
‘

Institutt for Informasjonsteknologi
Postadresse: Postboks 4 St. Olavs plass, 0130 Oslo
Besøksadresse: Holbergs plass, Oslo

PROSJEKT NR.
2022-64

TILGJENGELIGHET
Public report, public source-code.

Telefon: 22 45 32 00

BACHELORPROSJEKT
HOVEDPROSJEKTETS TITTEL
Inquiry, Documentation and Evaluation of Activity-Wristbands
for DIGI-EL, Digital Applications for handling early labour

DATO
25.04.2022

ANTALL SIDER / BILAG
98

PROSJEKTDELTAKERE
Hassan M Sheikh
Mohamed Abdullahi
Nojus Budreika
Rosa Berg

INTERN VEILEDER
Kristian Wold

OPPDRAGSGIVER
Karlstad University

KONTAKTPERSON
Lothar Fritsch

1

SAMMENDRAG
In collaboration with Karlstad Universities’ DIGI-EL project, our group has evaluated
activity-wristband Fitbit Charge 4. Assessments for accuracy, safety and privacy were
performed. Additionally, as a part of the project, the team has developed a software solution
to view and interact with the data collected throughout the project.

3 STIKKORD
Early Labour

Fitness-tracker

React

2

Abstract
Since digital tools have become synonymous with productivity and convenience,

questions have risen on whether these tools can assist people in more intimate

situations. DIGI-EL at Karlstad University wants to find out if activity-wristbands

can be used to reduce the stress associated with childbirth. To investigate this

hypothesis DIGI-EL wants to know that the tools they use are safe, accurate and

legal. In this report we evaluate the Fitbit Charge 4 according to criteria set by

Karlstad University. We measure the accuracy of the device’s functionalities and

we investigate its compliance with GDPR privacy laws and data-safety laws in

the context of sensitive research. We find the properties of the wristband

unsatisfactory for research purposes but good enough for a slight increase in

quality of life. We also provide a react-application that demonstrates how data

can be extracted from the Fitbit API.

3

Table of Contents

Main Title 1

Abstract 3

Table of Contents 4

Glossary 7

1. Introduction 8
1.1 Preface 8
1.2 Project Background 8
1.3 Research and Project-Drafting 9
1.4 Report Structure and Chapter Overview 11

2. Theoretical framework 12
2.1 React.js 12
2.2 Fitbit Web API 13

2.2.1 Background 13
2.2.2 Prerequisites 13
2.2.3 Authorization 14
2.2.4 API endpoints 15
2.2.5 Making requests 15
2.2.6 Scopes 17
2.2.7 Intraday 19

2.3 Data export 20
2.3.1 Preface 20
2.3.2 Web API 20
2.3.3 Fitbit official desktop app 20
2.3.4 Third-party applications 22

3. Product development 24
3.1 Aims 24
3.2 Work methodology 25
3.3 Development phases 26

3.3.1 Research phase 26
3.3.2 Design phase 27

4

3.3.3 Implementation phase 30
3.3.4 Limitations 32

4. Product Specification 33
4.1 Initial requirements 33
4.3 Changes in the requirements 34

5: Product Documentation 36
5.1 Preface 36
5.2 Third-party libraries 36
5.3 Running the application 37
5.3 React concepts 37

5.3.1 Components & Props 37
5.3.1 Hooks 39

5.4 Authorization 41
5.5 Context 42
5.6 Fetching data from the API 43
5.7 Handling data 47
5.8 Dashboard components 48
5.9 Selecting date period 51

6: User Manual 54
6.1 Prerequisites 54
6.2 Logging in to the system 55
6.3 User-interface overview 56
6.4 Add to home screen 58

7. Fitbit, GDPR and Privacy 60
7.1 Background 60
7.2 The implications 60
7.3 A look at the GDPR 61
7.4 Fitbit privacy policy and Terms of use 62
7.5 Data 63
7.6 Discussion 65

8. Experiments and Methodology 66
8.1 Technical specifications 66
8.2 Heart-rate Monitor 67
8.3 Sleep 68

5

8.4 Water resistance 69
8.5 Results 69

8.5.1 Heart-Rate: Resting 71
8.5.2 Heart-Rate: Stairs 72
8.5.3 Heart-Rate: Walking 74
8.5.4 Heart-Rate: Discussion 77
8.5.5 Sleep: Findings and Discussion 77
8.5.6 Water Resistance: Findings and Discussion 78
8.5.7 Battery life: Findings and Discussion 79
8.5.8 Wristband fit & comfort: Findings and Discussion 80

9. Conclusion 81
9.1 Future Work 82

Appendices 84
A) Excess Experiment Data 84
B) Notes from the sleep experiments 95
C) Project Timeline 97
D) Project Repository 97

Sources 98

6

Glossary

API-call - A request for information sent to a server by an application.

Database - A computer-system built around storing, categorizing and accessing data usually

through a database-management system such as mySQL or MongoDB.

Front-end - Part of the application that the user sees and interacts with.

HTTP - Hypertext Transfer Protocol is a protocol for sending resources over the World Wide

Web.

Endpoint - An “API endpoint” defines a path to the resource that the developer wants to

access. They’re appended onto the URL to point to the specific subcategory of data the

developer wants.

URI - Uniform Resource Identifier is a String of characters that refer to the resource on the

internet. Uniform Resource Locator (URL) is a subset of URI that describes how to reach the

resource (Javatpoint, n.d.).

Token - A unique “key” composed of random letters and symbols that is exchanged between

systems for verification and identification.

JSON - JavaScript Object Notation is a lightweight data-interchange format (Json.org, n.d.).

HTML - HyperText Markup Language is language to build structure for web documents that are

displayed on the internet.

CSS - Cascading Style Sheets is a language that is used to style the appearance of HTML

elements.

MIT license - A software license that permits commercial use, distribution, modification and

private use (Choose a License, n.d.).

BPM - The pulse is measured in beats per minute, which is the number of beats in a minute.

7

1. Introduction
1.1 Preface

In this paper we will describe the process of testing and assessing the Fitbit

Charge 4. Familiarity with smart-devices is assumed for our assessment of the

Fitbit. However, the section where we describe our react-application might prove

challenging to someone without experience with modern web-development. We

will try to use clear language and layman terms to make this paper accessible for

readers without a background in development. If this cannot be done without

ruining a paragraph we will include the term or concept in the appendix where it

will be fully explained.

1.2 Project Background

Our team was introduced to the project through an administrator at Oslomet.

Karlstad University needed a follow-up project to their pilot study in 2020 and we

were added to the roster one by one until we had our full team.

Research shows that over 75% of pregnant women make use of digital aid in

connection with their pregnancy (Lupton, D. and Pedersen, S., 2016), yet there

have been very few investigations into the best practices and applications of

these digital tools.

DIGI-EL is a project by Karlstad university that studies the effects digital

applications can have for the well-being of women in early labor. The goal of this

project is to evaluate if activity-wristbands can help alleviate stress a woman can

experience when pregnant.

8

As Karlstad University does not have the resources to manufacture their own

activity-wristbands for research-use, they are testing the viability of commercial

fitness-trackers instead. This comes with its own set of challenges, such as

potential inaccuracies with the sensors and concerns about data-protection and

privacy as data collected by the devices are sent abroad to American servers,

something that is in conflict with European data-safety and Swedish

research-laws.

As DIGI-EL does not possess the means to build their own wristbands, their

research into this field depends on wristbands made for personal use by

corporations. Relying on commercial wristbands poses its own set of challenges

that need to be understood and that’s why our group is part of a second

bachelor-project evaluating the safety and usability of these wristbands.

What differentiates our project from the previous one (Tunc, J., Bahmiary D., et.

al, 2020) is our focus on only one fitness-tracker, the Fitbit Charge 4, whereas

the 2020 study investigated the strengths and weaknesses of different brands. In

spite of these differences we hope to find that a focused study on a singular

activity-wristband provides useful and unique insight into the benefits and

challenges these devices can provide in the research being conducted by

DIGI-EL.

1.3 Research and Project-Drafting

Our initial research and planning started through a series of group meetings

where we talked among ourselves and with representatives from Karlstad

University in order to determine the scope and requirements of the project. The

talks with the representatives made it clear that they expected a process similar

9

to the one that had been submitted in 2020 and that there were very few

restrictions to the project as long as we fulfilled the base requirements of testing

the accuracy of the Fitbit Charge 4. We were asked to provide DIGI-EL with an

assessment of its relevance in their studies and an assessment of its relationship

with European data-protection laws. The application-part of the project had to

interact with the data collected by the fitbit, so we made it a goal to ensure that

the data is represented in a manner that is comprehensive and accessible to the

imagined end-user, which are nurses and medical researchers associated with

DIGI-EL.

As emphasis was placed on the 2020 report we used it as the outline for our own

testing. In the following meetings we broke down their methodology, we figured

out what worked and we started drawing up a plan for our own testing. This

planning became the pre-project report.

In these meetings we also agreed that the application should be built in React as

the team had previous experience with Javascript and it would be a useful

learning experience to build a react-web-application from scratch, especially

because the project involved interacting with a foreign database1 with

user-information through API-calls2.

The first thing we drafted was the form and schedule of the testing. We agreed

on three primary intensities of activity we would be gathering data from and we

made a spreadsheet outlining the timeline of the overall project. Since the entire

project relied on data we would gather through field testing, we made it a priority

to finish testing before we started development on the application that would

2 Glossary - API-call
1 Glossary - Database

10

handle the data we could gather through the testing, as the Fitbit would be saving

the measurements we made.

1.4 Report Structure and Chapter Overview

In this section we will introduce the structure of our report and a brief overview of

each chapter.

1. Introduction explains our relationship to the project, our workflow and the

draft.

2. Theoretical Framework explains the necessary theory around our

programming solution.

3. Product Development elaborates on the practical process of developing

the application.

4. Product Specification describes the requirements we set for the

application.

5. Product Documentation is a guide for those interested in developing and

maintaining the app. It covers the most relevant parts of the code, how it

works, and why it was implemented the way it is.

6. User Manual is a user-oriented manual to the application.

7. Fitbit, GDPR and Privacy investigates Fitbit’s compliance with

data-protection laws and privacy concerns in the context of DIGI-EL’s

research.

8. Experiments and Methodology explains our testing, our approach to testing

and our results.

9. Conclusions describe our findings and reflections.

11

2. Theoretical framework
This chapter explains the necessary theory around our programming solution,

primarily the usage of Fitbit Web API. Inner workings of the API will be discussed

in this chapter together with other relevant theory background.

