
Simulating the Euler equations
on multiple GPUs using Python

André R. Brodtkorb1* and Martin L. Sætra1,2

1Department of Computer Science, Oslo Metropolitan University, Oslo, Norway, 2Norwegian
Meteorological Institute, Oslo, Norway

GPUs have become a household name in High Performance Computing (HPC)

systems over the last 15 years. However, programming GPUs is still largely a

manual and arduous task, which requires expert knowledge of the physics,

mathematics, and computer science involved. Even though there have been

large advances in automatic parallelization and GPU execution of serial code, it

is still difficult to fully utilize theGPU hardwarewith such approaches. Many core

numeric GPU codes are therefore still mostly written using low level C/C++ or

Fortran for the host code. Several studies have shown that using higher level

languages, such as Python, can make software development faster and with

fewer bugs. We have developed a simulator based on PyCUDA and mpi4py in

Python for solving the Euler equations on Cartesian grids. Our framework

utilizes the GPU, and can automatically run on clusters using MPI as well as

on shared-memory systems. Our framework allows the programmer to

implement low-level details in CUDA C/C++, which is important to achieve

peak performance, whilst still benefiting from the productivity of Python. We

show that our framework achieves good weak and strong scaling. Our weak

scaling achieves more than 94% efficiency on a shared-memory GPU system

and more than 90% efficiency on a distributed-memory GPU system, and our

strong scaling is close to perfect on both shared-memory and distributed-

memory GPU systems.

KEYWORDS

GPU computing, CFD, conservation laws, finite-volume methods, Python, CUDA, MPI

1 Introduction

GPU computing started with proof-of-concept codes in the 1990s [1], continued with

dedicated programming languages and platforms in the 2000s [2–5], and is now becoming

a necessity within High Performance Computing (HPC). Most of the top level HPC

systems in the world1 are currently equipped with a large GPU partition that applications

need to utilize efficiently in order to get resource allocations on the systems. The most

common way of efficiently utilizing GPU devices has been to write specialized kernels in

OPEN ACCESS

EDITED BY

Mark Parsons,
University of Edinburgh,
United Kingdom

REVIEWED BY

Edoardo Milotti,
University of Trieste, Italy
Saravana Prakash
Thirumuruganandham,
Universidad technologica de
Indoamerica, Ecuador

*CORRESPONDENCE

André R. Brodtkorb,
andre.brodtkorb@oslomet.no

SPECIALTY SECTION

This article was submitted to Statistical
and Computational Physics,
a section of the journal
Frontiers in Physics

RECEIVED 03 July 2022
ACCEPTED 17 August 2022
PUBLISHED 03 October 2022

CITATION

Brodtkorb AR and Sætra ML (2022),
Simulating the Euler equations on
multiple GPUs using Python.
Front. Phys. 10:985440.
doi: 10.3389/fphy.2022.985440

COPYRIGHT

© 2022 Brodtkorb and Sætra. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

1 https://eurohpc-ju.europa.eu/about/our-supercomputers, https://www.olcf.ornl.gov/frontier/,
and https://www.top500.org/.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 03 October 2022
DOI 10.3389/fphy.2022.985440

https://www.frontiersin.org/articles/10.3389/fphy.2022.985440/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.985440/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.985440&domain=pdf&date_stamp=2022-10-03
mailto:andre.brodtkorb@oslomet.no
https://doi.org/10.3389/fphy.2022.985440
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://eurohpc-ju.europa.eu/about/our-supercomputers
https://www.olcf.ornl.gov/frontier/
https://www.top500.org/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.985440

Nvidia CUDA C++ for the “inner loops”, and calling these

kernels from a C/C++ or Fortran host application through

an API.

Although most existing HPC codes are written in C/C++ and

Fortran, a growing portion of scientific software is developed in

Python, which is currently one of the most popular programming

languages for scientific computing applications [6]. Within

STEM education and training, Python is also a popular

choice, leading to a new generation of scientific programmers

and researchers which is more proficient in Python than the

traditional compiled languages. For experimentation and

prototyping, Python is of particular interest due to its low

verbose code and high productivity [7, 8], how it can be

combined with C++ and Fortran code, and the wide range of

available tools and third-party libraries for numerical and

scientific applications2.

