the 
updating process using ANN provided a realistic estimate of 
the spring coefficient. This observation illustrates the impor-
tance of system identification of bridges using recorded 
vibrations, particularly in the transverse direction, where 
the estimation of the stiffness provided by the shear keys is 
often not straightforward. Furthermore, the shear stiffness 
of the elastomeric bearings provided by the manufacturer 
does not account for the presence of the vertical load, which 

is generally very significant, which may lead to a potential 
underestimation of this stiffness.

Figure 19 depicts the mode shapes identified from the 
vibration measurements together with their counterparts 
obtained from the updated FE model. For each mode shape, 
the modal assurance criterion (MAC) value between the 
identified and computed mode shapes is also presented. In 
addition, the MAC values between the identified and com-
puted mode shapes for the first three modes in each direction 
is plotted in Fig. 20. Except for the third vertical mode and 
the second transverse mode, the MAC value is over 0.975 
indicating a very strong correlation between the identified 
and computed mode shapes. For these two modes, i.e., the 
second transverse mode and the third vertical mode, the 
MAC values are 0.907 and 0.873, respectively, still indicat-
ing a very good correlation. The reason for the relatively 
lower MAC values for these modes can be identified from 
Fig. 19 as the discrepancy between the mode shapes at the 
boundaries indicating, once more, the significance of the 
boundary conditions in the FE model. Attempts to increase 
the MAC value for these two mode shapes by calibrating 
the boundary conditions, particularly the translational spring 
constants in the transverse and vertical directions, led to a 
decrease in the MAC value for the other mode shapes and 
a higher discrepancy in the identified and computed vibra-
tion frequencies. Hence, it was decided to use the bridge 
parameters estimated using the ANN as the final parameters. 
Finally, the cross-correlation between the different modes 
in both directions indicated by the off-diagonal terms in 
Fig. 20 are virtually zero providing further assurance that 
the identified and computed mode shapes have a very strong 
correlation.

Also plotted in Fig. 19 are the mode shapes obtained from 
the initial model that is based solely on the design draw-
ings. The improvement in the estimated modal frequencies 
(Table 3) and the mode shapes through the modal updating 
process is evident both in the vertical and the transverse 
directions. The differences between the updated model, ini-
tial model and the field-measured mode shapes are espe-
cially striking for the first and second transverse modes. In 
the initial model, the design value for the shear stiffness of 
the elastomeric bearings, which is a relatively low value is 
used. As such, the first and second transverse mode shapes 
are close to a rigid body motion of the deck sliding on the 
bearings. However, the mode shapes identified from the 
measured vibrations show a very different response that can 
be captured by the updated model.

The discrepancy between the updated model and identi-
fied mode shapes for the third vertical and second transverse 
modes plotted in Fig. 19 at the boundaries deserves further 
attention. A closer look at the mode shapes at the third ver-
tical mode shape (MAC = 0.873) reveal that the identified 
and computed mode shapes from the updated model are 



1242	 Journal of Civil Structural Health Monitoring (2022) 12:1223–1246

123

Fig. 19   Comparison of the 
numerical and field-measured 
mode shapes for bridge B1; a 
vertical direction, b transverse 
direction
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quite close to each other within the first 45 m of the bridge 
(0–45 m range). However, the two shapes diverge from each 
other significantly in the final 5 m of the bridge. The sensor 
locations plotted in Fig. 3 show that there are no sensors in 
this region, where the discrepancy between the two shapes 
is highest. In other words, the modal displacements for the 
identified mode shape in this region are not measured quanti-
ties. Instead, they are predicted using a cubic spline function 
based on the identified modal displacements at the five dis-
crete sensor locations depicted in Fig. 3. On the other hand, 
the modal displacements from the updated numerical model 
are computed at a much higher resolution. Focusing only 
on the region of the bridge, where the sensors are located, 
i.e., between 5 and 45 m (Fig. 3), the two mode shapes are 
observed to be in quite a good agreement. However, the lack 
of sensors closer to the edges lead to the discrepancies at 
the boundaries amplified by the cubic spline interpolation 
at these locations.

The second transverse mode shape in Fig. 19 provides 
a more striking example. The identified mode shape and 
that computed using the updated numerical model pro-
vide a perfect match between the 5 and 45 m of the bridge, 
i.e., between the two edge sensors (number one and five in 
Fig. 3). However, the two mode shapes diverge from each 
other in the first and final 5 m of the bridge, where the iden-
tified mode shape is predicted by a spline function. This 
observation highlights the importance of the spatial reso-
lution of sensors used in the measurements. In particular, 
placing sensors as close to the edges of the bridge as pos-
sible to minimize the uncertainties associated with the use 

of the spline functions is crucial for reliable mode shape 
identification.

The estimated normalized mass by the ANN (Cm = 1.302) 
indicates that mass of the non-structural parts such as bal-
last and sleepers is approximately 30% of the self-weight of 
the bridge deck. Furthermore, the modulus of elasticity of 
concrete was estimated to be 32.71 GPa. As mentioned in 
Sect. 5.2, the modulus of elasticity of concrete has a very 
high uncertainty due to the nature of concrete and can be 
sensitive to several factors, such as temperature and humid-
ity. Therefore, the estimated value can be considered within 
the acceptable range for C45 concrete as evidenced by the 
experimental data provided in [43] and does not necessar-
ily provide any information regarding the condition of the 
bridge.