2.1 React.js

We chose to use a JavaScript library called React.js for this project (React,

n.d.a). React is a front-end3 library designed to build user-interfaces. Compared

to vanilla JavaScript, it offers some benefits that make web-applications easier to

develop. One of the main benefits of React is reusable components (React,

n.d.a). Components are building blocks in React that encapsulate state and logic

into reusable user-interfaces. These components can then be reused throughout

the application. This brings more flexibility and robustness to the development.

React would allow us to build a stable and comprehensive web-application that

interacts smoothly with tasks like accessing data provided by a foreign server

and funneling data into charts. This was thanks to the many existing solutions

and libraries that exist in the React ecosystem. React also gave us flexibility as it

could be modified to suit any request our clients might have had down the line,

which allowed us to future-proof our project as we were helping the clients make

specific demands as to what they would want this application to do.

3 Glossary - front-end

12

2.2 Fitbit Web API

2.2.1 Background

Our application required us to interact with the Fitbit Web API (Fitbit Developer,

n.d., a) which is provided for free by the Fitbit corporation. An API stands for

Application Programming Interface and is somewhat like a strict receptionist for a

company that develops interactive digital software (Red Hat, 2017). It’s a way for

somebody outside of the company to be given directions to specific data or

features that the software company wants other companies or independent

developers to make use of. This allows external developers to build their own

software out of data obtained from the company’s software without the company

exposing any vulnerabilities or copyrighted code by giving foreign developers

direct access to the source code of the software.

Fitbit’s Web API communicates with the external system through HTTP4

requests. HTTP requests are methods that indicate what kind of operation is

going to be performed for a given resource (MDN Web Docs, 2021). GET, POST,

UPDATE and DELETE are the most commonly used HTTP request methods. In

our case, to obtain the data from the Fitbit server we will primarily use GET

requests.

2.2.2 Prerequisites

To interact with Fitbit’s Web API, the first step is to create a Fitbit developer

account. The developer is then required to register an application using this link:

https://dev.fitbit.com/apps.

Registered application is then given a client ID and a secret-key. These keys are

later needed for the authorization process (Fitbit Developer, n.d., b).

4 Glossary - HTTP

13

https://dev.fitbit.com/apps

2.2.3 Authorization

Interacting with the Fitbit API is not frictionless. To access data for our application

we first need to Authorize the users. Authorization is a security concept that

providers ensure that those who need to access data on their servers or API get

the proper permissions to do so while preventing the data from being intercepted

or accessed by anyone without permission. OAuth2 (https://oauth.net/2/) is the

industry-standard authorization protocol and it was the one we interacted with

making our application. OAuth2 verifies the authorization request sent by the

provider’s system and then returns a unique token which gives access to the

data for the user. Sequence diagram of how our application authorizes users

through OAuth2 is shown in figure 2.1.

Figure 2.1: Sequence diagram shows how the user is authorized to our
application

14

https://oauth.net/2/

2.2.4 API endpoints

Our interaction with the Web API centered around the endpoints5 that

corresponded with the data we were measuring and testing. These endpoints

gave us access to the data the Fitbit Charge 4 had collected about our heart

rates, steps taken, sleep and calories that we’ve noted in the application or on

the wristband. We used five primary API endpoints for our project:

1. /1/user/[user-id]/activities/heart/date/[start-date]/[end-date].json is a

GET request that retrieves heart rate time series data over a period of time

by specifying a date range. The response will include only the daily

summary values.

2. /1/user/[user-id]/activities/heart/date/[date]/1d/1min.json is a GET

request that retrieves the heart rate intraday time series data on a specific

date in 1 minute intervals.

3. /1.2/user/[user-id]/sleep/date/[startDate]/[endDate].json is a GET

request that retrieves a list of a user's sleep log entries for a date range.

4. /1/user/[user-id]/activities/steps/date/[start-date]/[end-date].json is a

GET request that retrieves the steps data with specified date range.

5. /1/user/[user-id]/activities/calories/date/[start-date]/[end-date].json is a

GET request that retrieves the calories burned data with specified date

range.

2.2.5 Making requests

To make requests, we need to specify the user-id as an URI6 argument. Each

user will have a unique user-id which helps to identify whose data the API is

going to return. User-id can also be substituted with “-” (dash) for currently

6 Glossary - URI
5 Glossary - Endpoints

15

logged in users. As a part of URI arguments, it is also necessary to define date or

date-range that the API uses to return desired results. Based on the specific

endpoints there may be additional URI arguments that need to be filled out. For

example, if the developer wants to retrieve the amount of steps taken, the

resource URI argument is also required, as illustrated in figure 2.2.

Figure 2.2: Shows URI arguments that are required to make an API call to fetch
the step count. Taken from Fitbit Web API documentation:
https://dev.fitbit.com/build/reference/web-api/activity-timeseries/get-activity-times
eries-by-date-range/

Furthermore, we require an authorization header to be filled in with the user's

access token7, as seen in the figure 2.3 located below.

Figure 2.3: Shows the setup of making an API-call to retrieve step count using
Postman as the tool. To make a valid request the Authorization Header is filled
out, as well as URL with required arguments such as dates, user and resource.

7 Glossary - Token

16

https://dev.fitbit.com/build/reference/web-api/activity-timeseries/get-activity-timeseries-by-date-range/
https://dev.fitbit.com/build/reference/web-api/activity-timeseries/get-activity-timeseries-by-date-range/

GET requests send back a JSON8 response after a successful request, which is

a clean and efficient way to organize data with key-value pairs. The basic

structure of a JSON response can look something like this as shown in the figure

2.4:

Figure 2.4: Example JSON response, after a valid GET request.

In this example “activities-steps” is a key that holds an array as a value. Array

itself contains key-value pairs that point us, and our program, to the data that is

relevant for our purposes. Predictable and standardized nature of JSON

responses makes it easy to convert them to the native JavaScript objects.

2.2.6 Scopes

Developers are not allowed to access user’s information without the user

consent. The consent is controlled through a list of scopes, where each scope is

responsible for a specific category of data collection, as seen in figure 2.5.

8 Glossary - JSON

17

Figure 2.5: Table of all available scopes. Taken from Fitbit Web API
documentation:
https://dev.fitbit.com/build/reference/web-api/developer-guide/application-design/
#Scopes

Each API-call depends on some sort of scope. That means if the user hasn’t

consented to a specific scope that the API-call depends on, the data won’t be

retrieved and the request will return an error message. Users can allow/decline

scopes in the Authorization panel, as shown in figure 2.6.

18

https://dev.fitbit.com/build/reference/web-api/developer-guide/application-design/#Scopes
https://dev.fitbit.com/build/reference/web-api/developer-guide/application-design/#Scopes

Figure 2.6: Users can accept / decline specific scopes of data when logging in to
the application. Taken from Fitbit Web API documentation:
https://dev.fitbit.com/build/reference/web-api/developer-guide/application-design/
#Scopes

2.2.7 Intraday

The Web API also provides a feature called Intraday, which allows a developer to

access the minute-by-minute and second-to-second heart-monitor or activity

readings from the wristband. This allows very close scrutiny of the data provided

by the wristband, but due to the sensitive nature of this comprehensive insight

into a person’s body and life Intraday data is only provided to developers that fill

out a special form. Our team had to fill out this form as a minute-by-minute

overview of heart rate data had been requested by our clients in our last meeting

with them.

19

https://dev.fitbit.com/build/reference/web-api/developer-guide/application-design/#Scopes
https://dev.fitbit.com/build/reference/web-api/developer-guide/application-design/#Scopes

2.3 Data export

2.3.1 Preface

Our client at Karlstad University wanted to know what options are there to export

the data collected by the Fitbit tracker. We explored different ways we can export

the data and will describe them here.

2.3.2 Web API

The public Web API exposes virtually all data collected by the tracker. The data is

made available by making API calls - HTTP requests that return a JSON

response body containing the extracted data. This approach is suited most when

the data needs to be implemented into the application. A downside of this

approach is that it requires programming knowledge. At the same time,

JSON-object would need to be reformatted to make the data more readable. Web

API also has a specific endpoint that returns user’s collected activities in TCX file

format instead of JSON.

2.3.3 Fitbit official desktop app

Users' collected data can be exported directly from the Fitbit’s official web

application. In the desktop version the data can be exported by first navigating to

the Settings (Figure 2.8) and then clicking on the Data Export option.

20

Figure 2.8: In the Fitbit Web application Data Export function can be found in
Settings.

Here, the user has two options for data export. User can either choose to export

the data by specifying the time period or export the entire account archive.

Supported file format for download is CSV or Excel file format. The export

options are shown in the figure 2.9, located below.

Figure 2.9: From the Fitbit Web application the user can export the entire account
archive, or export data by specifying the scopes and time period.

21

Additionally, we can export data collected during activities. This can be achieved

by first navigating to the “Log”, found in the navigation bar at the top of the

window, and then clicking on the Activities tab. Activities will be listed under

“Activity History”. User can click “View details” on a desired activity to reveal

additional information about it. To export the data, user has to click on the

three-dot menu located at the upper right of the panel, and then to click on

“Export as a TCX File”. Steps are illustrated in figure 2.10.

Figure 2.10: Activities can be downloaded as TCX files.

2.3.4 Third-party applications

When our team tried to export activities containing the test data that we

performed, we encountered some problems. The downloaded file contained an

empty dataset. After some research we found out that other people had a similar

problem. This is possibly a bug and might be fixed in the future. This problem led

us to explore other third-party options. The application that we found is called

FitToStrava (https://www.fittostrava.com/) and it worked well for us for exporting

activity data (Figure 2.11).

22

https://www.fittostrava.com/

Figure 2.11: Our team used the app FitToStrava to export the data from the tests
that we performed.

To use the application we had to authorize with the Fitbit account. Additionally,

we had to create a Strava account. Afterwards, the activity data could be

accessed by the application and therefore exported as a TCX file.

23

3. Product development
In this chapter, the process about our product development will be discussed.

Chapter will define aims and goals for the product and at the same time will give

more insight into the several development phases that took place while working

on the product.

3.1 Aims

Karlstad University did not give us any distinct requirements for the utility of the

application we would develop in conjunction with our research and testing.

Therefore we set our own requirements for the project. We wanted to build a

light-weight web-application that could demonstrate the capacity of the Fitbit API

in the context of health-overview and research. We figured this was a good

primary focus because the only technical requirement we were given was for the

application to interact with the data collected by the Fitbit Charge 4 in some way.