Holm, Brodtkorb and Sætra [9] investigated GPU computing

with Python for single-GPU systems, and found that the

overhead of using Python for stencil-based simulator codes,

compared to low-level languages, is negligible with regards to

performance. The energy efficiency does vary some between

different numerical schemes, optimization levels and GPUs,

but the run time is unsurprisingly the most important factor.

They note that the productivity of working with Python is

significantly higher than using C++. Herein, we take the first

step to extend these findings to a multi-GPU setting. We show

that Python code with GPU acceleration can be moved from the

prototype stage into HPC production code, obtaining good

results in terms of parallel efficiency and scaling on two HPC

systems with very different characteristics, also without

architecture-specific optimization. Our code can be run

through scripts for batch runs, but is also easily used

interactively (in a read-eval-print manner) from Jupyter

notebooks, also for multi-GPU simulation with MPI. We are

simulating the Euler equations using finite-volume methods with

a stencil-based high-resolution time-stepping scheme (Section

2.1 and references therein) for our experiments. The Euler

equations describe adiabatic and inviscid flow, and have a

wide range of applications, from numerical weather prediction

to simulation of air flow around an aircraft wing. The methods

we use may also be applied to other hyperbolic conservation and

balance laws, and have been demonstrated to achieve high

performance both on single GPUs [10, 11] and multiple

GPUs [12] for the shallow-water equations and stencil-based

solvers in general.

There exist other similar Python-based frameworks that

utilize GPUs for computational fluid dynamics. Witherden,

Farrington and Vincent [13] describes PyFR, a framework for

solving the Euler and Navier-Stokes equations on unstructured

grids using both CPUs and GPUs. The framework relies on a

domain specific language to specify point-wise kernels that are

interpreted at runtime and used to generate CUDA kernels that

run on the GPUs.Walker and Niemeyer [14] apply the swept rule

for solving the two-dimensional heat equation and Euler

equations on heterogeneous architectures. They note that

great care must be taken when designing a solver for such

architectures in order to achieve decent speed-up. Oden [15]

investigates the differences between native CUDA C++ code and

CUDA code written in Python using Numba, using both

microbenchmarks and real applications. She shows that the

Numba versions only reach between 50% and 85% of the

performance of the native CUDA C++ for compute-intensive

benchmarks. This suggests that it is still necessary to “hand code”

the inner loops in order to get maximum performance on

the GPU.

The use of Python for scientific computing and machine

learning has exploded over the last decade [16, 17]. For HPC

applications, one major challenge is to balance productivity with

efficiency. In the work presented here, the highest efficiency is

always within reach since the numerical schemes are written in

CUDA C++, allowing for fine-tuning the code to a particular

GPU. At the same time, high productivity is facilitated by keeping

all other parts of the code in Python. Moreover, by using only

standard Python and well-known and mature third-party

libraries, debugging and profiling of the code is kept manageable.

2 Materials and methods

This section details the mathematical discretization, its

implementation on GPU and extension to multiple GPUs. We

also outline how the profiling of the MPI + GPU application was

performed.

2.1 Mathematical formulation

The two-dimensional Euler Equations are a simplification of

the more complex Navier-Stokes equations, and can be written

ρ
ρu
ρv
E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

+
ρu

ρu2 + p
ρvu

u E + p()
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

+
ρv
ρuv

ρv2 + p
v E + p()

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y

�
0
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

in which ρ is the fluid density, the vector [ρu, ρv] represents the

momentum, E is the total energy, and p is the pressure. The total

energy can be written as

E � 1
2
ρ u2 + v2() + p/ γ − 1(), (2)

in which γ is the adiabatic exponent. We can also write the

equations on vector form,
2 https://numfocus.org/sponsored-projects/affiliated-projects and

https://numfocus.org/sponsored-projects.