6.3 � Dynamic response under loaded iron ore train

To be able to evaluate the efficacy of the updated model to 
emulate the dynamic response of the bridge under loaded 
iron ore trains, a moving load analysis was conducted. The 
accelerations computed from the moving load model were 
compared with those recorded during a train crossing. The 
iron ore train was modeled as a series of moving loads that 
is equal to the axle load of the loaded train, i.e., 300 kN. 
The iron ore train has, in total, 256 axles and its total length 
is approximately 800 m. The speed of the train crossing 
recorded on site was not known. However, the speed limit on 
the bridge is 50 km/h and it was assumed this speed repre-
sents the reality successfully. As such, the dynamic analysis 
on the updated model was run with a train speed of 50 km/h.

Fig. 20   Correlation between analytical and experimental mode shapes using MAC; a vertical direction, b transverse direction
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The acceleration response at the mid-span from the field 
measurements and the updated numerical model is depicted 
in Fig. 21. The field-measured and numerical responses are, 
in general, in good agreement with each other. This is even 
though the numerical model considers neither the vehicle 
bridge interaction as the train loads is modeled as moving 
loads nor the track irregularities that can impact the accel-
eration response of the bridge. Here, it should be noted that 
modeling the vehicle bridge interaction and the track irregu-
larities is beyond the scope of this study, because the current 
study focuses mainly on the modal response of the bridge. 
The dynamic analysis results provided are only to show that 
the updated numerical model provides reasonable accelera-
tion response compared to the field-measured response.

7 � Conclusions

This study aims to identify the modal parameters of a single-
span prestressed concrete railway bridge and update its FE 
model using artificial neural networks so that the FE model 
replicate the observed behavior, particularly its boundary 
conditions. The research was divided into two main parts: (i) 
the identification of the modal parameters of the bridge from 
the free decay responses caused by various train-induced 
excitations including 23 different train crossings categorized 
into three groups according to the train type using FDD and 
SSI–COV algorithms (ii) FE model updating with a focus on 
constraining effect of the boundary conditions represented 
by both translational and rotational stiffness at the supports 
to establish a more accurate FE model. Artificial Neural Net-
work (ANN) was used to identify the relationship between 
the FE model response of the bridge and the key bridge 
parameters. This relationship was then used to estimate the 

values of these key bridge parameters using the identified 
vibration frequencies. The following conclusions can be 
drawn from the conducted study:

•	 The identified frequencies show a significant variance, 
specifically for higher modes, from one train crossing 
to another. In addition, a higher standard deviation was 
observed for identified frequencies using the loaded 
iron ore train crossings, while the identified frequen-
cies using the lightweight vehicle crossings showed 
lower discrepancies. Although the vibrations during 
the free decay phase of the train crossings were used 
for modal identification, the influence of the mass of 
the train on the identified natural frequencies can be 
clearly observed causing a reduction in the vertical and 
transverse modal frequencies.

•	 The mean identified natural frequencies using the dif-
ferent OMA algorithms (FDD and SSI–COV) were in 
good agreement, with a difference of less than 3% in 
most cases. The variation in the frequencies from one 
train crossing to the other identified using the FDD 
algorithm was relatively larger compared to that from 
the SSI–COV algorithm.

•	 Furthermore, FDD and SSI–COV algorithms provided 
similar mode shapes for all the investigated mode 
shapes with MAC values higher than 0.90. Considering 
the similarity of the identified frequencies and mode 
shapes, it can be concluded that FDD and SSI–COV 
provide very similar estimates of the modal parameters.

•	 The mean identified mode shapes from different train 
types are, in general, close to each other indicating that 
mode shapes can be reliably extracted from a popula-
tion of train crossings for simply supported bridges.

Fig. 21   Acceleration response 
at the mid-span measured on-
site and obtained from updated 
numerical model
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•	 Even though the bridge is completely straight with no 
skewness in plan and the main direction of the loading 
exerted by the train loading is vertical, the vibrations 
in the transverse direction had sufficient energy to ena-
ble identification of the mode shapes in the transverse 
direction.

•	 Due to influence of the additional mass of the train 
on the identified frequencies, it is concluded that the 
results from the lightweight maintenance vehicle cross-
ing are more likely to be close to the modal parameters 
of the bridge compared to the identified parameters 
from loaded and unloaded iron ore train crossings.

•	 The sensitivity analysis and the modal updating process 
conducted highlighted the importance of the bound-
ary conditions on the modal parameters of the bridge. 
More specifically, the boundary conditions that are often 
assumed to be free such as the rotational stiffness at the 
abutments may deviate from the assumed value due to 
different mechanisms, such as continuous nature of the 
railway and aging in the elastomeric bearings. Consid-
eration of these parameters in the modal updating pro-
cess can prove to be crucial to be able to simulate the 
observed behavior of the bridge.

•	 In the transverse direction, the behavior of the bridge was 
shown to be very sensitive to the stiffness provided by 
the shear action in the elastomeric bearing and the shear 
keys, which are very difficult to compute from product 
descriptions and design drawings only. Using recorded 
vibrations and the identified modal parameters to esti-
mate this stiffness was instrumental in simulating the 
behavior of the bridge in the transverse direction.

•	 By updating the key parameters using ANN, a finite-
element model that can reliably simulate the observed 
behavior of the bridge as demonstrated by the very low 
error between the identified and estimated modal fre-
quencies and the high MAC values was obtained.

•	 The identified mode shapes can be vulnerable to uncer-
tainties at the boundaries if the outermost sensors are not 
placed close enough to the edges of the bridge. These 
uncertainties can be amplified by the use of spline func-
tions to increase the spatial resolution of the identified 
mode shapes.

•	 Supplementing the acceleration measurements by meas-
uring other structural response parameters such as the 
displacements at the abutments during the train crossings 
is likely to provide further insight into the critical bound-
ary conditions and should be considered in future studies.
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