This culminated in a lot of freedom to do our own thing and we used this freedom

to build the application around a simple interface that would make the data

collected by the Fitbit easily accessible on a dashboard. We would later revise

this design and make additions based on feedback by our clients in Sweden, but

the core idea remained the same for the entire development process. As we

were dealing with very rudimentary data we felt it would benefit the project if we

presented our solution in a clear way. We didn’t want the application to grow too

complex as too much functionality could distract from the data the hypothetical

end-user would attempt to access.

24

Here are the goals that we set ourselves for this product:

● The application utilizes Web API to get the data from the fitness tracker.

We will focus on the data from heart rate, sleep, steps taken and calories

burned.

● The application will display the collected data in an easy to visualize

manner. App will use charts to help with that.

● The application will provide summaries of the different data that has been

collected for a given period of time.

3.2 Work methodology

Due to the more scientific nature of this project, we did not adapt any specific

software development workflows. With that said, our development methodology

was leaning towards an agile approach. The reasons for this approach were

changing product specification and not-clearly defined end-product.

Agile is an iterative approach to software development that focuses on delivering

the product in small increments. Requirements and documentation are

continuously evaluated alongside the development (Atlassian, n.d.). This

approach is therefore well suited when a product is going to change or evolve

over time, which is a case for our product.

To organize development of the product the version control was needed. Git and

GitHub were our choices. Having the product uploaded to the Git repository

allowed our team to work on implementing features in parallel. We could also

track changes made to the code, which would allow us to backtrack if any

problems occurred with the code.

25

3.3 Development phases

The development consisted of the following phases:

● Research phase

● Design phase

● Implementation phase

3.3.1 Research phase

Before we could work on implementing the code, there were several areas that

needed to be researched first. One of the first things that needed figuring out was

what kind of application we were going to create. Since the project did not

provide many specific requirements regarding the application development, the

type of application that would be developed was chosen by the team. With

several of the group members having experience with web applications, we

decided it would be most appropriate to build our product as such.

Next, it was important to research what kind of technologies and libraries would

be most suited for the size and scope of our product. In one of the team

meetings, we agreed that the application should be built in React.js. The team

had previous experience with JavaScript and it would be a useful learning

experience to build a web-application with an in-demand JavaScript library. The

other reason why we chose React.js, is that it provides an easier and more

convenient way to build web-applications by using reusable components. Our

team began learning React by getting familiar with its main concepts, in this

phase.

Additionally, we have decided to develop our product as a progressive web app

(PWA). The idea behind PWAs is that they use web technologies to provide the

26

experience of native apps. PWAs are just websites behind the scenes that can

be installed (Freecodecamp, 2021). This allows our product to behave both like a

website and a mobile app at the same time.

3.3.2 Design phase

In the design phase, we brainstormed on how the application should look. We

used prototyping tool Figma to create a low-fidelity prototype to make a basic

layout of the user interface (Figure 3.1). We then incrementally made

improvements to the sketch and created a medium-fidelity prototype (Figure 3.2).

The medium-fidelity prototype is a basis for our design of user-interface.

Figure 3.1: Low-fidelity prototype of the application

27

Figure 3.2: Mid-fidelity prototype of the application

While iterating on design of the user-interface our goal was to make it

user-friendly. To accomplish that, we relied on a certain set of rules called Gestalt

Principles. Gestalt Principles describe how humans perceive visual objects

(Bradley, 2014). By understanding these principles, one can design the product in

a way that is easy to understand for the human perception.

Gestalt’s Principle of proximity was used throughout the user-interface. This

principle indicates that objects that are grouped more closely with one another

are perceived as more related, while objects that are placed further from one

another are perceived as less related (Bradley, 2014). We applied this rule in our

user-interface to indicate that some elements belong to a group. For example, we

can see it in the finished product, shown in figure 3.3. Each dashboard

component has several interface elements grouped together, such as a header

containing an icon with summary text as well as a date selector and a chart.

These elements differ in their composition and appearance, nonetheless they

look like they represent one combined element instead of several individual ones.

28

Figure 3.3: Dashboard component user-interface

The figure 3.4 illustrates that even further. In this case the background of

dashboard components is removed, yet these elements still appear to be related

to one another.

Figure 3.4: Dashboard component user-interface without the white background

Common Region is the other principle that we applied in our design. In our case

it goes hand in hand with the law of proximity. Principle of Common Region

describes that we perceive objects as related when they are placed in the same

closed region (Bradley, 2014). Figure 3.3 shows the dashboard components

enclosed in a common region while figure 3.4 shows the components without

common region applied. As we can see from the figures, it is arguably easier to

differentiate between heart rate and sleep component in figure 3.3.

29

Additionally, our design incorporated the principle of Figure / Ground. This

principle states that: “Elements are perceived as either figure (the element in

focus) or ground (the background on which the figure rests)” (Bradley, 2014). In

our case, the principle is being utilized in the dashboard components, as shown

in figure 3.3. Common Region and Figure/Ground principles work together in this

case. The area of Common Region provides a shape while the contrast of colors

between background and a dashboard component defines a relationship for

Figure/Ground. Therefore, dashboard components appear to stand out from a

background and are perceived as elements in focus. As a comparison, figure 3.5

contains the principle of Common Region without Figure/Ground. In this case,

the components don’t stand out from the background as much, and as a result

are not perceived as elements in focus to a degree that figure 3.3 illustrates.

Figure 3.5: Dashboard component user-interface without Figure/ground principle

3.3.3 Implementation phase

Implementation phase revolved around coding the application in React. The

source code was stored in Github. Our team would create a new branch in

Github each time a new feature was being implemented. The code then would be

reviewed before merging the newly added feature to the Main branch. This way

30

of working allowed for parallel implementation of features. At the same time,

having multiple branches proved to be an effective way of not breaking the

application completely, since the Main branch would only contain the reviewed

features.

Certain prerequisite knowledge was required, in order to develop the application

effectively. Foremost, it required us to have a decent understanding of

JavaScript, since React uses this programming language. Furthermore, as our

product is a web application, understanding of HTML9/CSS10 was also needed.

In this phase, we began by exploring Fitbit Web API documentation to determine

what exact endpoints we would need to use in order to get the data that we

wanted to display in the application. The endpoints that we ended up using are

discussed in Chapter 2.2.4.

While developing the React app, our team thoroughly referenced the official

React documentation. This was done for a couple of reasons. First of all, since

our team members had no prior knowledge of React, it was necessary for us to

gain understanding of how this technology works. Additionally, as a library React

is quite flexible. Meaning, that the same code logic can be achieved in multiple

ways. At the same time, it is constantly evolving by having new features added.

Therefore, we tried to follow best practices and methods to the best of our ability

that were suggested by the React documentation.

For example, React has two approaches to creating components. Class-based

components that are using classes and Functional components that are just

functions (React, n.d., b). Up until version 16.8, the Class components were

10 Glossary - CSS
9 Glossary - HTML

31

primarily used by developers since they allowed for logic and state

implementation while functional components mainly were responsible for just

rendering UI. However, since version 16.8 came out, React introduced the

concept of Hooks. They let developers use state and other React features

without writing a class (React, n.d., c). As of 2022, functional components with

hooks are the preferred method to create components. That’s because hooks

were introduced to address the problems that developers encountered while

working with class components (React, n.d., c).

3.3.4 Limitations

Adding a testing phase could’ve been beneficial to find any potential bugs and to

validate if the software performs as expected. The same could’ve been said

about user testing. Which is a type of testing where users would evaluate design

and usability of the user-interface. On the other hand, it would have been quite

difficult to find the users for this kind of test since the application requires them to

have a Fitbit account and a wristband. In the end we decided not to include these

tests because a good portion of the available time on the project was already

taken up by the armband evaluation and testing.

32

4. Product Specification
4.1 Initial requirements

Since requirements for the application from the client were minimal, our team had

to come up with our own requirements for this application. We decided that initial

requirements should be minimal, that is to cover the basic minimal viable

functionality. Our initial requirements focused on displaying the collected data into

the charts as well as providing summaries in form of average values based on a

time period. If most of the initial requirements are to be completed, we then will

iterate with new requirements and functionalities.

Tables below show initial requirements that have been decided before the

implementation phase.

Functional requirements

1 The system displays user’s name

2 The system displays wristband model

3 The user must be able to login to the system with Fitbit account

4 The user must be able to log out of the system

5 The system implements Fitbit Web API

6 The system shows summary of the average heart rate for the given
period

7 The system shows summary of the average sleep duration for the
given period

8 The system shows summary of the average step count for the given
period

9 The system shows summary of the total calories burned for the given
period

33

10 The user can filter heart rate, sleep, step count and calories burned
data by date periods

11 The system must be able to provide charts for the given data

Non-functional requirements

1 The system has a responsive design

2 The system provides feedback for the user if elements on the page are
loading

3 The system provides feedback for the user if error has occurred

4 The system has PWA support

5 The data takes less than 3 seconds to load

6 The system uses icons to help differentiate the data

7 The system uses HTTPS

Organizational requirements

1 The system is a web application

2 The system is built using React.js

4.2 Changes in the requirements

Nearing the end of the development our team had a meeting with a client from

Karlstad University. In the meeting they gave us additional requirements for the

application. One of the things that they wished for to be in application, was some

sort of calendar window that displays summary for the given day. That is, it would

show heart rate, sleep and steps data. Besides that, they wished for some

34

functionality that would let the pregnant woman’s partner to interact with the

application in some way. This was brought up by the client because according to

them, the partner often feels left out and wants to help the significant other during

pregnancy.

Tables below show requirements that have been added during the development.

Functional requirements

1 The system should have a calendar view that gives summaries for
each day with heart rate, sleep and step count info.

2 The system should provide minute-by-minute heart rate overview for
the given day

Non-functional requirements

1 The system should be accessible by the pregnant women’s partner

35

5: Product Documentation
5.1 Preface

Product documentation covers the most important parts of the code for those

interested in further developing or maintaining the application. This chapter

attempts to explain how the code works and why it is implemented the way it is.