Frontiers in Physics frontiersin.org02

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://numfocus.org/sponsored-projects/affiliated-projects
https://numfocus.org/sponsored-projects
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

zQ

zt
+ zF Q()

zx
+ zG Q()

zy
� 0,

in which Q is our vector of conserved variables, and F and G are

the source terms that govern the fluid dynamics. We can then

discretize our spatial derivatives, and end up with the following

ordinary differential equation that we have to solve in time:

dQ

dt
� −Fx Q() − Gy Q(). (3)

There are multiple ways of solving these equations. We can

for example use the classical Lax-Friedrichs numerical scheme,

which gives us the following discretization in two dimensions:

Qn+1
i,j � 1

4
Qn

i+1,j + Qn
i−1,j + Qn

i,j+1 + Qn
i,j−1[]

− Δt
2Δx F Qn

i+1,j() − F Qn
i−1,j()[]

− Δt
2Δy G Qn

i,j+1() − G Qn
i,j−1()[],

(4)

with a time step restricted by a CFL condition. This scheme is a

two-dimensional scheme, in which we compute the new solution

based on a two-dimensional stencil.

It is well known that this classical first order scheme is

numerically dissipative, leading to overly smeared solutions as

time progresses. We can improve on this, by using a higher-order

scheme. In this work, we have used a second-order accurate

MUSCL-Hancock scheme [18, 19], which in one dimension can

be written

�Q
L
i � QL

i +
1
2
Δt
Δx F QL

i() − F QR
i()[], (5)

�Q
R
i � QR

i +
1
2
Δt
Δx F QL

i() − F QR
i()[]. (6)

Here, �QL
i denotes the reconstructed value at the left hand side

of cell i, and equivalently �Q
R
i denotes the reconstructed value at

the right hand side. This means that we have the two states, �QR
i

and �Q
L
i+1, at the interface between cells i and i + 1, and we use the

Harten-Lax-van Leer (HLL) approximate Riemann solver [20,

21] with these two states to compute the HLL flux, �Fi+1/2, across
the interface. The scheme is second-order accurate in one

dimension [21]. To extend it to two-dimensional problems,

we use a dimensional splitting scheme that is second-order

accurate every other time step [21, 22],

Qp � YΔtXΔtQn, (7)
Qn+2 � XΔtYΔtQp. (8)

Here, XΔt and YΔt are the one-dimensional operators that

advance the solution in time along the x and y-axis, respectively:

XΔt � Qn − Δt �Fi+1/2,j − �Fi−1/2,j[], (9)
YΔt � Qn − Δt �Gi,j+1/2 − �Gi,j−1/2[]. (10)

The time step is restricted by a CFL condition, so that the

maximum time step advects the solution at most one cell in the

domain. The CFL condition can be written as

Δt≤C min
Δx
Sxmax

,
Δy
Symax

(), (11)

in which C is the CFL number, Sxmax is the maximum wave speed

present in the domain along the x-axis, and similar for the y-axis.

A practical choice for approximating the time step is

Δt≤C min
Δx

|u| + c
,

Δy
|v| + c

()
� C min

Δx
|ρu/ρ| + ��

γρ
√ ,

Δy
|ρv/ρ| + ��

γρ
√⎛⎝ ⎞⎠,

(12)

but it should be noted that this formulation must be used with

caution, and may yield unstable simulations even with low CFL

numbers (see, e.g. [21]).

2.2 Program structure

The simulator is written using Python (3.7.12), NumPy

(1.21.6), netcdf4 (1.5.8), PyCUDA [23] (2021.1), mpi4py [17,

24, 25] (3.1.3), OpenMPI (4.1.0), and CUDA (11.4.1) to

combine the power of multiple GPUs in a distributed-

memory or shared-memory architecture. The traditional

programming language for HPC has been Fortran—which is

evident from the large array of Fortran programs running on

supercomputers today. The common explanation for this is that

nothing can surpass Fortran in terms of performance. Whilst it

may be true that Fortran typically runs faster than Python, the

approach of using Python has some merits [26]. We use Python

here to combine traditional MPI-based supercomputing with

GPU computing in a hybrid approach. The libraries we use have

a base/core in C/C++, which gives us the flexibility of Python

with close to the speed of compiled languages.

The program structure for a single-GPU simulation is

shown in Figure 1. Simulator initialization constructs initial

conditions, a CUDA context and a simulator ready for time-

stepping. Initial conditions and all simulation parameters

needed to re-run the simulation is saved to a NetCDF file

for easy reproducible results. Each time step consists of

enforcing the boundary conditions upon reading in data

from the previous time step, evaluation of new fluxes and

any right-hand side source terms, forward time integration,

and an optional computation of the maximum time-step size

(for the next time step) based on the CFL condition. If the

maximum time-step size is not computed, a fixed time-step size

must be provided. Intermediate results can be written to the

NetCDF file at prescribed simulation times.