Source code (Zip):

drive.google.com/file/d/1G0az8shskdrMG9G_5Bjg7-Wr90e7iNN9

Github:

github.com/cosmosgirlandcrows/Bachelor2022_FitbitreactJS

5.2 Third-party libraries

To make the development easier for us, the React project implemented several

third-party libraries. This allowed our team to focus on the core aims of the

product instead of spending too much time coding everything from scratch. All

third-party libraries are open-source and fall under MIT license11. Here’s the list of

the libraries that were used in this project:

● Charts.js - https://www.chartjs.org/

● Moment.js. - https://momentjs.com/

● Html-react-parser - https://github.com/remarkablemark/html-react-parser

● React-Calendar - https://projects.wojtekmaj.pl/react-calendar/

● React-Icons - https://react-icons.github.io/react-icons/

● React-Outside-Click-Handler -

https://github.com/airbnb/react-outside-click-handler

11 Glossary - MIT license

36

https://drive.google.com/file/d/1G0az8shskdrMG9G_5Bjg7-Wr90e7iNN9/view?usp=sharing
https://github.com/cosmosgirlandcrows/Bachelor2022_FitbitreactJS
https://www.chartjs.org/
https://momentjs.com/
https://github.com/remarkablemark/html-react-parser
https://projects.wojtekmaj.pl/react-calendar/
https://react-icons.github.io/react-icons/
https://github.com/airbnb/react-outside-click-handler

5.3 Running the application

To run the development version of the program, while having root folder of the

project as current directory, first type the following in terminal:

This will install all of the needed dependencies for the project. This command is

only required on initial start-up. After it has finished installing dependencies, type

the following to start the app:

Browser will open the web-application in a new tab/window with the URL of

localhost:3000.

5.4 React concepts

In order to understand most of this product documentation, one should be

familiar with some of the core concepts of React. Therefore, some of them will be

discussed here.

5.4.1 Components & Props

Our application is built from functional components. Functional components look

just like normal JavaScript functions (React, n.d., b). Each functional component

has a return statement that renders the UI. Additionally, components accept

37

arguments called props. They are useful when the data needs to be passed

from one component to another. In the code snippet shown below, title and

onClick are prop values. These values are used in the return statement.

We can render multiple instances of this component with different properties.

This results in a dynamic and reusable component.

In order to incorporate this component in the application, it must be exported as

shown in the snippet above. The component must then be imported by the file

that requires it. The following code below shows how to accomplish it.

As illustrated in the following code, to render a component an HTML syntax is

used: <Button/>. The components should always start with a capital letter to

help differentiate between HTML-tags.

38

5.4.1 Hooks

To incorporate state and logic into components, we can use Hooks. According to

React documentation hooks are functions that let functional components “hook

into” React state and other features (React, n.d., d). Every hook in React starts

with prefix use. Some of the most common hooks are useState and

useEffect.

useState lets developers add React state to the functional component. The

hook returns a pair of values: the current state and a function to update the state.

What makes the state differ from normal variables is that the state persists

between rerenders and does not get reset. Below is an example of the

useState hook inside our app.

39

useEffect is a hook that executes a block of code when something causes the

component to re-render. By default it gets called on every re-render, although by

passing a dependency array as a second argument we can control when the

useEffect will run. For example, in the code snippet below, the code inside the

hook will only run when the variable selected changes value.

React also allows you to build your own Hooks. Custom Hooks can be used

when some logic needs to be shared between several components. In order to

create a custom hook, the function must start with prefix use and the function

should call other hooks inside it. The following code is a custom hook that we

made in order to save values to localStorage.

40

5.5 Authorization

Authorization in the app works by checking if the access token is present in the

URL bar. Authorization logic takes place in App.js, which is a root component

of the app. First when the code inside App.js gets executed, the URL of the

site is saved to a variable – window.location.href returns the URL of the

current page. The url variable is then used as an argument for functions to

extract userId and access_token if they are present in the URL. By

default, when a user enters the website for the first time, access_token and

userId will be empty. This code is showcased below:

The code then has an if-statement that checks for access_token as

shown in the code snippet below. If access_token is an empty String, that

means that the user has not authorized yet and as a result the code inside

if-statement will get executed. We use the authorization endpoint provided

by the Fitbit Web API and assign it to window.location.href. This redirects

the user to the Authorization panel. After successful authorization, the user is

redirected back to the main URL of the application. The URL now contains

access_token and userId as URI arguments.

41

5.6 Context

The variables access_token, userId and BASE_URL are required for

making API requests. As a result those variables need to be passed down to

components that do the data-fetching. One way to do it is to pass them as

props. This will work great if the nested component is a direct child of App.js.

However, if the data-fetching component is nested in any other components, the

props will have to be passed through all of those nested components even

though they do not require these values. The better way to do it, is to use

Context API. By using Context the data can be shared between

components without passing props through every level of the tree (React, n.d.,

e). Instead, the components can access the data directly from the Context

scope. The code below shows how the Context is implemented inside the

App.js component.

42

Every child component inside <AuthenticationContext.Provider/> has

direct access to access_token, userId and BASE_URL. For example in

our app, the GridItemContainer component needs access_token in

order to make an API-call. It can get the Context data like this:

We use useContext hook and pass the created Context as an argument.

The hook returns values stored in AuthenticationContext. In this case,

only the access_token is needed by the component.

5.7 Fetching data from the API

We used JavaScript’s Fetch API to make HTTP requests to the Web API. To

send a request, function fetch() is used. fetch() takes in a path to the

resource as a first argument and an init object that can set custom settings to the

request, as a second argument. Below is the fetch() implementation that our

app used to make requests.

43

When a HTTP request sends back a response, the code inside first then() will

get executed. On the successful request, the response will get converted to

JSON and on failed request an error will be thrown. The second then() takes

in the returned JSON-object and saves it to a state. If the error was thrown,

catch() block will set the error object to a state.

In our app there are multiple components that need to fetch the data. Most of the

data-fetching components require the same fetch() implementation. The

component first needs to define data, loading and error states using

useState hook. Component then needs to implement a useEffect hook

with URL as a dependency and have fetch() logic inside it. The useEffect

will ensure that fetch() will only send requests when the url changes. We

would have to repeat these steps for every component that makes use of

fetch(). This results in code duplication. Because of that, the better way to do

it, would be to extract this logic to a custom hook. useFetch is a custom made

hook that handles data-fetching logic in our application, as shown below.

44

useFetch takes in access_token, url and headers as arguments.

These values are then used in fetch() later on. Firstly, the hook has data,

loading, error and url states defined. It then has a useEffect with

fetch() logic inside it. The following snippet illustrates that.

45

Lastly, the hook returns data, loading and error states together with

setApiUrl, which is a function to set the URL path, as demonstrated in the

code below.

46

useFetch can then be used inside different components like this:

5.8 Handling data

The data that gets returned from the Web

API, can’t be used in the UI right away.

That’s because most of the time our

application requires only specific values

from the API responses. Thus, the data

needs to be handled in some way before

applying it to the user-interface. For the

majority of data, we use built-in array

methods such as map(), filter()

and reduce() to extract the wanted

data.

For example in our app,

HeartrateComponent.js requires heart

rate data from the Web API. HTTP request

that fetches heart rate returns a JSON

response body containing all of the relevant

values as shown in the snippet to the right.

We are only interested in

restingHeartRate value from this JSON response as it will later be used for

calculating average heart rate for the given date range period. In

47

HeartrateComponent.js there is a function called handleData() that

gets called when the heart rate data is retrieved from the Web API. The function

looks like this:

First, inside the function, the array is saved to a variable dataset. Then, the

dataset has array methods map() and filter() applied. map()

method, for each element in the array, selects the restingHeartRate value

and returns it to the new array containing only that value. The returned array then

has a filter() method applied. filter() method checks if each element

inside the array is a number and then returns a new array with elements that

matches the expression. The array is saved to valuesArray variable and can

now be used to calculate the average value.

5.9 Dashboard components

Each dashboard element consists of several nested components. This was done

in conjunction with React documentation (React, n.d., f), which states that

components should ideally be responsible for doing one thing or otherwise be

split up into smaller subcomponents if the component logic grows out of

proportion. Firstly, each dashboard item has gridItemContainer.js

48

implemented at the top level. This component handles states such as API state,

header state and chart state whose values are later passed down to child

components as props. These states are shown in the following code snippet.

GridItemContainer renders gridItemHeader and gridItemContent

as its child components. These components don’t have any state by themselves,

and they just render the UI together with values that they received as props, as it

is shown below.

49

Each dashboard item then has a specialized component that wraps around

gridItemContainer. It does not render any additional UI, but has logic that

only applies to a specific dashboard item. For example in the following code,

HeartrateComponent.js handles logic specifically for heart rate data. As this

component would not work for the dashboard item that displays sleep info since

the sleep data would require to be handled differently.

Lastly, these specialized components are then placed inside Grid.js

component, as demonstrated in the code below. Grid.js defines a layout and

acts as a container for the dashboard items. Grid.js uses the CSS Grid

layout system, hence the name of the component. CSS Grid lets the layout be

composed of rows and columns which can in return make the layout quite flexible

and customizable.

50

5.10 Selecting date period

Individual items in the dashboard have the ability to select the date period. Once

a user changes the date, the UI reactively updates and at the same time a new

API-call is made to retrieve the data with updated date arguments. Inside our app

code, we have a DateSelector.js component that is responsible for

handling date changes. The component can be seen in the code below. This

component renders a dropdown menu that allows the user to select between

date periods.

51

First, the component has several states defined. isToggled handles the state

for opening and closing the dropdown, selected is a state for the currently

selected date while insideDropdown is a state that keeps track if the mouse

cursor is inside the dropdown menu. Further, useEffect is defined. Once the

selected variable changes state, a function handleOnChange() will get

called inside the hook. This function is defined in GridItemContainer

component but gets called from DateSelector as a callback. Function can be

seen in the code snippet below. Function takes in the selected date as an

argument and then further passes it down to other functions that set the item’s

title or update the url with new date arguments.

This callback function is then passed down to the DateSelector component

as a prop which can be seen in the following snippet.

Furthermore, as demonstrated in the code below, there are several functions

implemented inside DateSelector that handle the logic for closing/opening

and for selecting the date.

52

As illustrated in the snippet below, once the user clicks on the <input/> tag,

toggleDropdown() is called and as a result isToggled state is flipped to

the opposite of the current value. If isToggled equals to true, then the

 tag will be rendered. Thus, the dropdown menu will appear on the UI.

When the user clicks on the dropdown item, the function handleClick() will

get executed. Function updates the selected state with a value from the

dropdown item. Additionally, tag listens for when a mouse enters and

leaves the dropdown. Therefore, If the user clicks outside the dropdown, the

dropdown will close.

53

6: User Manual
This user manual covers the base functionality of the React web application. It

contains description of the application's functionality as well as instructions on

how potential users can utilize the functionality. No prior computer knowledge is

required to be able to use this program.

Application URL: https://fitbit-bach2022.herokuapp.com/

6.1 Prerequisites

To use this application, it is required that the web browser is present on the

user’s device. The application will work on all modern-day browsers such as

Chrome, Safari, Firefox, Edge, or Opera. For the user to be able to install the

app, the user’s browser must support PWA functionality. The figure 6.1 shows

browsers that support PWAs as of May 2022.

Figure 6.1: Browsers that support PWAs. Green color indicates full support.
Taken from https://caniuse.com/?search=PWA.

The application requires that the user has created a Fitbit account. Similarly, for

the application to display the data the user must have a Fitbit tracking device.

54

https://fitbit-bach2022.herokuapp.com/
https://caniuse.com/?search=PWA

6.2 Logging in to the system

Upon entering the application, users need to log in with their Fitbit account. This

step is necessary, so that the user data collected by the wristband could be

provided. After opening the application, the user will be greeted by the login view

as shown in the figure 6.2. After entering account details, the user will be

prompted to select the scopes that the API will be able to access. Also, by

clicking the area marked in red rectangle, as shown in the Figure 6.3, the user

can set the duration for how long the app can have access to the Fitbit data.

Last step is to click on the “Allow” button.

Figure 6.2 & 6.3: User is required to fill out login credentials before proceeding
forward. Afterwards the user can allow / decline scopes that the app can access.

To log out of the system, the user has to click “Log out” button located at the

top-right of the application.

55

6.3 User-interface overview

The user-interface primarily contains a Dashboard view. Profile information is

also displayed at the top of the screen together with the “logout” button.

The dashboard shows summaries of heart rate, sleep, step count and total

calories. Each data scope is contained in its own component, as illustrated in

figure 6.4. Each of these components have the following:

1. Header – shows summary for the selected date period.

2. Date selector – let’s user select date range / day by clicking the button.

3. Chart – provides more detailed visualization of the measurements for the

selected date period.

Figure 6.4: Each dashboard component has a header, date selector and a chart.

For example on the heart rate component, the user can choose a date period

that the data points will be limited to. Users can choose to display data for the

past week, past month, past 3 months or a past year. In the UI this can be

achieved by clicking on the dropdown menu, located in the top-right of the

dashboard component (Figure 6.5).

56

Figure 6.5: Each component inside the dashboard can set a date period.

The UI will then update accordingly to match the date specification, as seen in

figure 6.6.

Figure 6.6: The average bpm and chart updates when the user changes date.

Same implementation can be seen in other dashboard components (Figure 6.7 &

6.8).

57

Figure 6.7: Component that displays sleep duration.

Figure 6.8: Step counter and calories-burned components.

6.4 Add to home screen

If the browser supports progressive web app functionality, the app should be

easily installable. For example, there are two ways to install the application in the

desktop version of Chrome browser. The first method is to install it by clicking on

the “Install icon” located in the url bar. The second method is to install it by

clicking on the three-dot menu as shown below (Figure 6.9). For mobile devices

that use Chrome browsers, the similar process applies (Figure 6.10). After

installation, the application should appear on the device's home screen. It can be

assumed that the installation process is similar on other web browsers.

58

Figure 6.9 & 6.10: Shows installation of the application for the desktop and
mobile devices accordingly.

59

7. Fitbit, GDPR and Privacy
7.1 Background

We live in the age of information technology where a high amount of data is

transported through the internet like we have never seen before, there is even a

word for it, Big data. A lot of the data is sensitive personal data that can easily be

misused. Therefore privacy and protection of data has never been more

important than it is today. Fitbit is an electronic device that requires personal data

from the consumer. It's part of this project's objective to assess the privacy terms

and data security of Fitbit. We also want to see if what said in the privacy terms is

inline with real experience. Unfortunately it's not in our capacity to test all kinds of

scenarios when it comes to this subject due to time constraints and limited

resources. Therefore our findings on the privacy matter are mainly based on

research papers done by others and company policy such as the Fitbit privacy

policy and rights of users in Europe according to GDPR. A large portion of our

findings are based on papers (Hilts et al., 2016: Every Step You Fake: A

Comparative Analysis of Fitness Tracker Privacy and Security). This is one of the

most comprehensive litteratures we found on this topic. And although the

literature is from 2016, many of the concerns still hold true.

7.2 The implications

In recent years we have all heard about tech companies leaking personal data to

third parties without the consent of its users or hackers getting hold of data in

unlawful ways. With wearable fitness devices the implications of such an event

are severe, as information collected by these devices are not only personal data

like e-mail, but one could also draw a conclusion on a person's fitness or health

based on this data. For example, the Fitbit wearables can also record time and

60

location of an activity. Such data could be then used in a criminal court case as

evidence. Also insurance companies could use it to set premium prices based on

a person's fitness or a user may manipulate this data in order to affect an

outcome. Therefore it is important that users are aware of these implications,

their rights and how the data is used.

7.3 A look at the GDPR

The ”General Data Protection Regulation” or GDPR as it is commonly referred to

is a detailed regulation implemented by the European Union in 2018. The goal of

the GDPR is to protect the personal data of EU citizens across member states

and simplify the process to request and supervise how your personal data is

processed and distributed so you could meaningfully respond to the company if

there is a violation of your privacy rights. Personal data is any information that

can identify a person directly or indirectly for example name, an identification

number, location data, an online identifier and more.

Breach of these regulations can lead to high fines, up to €20 million or up to 4%

- whichever is higher - in the worldwide annual revenue of the entity controlling

the data, this is stated in Art. 83(5) GDPR.

The regulation has 7 important principles:

● “Lawfulness, fairness and transparency”, “Purpose limitation”

● “Data minimisation”

● “Accuracy”

● “Storage limitation”

● “Integrity and confidentiality (security)”

● “Accountability”

61

In brief, these principles ensure that personal data are collected in a lawful way,

with the consent of the consumer and not used or processed in another form

than its intended purpose. It limits data collection, in that no entity shall collect

any more personal data than is necessary for an explicit functionality of the

application. Data shall be accurate and up to date at all times. Personal data

shall be identifiable only for a necessary time period. And the data controller or

collector shall be accountable and be able to show compliance with the

regulation.

7.4 Fitbit privacy policy and Terms of use

The privacy policy and Term of use can be found on the Fitbit website, (Fitbit

Legal: Privacy Policy) and (https://www.fitbit.com/global/us/legal/terms-of-service)

respectively. These documents outline the requirements to use a wristband and

the policy of the company.

According to both the Privacy policy and Terms of use the Fitbit needs personal

data like name, email and in some cases phone numbers in order to offer you the

service. The privacy policy says it requires this information in order to create a

user account and populate the dashboard with relevant data and do research to

develop new services. If the user grants access, it can also collect and store the

location an activity has taken place in.

Furthermore, Fitbit can store additional personal data if one connects the

application with social media or an email such as Gmail.

According to the company, the data will be used to personalize and improve their

service, furthermore data collected is used for data analysis and research says

62

https://www.fitbit.com/global/us/legal/privacy-policy
https://www.fitbit.com/global/us/legal/privacy-policy
https://www.fitbit.com/global/us/legal/terms-of-service

FitBit in its privacy policy. Data like height, weight, gender is used to calculate

calories burned and keep track of progress. The policy also says it does not

share Personal data except for “de-identified” non-personal information with third

parties. And users have the freedom to change their personal data as they see fit

to reflect the privacy laws of the country they live in. Moreover, data will be stored

as long as the account is active according to the policy. Consumers should be

aware that Fitbit in their Term of Use claims the right to use and share any

information given to them.

In its privacy policy the company says it complies with the GDPR regulation by

asking for consent when a user registers with their product and every time the

user opts to add additional functionality or service. It also gives users the right to

control their data , withdraw consent any time or stop data from being processed

as per GDPR regulation.

In comparing GDPR and Fitbit privacy policy, we find that Fitbit seems to agree

with what GDPR considered to be personal data.

7.5 Data

Wearable fitness devices such as FitBit use bluetooth to communicate between

the app on the phone and the wristband. The goal of the application, amongst

others, is to send the data collected from the wristband to the Fitbit servers.

When the wristband device uses bluetooth to connect to the mobile, it must

make itself discoverable, by “advertising” through bluetooth technology. This can

potentially expose data and mac addresses to a “man in the middle '' attack. An

exposed mac address can for example be tracked by a third party to locate the

device, meaning for example some one or a company could track your

63

movement. The research paper by Open effect, did an extensive testing to

address these threats. The tests captured and read the data transmitted via

bluetooth and the data sent from the mobile app to the Fitbit servers. It was

confirmed that the FitBit app sends general personal data like name, height,

e-mail and reproductive health info. But also phone serial number, IMEI number

and Bluetooth Media Access Control (MAC), which is the identifier of the

wristband. The mobile app sends this information for every activity that's

completed, it acts only as an intermediary, as the data itself is not stored in the

app but fetched from the servers every time. This process is called

synchronization.

This personal data was transferred securely to the Fitbit server. Since data

transferred from the mobile application to the cloud was secured with the HTTPS

protocol and data was encrypted as tests done by Open effect has shown in the

their article, (Hilts et al., 2016, p.33: Every Step You Fake: A Comparative

Analysis of Fitness Tracker Privacy and Security).

As we mentioned earlier all data from the wristband is sent via bluetooth to the

mobile app. Fitbit states on their website the wristband uses Bluetooth Low

Energy (BLE) technology to sync the data. This version of bluetooth technology

has less security. There have been concerns previously regarding this bluetooth

technology. For example, if a user turns off the bluetooth on their phone the

wristband will continue to advertise the mac address and data via Bluetooth.

With BLE the mac address of the wristband is static and which would allow a

malicious attacker to connect to the and that way track the user. But this has

been addressed and fixed by Fitbit,

(Hilts et al., 2016, p.36: Every Step You Fake: A Comparative Analysis of Fitness

Tracker Privacy and Security). The newer wristband can randomize the mac

address now and data on the wristband is encrypted.

64

7.6 Discussion

Our findings based on the Fitbit documentation and other literature regarding

fitbit privacy have been positive for the most part. General security and privacy

on the devices are good. They are also inline with the GDPR regulations. Fitbit

employs HTTP for security and AES encryption to encrypt data. Fitbit has

learned from the past and updated most of their code to improve security.