Frontiers in Physics frontiersin.org03

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

2.3 CUDA implementation

The numerical scheme outlined in the Section 2.1 is

implemented as a single-GPU kernel that computes either Eq.

(7) or Eq. (8) depending on a flag sent as a variable. This means

that after two kernel invocations, both equations are computed

once and the solution is evolved two time steps (recall that the

numerical scheme is only second-order accurate every second

time step). The GPU is completely managed through PyCUDA:

The device is controlled through the device API

(pycuda.driver), the CUDA C++-kernels are compiled

using just-in-time compilation (pycuda.compiler), and

data is stored using GPU Arrays

(pycuda.gpuarray.GPUArray). CUDA kernels are run

using prepared function calls. If we examine the data

dependencies of the numerical scheme (i.e., the numerical

stencil), we observe that the kernel requires a two-row halo in

all directions, as shown in Figure 2. The kernel is then

FIGURE 1
Program flow on a single GPU. All the boxes within the dotted square represent stages within the CUDA kernel. After completing all the CUDA
kernel stages, the simulation is advanced one step in time. The dashed boxes are optional, and if themax time-step size if not computed, a fixed time-
step size must be given.

FIGURE 2
Halo region for the CUDA kernel when computing Eq. 8. The top row shows how the input values (left) are used to compute the slopes (center)
along the x-axis. The slopes are consequently used to compute the face fluxes (right). Equivalently for the y-axis, the bottom row shows how the
input values (left) are used to compute the slopes (center), and finally the fluxes along the y-axis. Thus, an input grid of 8 × 10 cells is used to compute
the fluxes for the inner 4 × 6 cells.

Frontiers in Physics frontiersin.org04

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

implemented in a standard way, using shared memory on the

GPU to store the physical and reconstructed variables. The

principles from our earlier implementations of numerical

schemes for shallow-water simulations [10, 11] are applied. By

computing both in the x-dimension and the y-dimension for

each kernel execution we avoid having to read the physical values

twice, at the expense of an extra row and column of halo cells. In

this work, we have used a fixed CUDA block size of 16 by 8 cells,

but the code does contain an autotuner which can be used to

optimize the block size for performance on a particular GPU (see

Section 4.2 in [9]).

In addition to the numerical scheme presented for the Euler

equations, the simulator also contains various numerical schemes

for solving the two-dimensional shallow-water equations.

2.4 Extension to multiple GPUs

For multi-GPU simulations we introduce Python classes for

an MPI grid and an MPI simulator. Each MPI process has its

own MPI simulator and CUDA context. The MPI grid handles

domain decomposition and the necessary bookkeeping, keeping

track of which subdomains that need to communicate and

where the global boundaries are found. Both one- and two-

dimensional domain decomposition are supported. In both

cases the global Cartesian grid is decomposed uniformly

between all MPI ranks, such that each subdomain will have

at most two neighbors in 1D and at most four neighbors in 2D.

The MPI simulator extends the base simulator class and adds

the necessary functionality for exchanging halo cells between

neighbouring subdomains and computing global Δt for

simulations with a variable time-step size. All MPI calls are

done through mpi4py.

In Figure 3, all the stages of a multi-GPU simulation are shown

(from the perspective of one subdomain/MPI rank), divided

between two CUDA streams. To minimize the communication

overhead, we use asynchronous memory transfers that overlap

with computations. This enables us to hide most of the cost

associated with downloading, exchanging and uploading halo

cells each time step. There are some prerequisites for this: Host

memory needs to be pagelocked, the memory operations must be

asynchronous and they must be issued on a different stream than

the computational kernel(s) that is intended to run simultaneously.

The issue order of computational kernels and memory operations

on the two streams may impact the degree of

overlap. Furthermore, the size of the computational domains

and different hardware specifications (GPU generation and

class) may also lead to a varying degree of overlapping

execution between the two streams.

Figure 4 shows a schematic outline of the complete halo cell

exchange performed in Stream 2, related to the computational

grid. The halo cell buffers for all four boundaries of each

subdomain is allocated through PyCUDA’s device interface.