One potential security threat is that Fitbit still uses the outdated Bluetooth

technology (Bluetooth low energy) version in their new devices instead of

Bluetooth 4.0 implementation. This technology is prone to man-in-the-middle

attack. Data between the wristband and mobile app can be sniffed and captured,

however this is only the fitness data and not other personal data like name or

e-mail.

65

8. Experiments and Methodology
The testing of the Fitbit Charge 4 was built on two primary inspirations: the

requirements directly outlined by Karlstad University and the tests that had been

conducted by the previous groups. As we were testing the same attributes as the

previous group for the same purposes we saw it fitting to base our own tests on

what worked for the previous group.

8.1 Technical specifications

Fitbit Charge 4 Fitbit Charge 5

Date released March, 2020 September, 2021

Display Grayscale OLED touchscreen Colored AMOLED
touchscreen

Screen size 1.57 inches 1.04 inches

Battery Life Up to 7 days Up to 7 days

Weight 27 grams 28 grams

Sensors Optical heart rate monitor,
gps, accelerometer, oxygen
saturation (SpO2)*, device
temperature sensor

Optical heart rate monitor,
gps, accelerometer, oxygen
saturation (SpO2)*, device
temperature sensor, ambient
light sensor, ECG sensor**,
EDA stress sensor

Water resistance Up to 50m in depth Up to 50m in depth

* Not available in all markets
** Only available in select countries

Specifications obtained from:

https://www.fitbit.com/global/fi/products/trackers/charge4

https://www.fitbit.com/global/us/products/trackers/charge5

66

https://www.fitbit.com/global/fi/products/trackers/charge4
https://www.fitbit.com/global/us/products/trackers/charge5

8.2 Heart-rate Monitor

The accuracy of the sensors within the activity-wristband was of interest to

Karlstad and therefore the bulk of our physical tests were focused around

measuring the accuracy of the Fitbit’s heart-rate monitor feature. In order to

measure the accuracy of this feature we were in need of a baseline to compare

the measurements of the Fitbit to. Thanks to Professor Gjøvaag at Oslomet we

were allowed to borrow the Polar H7. The Polar H7 is a specialized tool for

measuring heart-rate which could export data much like the Fitbit could. This

made it a viable tool for checking the accuracy of the Fitbit because we could

directly compare the measurements between the two devices on a

second-by-second basis.

Our tests involved three different levels of physical activity.

These levels were resting, walking and stairs. The previous group had used

resting, walking and an exercise bike but we did not have access to an exercise

bike during our testing so we emulated the same level of physicality using stairs.

Resting - The subject would be physically still, keeping their heart rate low. We

measured the resting heart-rate for 3 minutes giving us 60 data points per test.

Walking - The subject would walk at a leisurely pace outside to emulate a

medium level of physical activity. We measured the walking heart-rate for 30

minutes giving us 600 data points per test.

Stairs - The subject would jog up and down stairs a set amount of times to

emulate a high level of physical activity and a high heart-rate. This test was built

on how long it took to complete 5 sets up and down the stairs and not a set time,

so we measured an average 1:33 per test which is 31 data points per test.

67

For each test we would test the Fitbit on:

- Both wrists

- Two levels of tightness (loose and tight)

- Two positions, on top of the wrist and directly facing the pulse

Each test would effectively be done six times. The activity would be done for a

set time frame or a set amount of rounds while the subject wore a Fitbit on one

wrist and a Polar H7 wrapped around their chest with the sensor in the middle of

the chest. The position of the H7 is arbitrary, but we wanted an easy position to

replicate visually over several tests in order to keep things consistent.

Our heart rate measuring tests involved a second-to-second tracking of the heart

rate using the Polar H7 and the Fitbit Charge 4. The Polar H7 recorded the heart

rate at every second but the Fitbit had a less consistent interval. To keep our

comparison accurate we compared the Polar H7 only on the points that were

recorded by the Fitbit, which causes the one to three second intervals in our data

sets. Implications of this are discussed in a later section.

8.3 Sleep

Professional sleep measuring and analysis is beyond the reach of our project as

there are no consumer products that can match the efficacy of sleep research

tools used by somnologists. To compensate for this we used consumer

sleep-evaluation apps available on the Google Play market to compare feedback

from the app with feedback from the Fitbit. The app we chose for this purpose

was Sleep for Android. (Nálevka P, (2016), Sleep as Android: Smart alarm)

68

This test was done by putting on the fitbit before going to bed. The data was

collected from the fitbit app such as hours slept, the resting bpm and duration of

the sleep. The app also provides the person with information such as how many

times and how long the person was restless and got awake.

Due to miscommunications within the group we were not able to make everyone

who participated in the sleep-testing use the same application to measure the

fitbit data against. Therefore we can not draw any conclusions from this part of

the test. However, an accurate assessment of this was already considered a far

shot due to the lack of standardization and research techniques available without

a lab.

8.4 Water resistance

To test water resistance we wore the activity-wristband while doing various

water-related activities, such as being in the shower, doing the dishes and

washing hands. We did not see the need to do extensive testing as this was a

binary answer as to whether or not the activity wristband worked normally after

contact with water.

8.5 Results

As our data is not normally distributed because it is a comparison between two

measures, a normal t-test and analysis of results will not help us measure how

much the Fitbit’s data deviates from the measurements by the Polar H7. Our

alternative hypothesis would be proven easily and we’d gain no further insight

into the matter. Instead we will use a Tukey Plot, also known as a Bland-Altman

plot, to display the degree of deviation between the Fitbit and the Polar H7.

69

Let us take a moment to understand the format of the data we will be using. The

Bland-Altman plot is used to compare data derived from measurements. Each

point represents a differential value on the Y axis, which is the difference in

measurements between the Fitbit Charge 4 and the Polar H7. These points are

plotted along the X axis, which represents the value of the mean of each

data-point. As explained by Giavarina D.: “(...)the difference of the two paired

measurements is plotted against the mean of the two measurements“ (G.D,

2015). The mean is the average value between the BPM measured by the Fitbit

and the Polar. The bias is the average of the difference between every point,

70

allowing us to spot inconsistencies in more volatile data whose mean does not

float around 0. Highlao and lowlao stand for High and Low Limit of Agreement

respectively and values that fall outside of these borders are more than 1.96s

(Standard deviation) from the mean difference, implying the devices deviate from

each-other significantly. High/Low limits of agreement are not important to these

tests as we’re testing to what degree the Fitbit matches the readings of the Polar

H7, however it’s still useful to be able to spot data which would indicate a

massive disagreement between our measurements.

8.5.1 Heart-Rate: Resting

71

The impression we get from the resting tests is that in low-BPM circumstances

the measurements between the Fitbit Charge 4 and the Polar H7 stay mostly

consistent with most measures falling within the limit of agreement. However, we

can also see that there are consistent outliers indicating the Fitbit Charge 4

frequently makes at least one handful of deviations for each test.

8.5.2 Heart-Rate: Stairs

72

When a high level of physical intensity was used to test the heart-monitor we see

a much more scattered and uneven result. While our data stays within the limit of

agreement we can see that a majority of the data points go from barely within the

73

range of 0 to -80. In two of the tests we see the bias drawing itself around -35,

meaning the average of the difference between the Polar H7 and the Fitbit lies at

-35. If the purpose of the Fitbit was to give accurate assessments of the subjects

pulse during tests that involve a high level of physical movement this data could

be used to make a strong argument against the Fitbit. However, in the context of

health-research around pregnant people we have to keep in mind that the

subjects of DIGI-EL’s research do not see frequent bursts of physical activity due

to the taxing nature of pregnancy. Therefore the inaccuracies in this data may not

have as much implication as it may seem at first.

8.5.3 Heart-Rate: Walking

74

75

In the tests involving a level of physical activity that is more similar to the levels a

hypothetical pregnant person would encounter day-to-day with larger amounts of

data points we can discern that the Fitbit has an issue with consistency. In some

76

tests the bias is fairly close to 0 which indicates a low difference between

measurements, but even here we get sets like 8.9 and 8.10 where the average

difference is greater than -10 indicating measurements that drift apart frequently

on scales that disrupt the ability for accurate measurements to be made.

8.5.4 Heart-Rate: Discussion

The tests consistently show a concerning amount of difference between the

measurements between the two devices. The severity of this disparity depends

on the need for accuracy, which would be determined by the conditions of future

experiments. While we would not recommend using the Fitbit Charge 4 for tests

that require very precise and consistent measurements it can still be useful in

research that interprets the data more comparatively. However this would only be

feasible in a testing environment with little to no physical strain as physical

activity introduces inconsistencies that pollute the data and makes comparative

analysis difficult.

8.5.5 Sleep: Findings and Discussion

Due to the aforementioned communication errors the results are limited as only

the tests where we know for sure the appropriate application was used can be

used to evaluate the fitbit.

77

As we can see from Fig 8.13 and 8.14 the app and the Fitbit seem to be in

disagreement in most areas. According to the Sleep Foundation (Pacheco, D.,

2022) deep sleep should make up 13%-23% of your sleep at night, which means

in this regard the Fitbit was much more accurate than the app.

8.5.6 Water Resistance: Findings and Discussion

According to the specification the armband is 5atm certified. 5atm means that a

device is able to withstand pressure that is equal to a depth of 50 meters or 5

bars. This makes the tracker suitable for activities such as washing dishes,

showering, and swimming (Garmin, n.d.).

During the assessment, the tracker was being worn by our group in different

conditions. Tracker continued to function as expected when worn in rain, when

taking a shower or when washing dishes. The team did not notice any changes

to the functioning of the tracker. With that being said, according to Fitbit, it is

recommended to take off the armband completely when taking a shower. As not

doing so, over a period of time could increase the risk of damage to the tracker

due to the chemical exposure of soaps and shampoos. However, it is safe to

conclude that the tracker can be worn in circumstances that may get the

armband wet. This would therefore be suitable for pregnant women, as there are

78

many daily activities such as washing hands or dishes that are commonly done

during the period of pregnancy.

8.5.7 Battery life: Findings and Discussion

Fitbit claims Charge 4 will last up to 7 days with normal use or up to 5 hours with

continuous GPS use. Depending on various settings and configurations of the

tracker the battery life can vary between users. Fitbit does not disclose battery

capacity used in Charge 4 in the product page.

To assess the life of the battery the tracker was used continuously for the

duration that took the tracker to deplete its battery capacity from full charge. The

battery assessment was simulated to represent the normal usage of the

armband. Tracker remained on the wrist throughout the assessment and was not

taken off. In this period the tracker was primarily monitoring heart rate, step count

and sleep. Additionally, on some days the armband was logging 30 minute

activity/exercise which caused GPS to turn on by default. The brightness of the

display was set to Auto, meaning it would adjust brightness accordingly to the

light conditions.

With this configuration the Charge 4 managed to last around 5 days and 10

hours. It can be assumed that the armband could last closer to 7 days if the GPS

had not been used at all. It took around 2 hours to recharge the battery from 0 to

100% which matched the Fitbit’s specification. Overall, the life of the battery was

observed to be sufficient for normal use and not an area of concern. Having to

recharge the device every 5-6 days for 2 hours doesn’t seem to be that

inconvenient, although Fitbit recommends recharging every few days to ensure

the armband is always tracking.

79

https://www.fitbit.com/global/fi/products/trackers/charge4

8.5.8 Wristband fit & comfort: Findings and Discussion

According to product specification of Charge 4, the tracker comes with two

wristband sizes. Small band fits the wrist from 140mm to 180mm in

circumference. Large band fits the wrist from 180mm to 220mm in circumference.

Bands are made of flexible rubber-like material and are detachable. Fitbit

recommends wearing an armband loosely enough so that it can move back and

forth the wrist.

Some of the group members observed that device could be difficult to put on by

yourself. Furthermore, it was also observed that the band was a little irritating

after prolonged use. According to Fitbit if a user is experiencing irritation or

redness, the wristband should be loosened, or the device should be taken off

completely until the irritation disappears (Fitbit, n.d.). Furthermore, they

recommend removing the device regularly for about an hour if the user is wearing

the device for extended periods (Fitbit, n.d.). We observed that irritation was

considerably reduced when the band was loosened up.

If the irritation persists however, the problem could potentially be solved by

swapping to different material bands that Fitbit sells separately. Leather or woven

bands that Fitbit sells as separate accessories however are not water resistant

neither are they intended for high-intensity exercise. Another negative is that

these wristbands can cost from $35 to $50. This makes it a not cost-effective

solution. Overall, despite some of the group members experiencing discomfort

from the wristband, we observed that discomfort can be managed by loosening

the strap or taking the device off completely. Taking breaks from the device

matched well with battery life, that is every 5 days when the tracker needs

charging. Therefore, the band should be suitable for pregnant women in most

80

https://www.fitbit.com/global/fi/products/trackers/charge4

cases. In cases where irritation does not go away, accessory wristbands in

different materials could be considered.

9. Conclusion
In this project we have tested the technical capacities and accuracy of the Fitbit

Charge 4 through a series of experiments in the context of DIGI-EL’s research on

digital tools during labor. We have also created a React application that

demonstrates how data can be fetched from the Fitbit API and plotted on charts.

From our research we found that the Fitbit Charge 4’s heart-rate monitor

struggles with inaccuracies and random spikes polluting research data, excluding

certain forms of analysis to be performed with it. If the interest of the research is

to identify irregularities under high physical activity or other tasks that would

require a high degree of consistency and precision the Fitbit would not be a

viable option due to its frequent misreadings. The Fitbit is much more suited for

gathering data used in comparative analysis in research that does not anticipate

any high levels of physical activity in the test-subjects. This applies in the context

of pregnancy and therefore we can approve of the Fitbit’s use as long as these

inaccuracies aren’t detrimental to the research being done.

From our testing of the Fitbit’s physical traits we found that it is waterproof in

every context a pregnant person would be wearing a Fitbit. In this part it lives up

to all expectations and requirements.

The Sleep-functionality of the Fitbit provided accurate data on the sleep of our

test-subjects, but the limited information this data contains makes it difficult to

build any conclusions off it alone.

81

The Fitbit has rather sharp edges and we would not recommend handling a child

while wearing it as the concerns are sharp enough to damage the skin of a

newborn.

9.1 Future Work

Our evaluation of the Fitbit Charge 4 only touches on aspects of the wristband

that were available for us to test within our capacities as students. Whether this

research is partially or fully applicable within future studies run by DIGI-EL

depends on the conditions of those experiments. There are many areas that

could benefit from reexamination and re-testing. The sleep testing would benefit

from a more in-depth study with more variables to compare the application and

Fitbit between. Future studies on the accuracy of the heart-rate monitor could

include a wider variety of physical activities more directly related to the

day-to-day life of a pregnant woman.

The application we’ve developed did not accomplish some of the later

requirements that we’ve acquired from our client, which were defined in Chapter

4.2. Because of that, the future work on the app should revolve around

implementing the remaining requirements first. When it comes to the

requirements, we did not manage to implement the Calendar view functionality

as well as functionality for pregnant woman’s partner to interact with the

application in some way. Moreover, the application would benefit greatly from

software testing. As of now, it’s hard to determine how reliable and how

performant the app is.

Additionally, for a more complete solution, the application could incorporate a

back-end system (server) together with database support. Currently, our solution

82

is purely front-end oriented and depends on Web API to fetch the data. Back-end

system would benefit clients at Karlstad University greatly, because the data that

would be collected by the fitness tracker could then be saved to the universities’

own database. However, the app would still be required to communicate with the

Web API. At the same time, it would be possible for nurses to have access to the

patient’s armband data through the database, if need be. That’s unlike the

current version of our app, where only the user of the tracker can access the data

collected.

83

Appendices

A) Excess Experiment Data

Spreadsheet:
https://docs.google.com/spreadsheets/d/1ap5LWyzZ1rxWCp9MaEUtrrM0tdvG_9N53Lja
4S1vy54/edit?fbclid=IwAR0eObDVMinDtwzDAEjFyfsVLqDv7k3zW_k4lvLhhFxlvCo44p5
KKKUH2QM#gid=1884432564

Tables of stairs data

The tables show the maximum, minimum and average heart rate during this activity.

Graphs show heart rate deviation between devices during stairs exercise.

Test participant 1: 1st round

Test 1

Max HR 112 159

Min HR 94 102

Avg HR 102 142

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

84

https://docs.google.com/spreadsheets/d/1ap5LWyzZ1rxWCp9MaEUtrrM0tdvG_9N53Lja4S1vy54/edit?fbclid=IwAR0eObDVMinDtwzDAEjFyfsVLqDv7k3zW_k4lvLhhFxlvCo44p5KKKUH2QM#gid=1884432564
https://docs.google.com/spreadsheets/d/1ap5LWyzZ1rxWCp9MaEUtrrM0tdvG_9N53Lja4S1vy54/edit?fbclid=IwAR0eObDVMinDtwzDAEjFyfsVLqDv7k3zW_k4lvLhhFxlvCo44p5KKKUH2QM#gid=1884432564
https://docs.google.com/spreadsheets/d/1ap5LWyzZ1rxWCp9MaEUtrrM0tdvG_9N53Lja4S1vy54/edit?fbclid=IwAR0eObDVMinDtwzDAEjFyfsVLqDv7k3zW_k4lvLhhFxlvCo44p5KKKUH2QM#gid=1884432564

Test participant 1: 2nd round

Test 2

Max HR 117 174

Min HR 97 109

Avg HR 112 154

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

85

Test participant 1: 3rd round

Test 3

Max HR 141 178

Min HR 115 123

Avg HR 126 161

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

86

Test participant 1: 4th round - without arm movement

Testing whether limited arm movement when jogging up the stairs will give better

results.

Test 1 - without arm movement

Max HR 129 162

Min HR 100 100

Avg HR 108 138

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

87

Test participant 1: 5th round - without arm movement

Test 2 - without arm movement

Max HR 134 174

Min HR 97 111

Avg HR 113 151

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

88

Test participant 1: 6th round - without arm movement

Test 3 - without arm movement

Max HR 136 176

Min HR 105 119

Avg HR 116 155

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

89

Test participant 1: 7th round - without arm movement

Test 4 - without arm movement

Max HR 142 181

Min HR 130 127

Avg HR 138 161

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

90

Test participant 2: 1st round

Test 1

Max HR 127 135

Min HR 77 88

Avg HR 112 121

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

91

Test participant 2: 2nd round

Test 2

Max HR 141 146

Min HR 89 91

Avg HR 115 128

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

92

Test participant 2: 3rd round

Test 3

Max HR 147 150

Min HR 102 98

Avg HR 130 134

Fitbit (bpm) Polar (bpm)

Blue line = Fitbit Charge 4, Red line = Polar H7

93

Tables of walking data

Tables below show the maximum, minimum and average heart rate during 30 minute

walk activity and compare these values between devices.

Test 1

Max HR 130 128

Min HR 104 99

Avg HR 119 118

Fitbit (bpm) Polar (bpm)

Test 2

Max HR 135 141

Min HR 97 102

Avg HR 119 120

Fitbit (bpm) Polar (bpm)

Test 3

Max HR 138 147

Min HR 89 118

Avg HR 119 134

Time Fitbit (bpm) Polar (bpm)

Test 4

Max HR 136 155

Min HR 83 119

Avg HR 109 135

Time Fitbit (bpm) Polar (bpm)

94

B) Notes from the sleep experiments

This test was done by putting on the Fitbit before going to bed. The data was collected

from the fitbit app such as hours slept, the resting bpm and duration of the sleep. The

app also provides the person with information such as how many times and how long

the person was restless and got awake.

Test participant 1

Night 1: Friday 4th February
Sleep start: 3:10 am

Sleep end: 8:14 am

I went to bed at 3am so the fitbit is accurate about when my sleep started. I woke up at

8:15 am which is accurate as well.

The fitbit recorded the time asleep as 4 hours and 29 minutes. It took 13 minutes to fall

asleep. The resting heart rate was 51bpm. The highest bpm recorded was 73 while the

lowest being 44.

Night 2: Wednesday 9th February
Sleep start: 3:07 am

Sleep end: 6:59 am

I went to bed at 3am and had an alarm set for 7 am. The wristband is accurate with

when I went to bed and when I woke up. It also shows that I had woken for about 15

minutes which is when I woke up in the middle of my sleep.

The fitbit recorded the time asleep as 3 hours and 35 minutes. It took 9 minutes to fall

asleep. The resting heart rate was 55 bpm. The highest bpm recorded was 58 while the

lowest being 44.

95

Test Participant 2

Night 1: Tuesday 8th February
Sleep start: 10:28 pm

Sleep end: 6:52 am

I began sleeping at 10:28 but the fitbit app started recording my sleep from 11:02. The

fitbit records a total of 7 hours and 50 minutes. Fitbit shows I woke at 6:52am which is

accurate. It also shows I had woken up for 1 hour and 12 minutes and that is correct.

The resting heart rate was 67 bpm. Total deep sleep was 1 hour 18 minutes which is

16.6%.

Night 2: Wednesday 9th February
Sleep start: 10:57 pm

Sleep end: 6:27 am

I began to sleep at 10:57pm but the fitbit app shows that I started sleeping at 11:14 pm.

I woke up at 6:27am which corresponds with the fitbit app. I woke up in the middle of

night and stayed awake for a bit which fitbit shows was 39 minutes.

The resting heart rate was 70 bpm. The fitbit shows a total of 56 minutes (12.90%) deep

sleep.

Night 3: Tuesday 22nd February
Sleep start: 01:15

Sleep end: 07:43

I went to bed at around 1am which Fitbit is accurate with. I had an alarm for 7:40 and it

shows I woke up at 7:43 which is accurate.

The resting heart rate was 68 bpm. The fitbit shows a total of 42 minutes (10.80%) deep

sleep.

96

Night 4: Tuesday 1st March
Sleep start: 01:06

Sleep end: 11:03

The fitbit is accurate about when I went to sleep as I went to bed at 1am. I set my alarm

for 11 am so the Fitbit is accurate about what time I woke up.

The resting heart rate was 69 bpm. The fitbit shows a total of 1 hour and 10 minutes

(11.70%) deep sleep.

C) Project Timeline

The image of our project timeline is too big for the paper and would be

unreadable if copied in, so here’s a link to the full image.

D) Project Repository

Github:

https://github.com/cosmosgirlandcrows/Bachelor2022_FitbitreactJS

Source code:

https://drive.google.com/file/d/1G0az8shskdrMG9G_5Bjg7-Wr90e7iNN9/view?us

p=sharing

97

https://i.imgur.com/YxaVu72.png
https://github.com/cosmosgirlandcrows/Bachelor2022_FitbitreactJS
https://drive.google.com/file/d/1G0az8shskdrMG9G_5Bjg7-Wr90e7iNN9/view?usp=sharing
https://drive.google.com/file/d/1G0az8shskdrMG9G_5Bjg7-Wr90e7iNN9/view?usp=sharing

Sources

Atlassian. (n.d.). What is Agile? https://www.atlassian.com/agile

Benedetto, S., Caldato, C., Bazzan, E., Greenwood, D. C., Pensabene, V. &

Actis, P. (2018). Assessment of the Fitbit Charge 2 for monitoring heart rate.

PLOS ONE 13(2): e0192691. https://doi.org/10.1371/journal.pone.0192691

Bland JM & Altman DG. (1986). Statistical methods for assessing agreement

between two methods of clinical measurement, Lancet.

https://www-users.york.ac.uk/~mb55/meas/ba.htm

Bradley, S. (2014, 29. March). Design Principles: Visual Perception And The

Principles Of Gestalt.

https://www.smashingmagazine.com/2014/03/design-principles-visual-perception

-and-the-principles-of-gestalt/

Choose a License. (n.d.). MIT license. https://choosealicense.com/licenses/mit/

European Commission. (2022, 25. March). European Commission and United

States Joint Statement on Trans-Atlantic Data Privacy Framework.

https://ec.europa.eu/commission/presscorner/detail/en/ip_22_2087

European Commission. (n.d.). EU-US data transfers.

https://ec.europa.eu/info/law/law-topic/data-protection/international-dimension-da

ta-protection/eu-us-data-transfers_en

European Data Protection Supervisor. (n.d.). International transfers.

https://edps.europa.eu/data-protection/data-protection/reference-library/internatio

nal-transfers_en

98

https://www.atlassian.com/agile
https://doi.org/10.1371/journal.pone.0192691
https://www-users.york.ac.uk/~mb55/meas/ba.htm
https://www.smashingmagazine.com/2014/03/design-principles-visual-perception-and-the-principles-of-gestalt/
https://www.smashingmagazine.com/2014/03/design-principles-visual-perception-and-the-principles-of-gestalt/
https://choosealicense.com/licenses/mit/
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_2087
https://ec.europa.eu/info/law/law-topic/data-protection/international-dimension-data-protection/eu-us-data-transfers_en
https://ec.europa.eu/info/law/law-topic/data-protection/international-dimension-data-protection/eu-us-data-transfers_en
https://edps.europa.eu/data-protection/data-protection/reference-library/international-transfers_en
https://edps.europa.eu/data-protection/data-protection/reference-library/international-transfers_en

Fitbit. (2021, 16. August). Fitbit Privacy Policy.

https://www.fitbit.com/global/us/legal/privacy-policy

Fitbit. (n.d.). Wear & Care. https://www.fitbit.com/global/fi/product-care

Fitbit Developer. (n.d., a). Getting started with the Fitbit APIs.

https://dev.fitbit.com/build/reference/web-api/developer-guide/getting-started/

Fitbit Developer. (n.d., b). Authorization.

https://dev.fitbit.com/build/reference/web-api/developer-guide/authorization/

Freecodecamp. (2021, 6. April). What is a PWA? Progressive Web Apps for

Beginners. https://www.freecodecamp.org/news/what-are-progressive-web-apps/

Garmin. (n.d.). Water Rating Definitions.

https://www.garmin.com/en-US/legal/waterrating-definitions/

Giavarina D. (2015). Understanding Bland Altman analysis. Biochemia Medica

2015;25(2):141–51. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470095/

Hilts, A., Parsons, C. & Knockel, J. (2016). Every Step You Fake: A Comparative

Analysis of Fitness Tracker Privacy and Security. (Open Effect Report 2016).

Open Effect. https://openeffect.ca/reports/Every_Step_You_Fake.pdf

Integritetsskydds myndigheten. (2021, 13. September). Schrems II-domen och

överföringar till tredje land.

https://www.imy.se/verksamhet/dataskydd/det-har-galler-enligt-gdpr/overforing-till

-tredje-land/schrems-ii-domen-overforingar-till-tredje-land/

Javatpoint. (n.d.). URI vs URL | Difference between URI and URL.

https://www.javatpoint.com/uri-vs-url

99

https://www.fitbit.com/global/us/legal/privacy-policy
https://www.fitbit.com/global/fi/product-care
https://dev.fitbit.com/build/reference/web-api/developer-guide/getting-started/
https://dev.fitbit.com/build/reference/web-api/developer-guide/authorization/
https://www.freecodecamp.org/news/what-are-progressive-web-apps/
https://www.garmin.com/en-US/legal/waterrating-definitions/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470095/
https://openeffect.ca/reports/Every_Step_You_Fake.pdf
https://www.imy.se/verksamhet/dataskydd/det-har-galler-enligt-gdpr/overforing-till-tredje-land/schrems-ii-domen-overforingar-till-tredje-land/
https://www.imy.se/verksamhet/dataskydd/det-har-galler-enligt-gdpr/overforing-till-tredje-land/schrems-ii-domen-overforingar-till-tredje-land/
https://www.javatpoint.com/uri-vs-url

Jay Summer (2022, 25. March). What Is a Normal Sleeping Heart Rate?

https://www.sleepfoundation.org/physical-health/sleeping-heart-rate (Accessed

6.04.2022)

Jonas Emre Tunc, Daniel Bahmiary & Suleiman Zaman (2020). WRISTBAND

EVALUATION, Karlstad University.

http://kau.diva-portal.org/smash/record.jsf?pid=diva2%3A1536589&dswid=2308

Json.org. (n.d.). Introducing JSON. https://www.json.org/json-en.html

Lupton, D. & Pedersen, S. (2016). An Australian survey of women’s use of

pregnancy and parenting apps. Women and birth [online], 29(4), pages 368-375.

https://dx.doi.org/10.1016/j.wombi.2016.01.008

MDN Web Docs. (2021, 3. October). HTTP request methods.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Nálevka P, (2016), Sleep as Android: Smart alarm [Mobile App], Google Play

Store, https://play.google.com/store/apps/details?id=com.urbandroid.sleep

Pacheco, D. (2022, 11. March). Deep Sleep: How Much Do You Need?

https://www.sleepfoundation.org/stages-of-sleep/deep-sleep (Accessed

23.05.2022)

Privacy not included. (2020, 2. November). Fitbit Charge 4.

https://foundation.mozilla.org/en/privacynotincluded/fitbit-charge-4/

Privacy not included. (n.d.). Our methodology.

https://foundation.mozilla.org/en/privacynotincluded/about/methodology/#minimu

m-security-standards

100

https://www.sleepfoundation.org/physical-health/sleeping-heart-rate
http://kau.diva-portal.org/smash/record.jsf?pid=diva2%3A1536589&dswid=2308
https://www.json.org/json-en.html
https://dx.doi.org/10.1016/j.wombi.2016.01.008
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://play.google.com/store/apps/details?id=com.urbandroid.sleep
https://www.sleepfoundation.org/stages-of-sleep/deep-sleep
https://foundation.mozilla.org/en/privacynotincluded/fitbit-charge-4/
https://foundation.mozilla.org/en/privacynotincluded/about/methodology/#minimum-security-standards
https://foundation.mozilla.org/en/privacynotincluded/about/methodology/#minimum-security-standards

React. (n.d., a). React - A JavaScript library for building user interfaces.

https://reactjs.org/

React. (n.d., b). Components and Props.

https://reactjs.org/docs/components-and-props.html

React. (n.d., c). Introducing Hooks. https://reactjs.org/docs/hooks-intro.html

React. (n.d., d). Hooks at a Glance. https://reactjs.org/docs/hooks-overview.html

React. (n.d., e). Context. https://reactjs.org/docs/context.html

React. (n.d., f). Thinking in React. https://reactjs.org/docs/thinking-in-react.html

Red Hat. (2017, 31. October). What is an API?

https://www.redhat.com/en/topics/api/what-are-application-programming-interface

s

Icon used in our application:
Smart Watch icon, created by Blak1ta - Flaticon.

https://www.flaticon.com/premium-icon/smart-watch_2976731?term=smart%20w

atch&page=1&position=10&page=1&position=10&related_id=2976731&origin=se

arch

101

https://reactjs.org/
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-overview.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/thinking-in-react.html
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.flaticon.com/premium-icon/smart-watch_2976731?term=smart%20watch&page=1&position=10&page=1&position=10&related_id=2976731&origin=search
https://www.flaticon.com/premium-icon/smart-watch_2976731?term=smart%20watch&page=1&position=10&page=1&position=10&related_id=2976731&origin=search
https://www.flaticon.com/premium-icon/smart-watch_2976731?term=smart%20watch&page=1&position=10&page=1&position=10&related_id=2976731&origin=search