They are allocated once as pagelocked memory at simulation

initialization, and then used throughout the rest of the

simulation. These buffers are also used for the global

boundaries for certain boundary conditions, e.g., periodical

boundaries. Memory transfers are performed asynchronously

by calling PyCUDAMemcpy2D objects, specifying the streamwe

want the memory operation issued to. The sizes of the halo

regions are easy to adjust to permit the use of other numerical

schemes with different stencil sizes.

The exchange of halo regions with neighboring subdomains

is done with matching non-blocking MPI Isend/Irecv pairs with

MPI wait at the global synchronization points. The corner cells

are transferred first in the north-south direction, then in the

east-west direction. This minimizes the size of the transfer

buffers and avoids diagonal transfers between subdomains, at

the expense of an extra MPI synchronization to ensure that all

north-south exchanges are done before any east-west exchanges

start. As the internal domain is being computed simultaneous

to the full halo exchange process, including all but the final

synchronization point, this effectively hides most of the

communication overhead.

FIGURE 3
By using two CUDA streams we can perform memory
operations and computations simultaneously. The inner domain is
advanced one time step in Stream 1 and the halo in Stream 2. Since
the inner domain usually is much bigger than the halo, the
compute time spent on the inner domain in Stream 1 will mask the
time used for exchanging halo regions with neighboring
subdomains in Stream 2, including downloading (GPU to CPU),
send/receive with MPI, and uploading (CPU to GPU). The step
stage executes the same kernel for both streams, shown in
Figure 1, but for different areas of the domain.

Frontiers in Physics frontiersin.org05

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

2.5 Profiling multi-GPU applications

For a complete documentation of the tools used herein, we refer

to the user guides. The walk-through given here describes our use of

the tools and may also serve as a quickstart guide for others.

The Nvidia Visual Profiler and the nvprof command line

interface (CLI) tool have long been the go-to profiling and

analysis tools for GPU applications, the latter for remote

profiling on servers. In 2018, Nvidia introduced a new suite of

Nsight Tools; Systems3, Compute, and Graphics, which is now

the new standard profiling tools. Nsight Systems (nsys) for

complete system profiling and analysis, including OpenGL,

OpenMP, MPI, and CPU sampling; Nsight Compute (ncu)

for GPU kernel profiling and analysis; and Nsight Graphics

(ngfx) for profiling graphics applications.

This is how we profiled our code with Nsight Systems on the

remote systems (using CLI):

1) Install Nsight Systems (x86_64, IBM Power, and ARM SDSA

target versions are available in the CUDA Toolkit)

2) Run nsys profile <application executable>
3) To trace MPI, add the -t option. Here we are tracing CUDA,

NVTX, OS runtime and MPI: -t cuda,nvtx,osrt,mpi

4) Copy or move report1.qdrep (standard name) to local

machine

5) Open report1.qdrep with nsys-ui to view profile

It is also possible to do live profiling of a remote host by

connecting your locally running Nsight Systems UI to a daemon

running on the remote system, but this is generally not

recommended due to security issues with unencrypted

connection and plain-text password storage.

3 Results

The simulator has been profiled using Nsight Systems for

multi-GPU and MPI performance. Furthermore, the simulator

has been benchmarked on two systems, by instrumenting the

Python code to measure run times, demonstrating good weak

and strong scaling. We describe the experiment setup in terms of

simulation case and hardware, and present the results.

3.1 Experiment description

We have simulated the Kelvin-Helmholtz instability, which

models the dynamics occurring at the interface between two

fluids with different speeds. An example of such a simulation is

shown in Figure 5. This phenomenon occurs naturally, e.g., in a

FIGURE 4
This schematic outline shows the different stages executed in Stream 2 and how they relate to the computational grid. Note that the halo
computed in the first stage includes both the regions that will be copied to neighboring subdomains (inne halo) and the areas where values from
neighboring subdomains will be copied into (outer halo).

3 https://docs.nvidia.com/nsight-systems/UserGuide/index.html.

Frontiers in Physics frontiersin.org06

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

stratified atmosphere when there is a layer of fast moving air over

a slower moving layer of air.

We generate a periodic test case in which both the upper and

lower quarter of the fluid move towards the left, whilst the center

moves towards the right. We define the two regions with the

following properties:

ρ1 � 1.0, u1 � 0.5, v1 � 0, (13)
and

ρ2 � 2.0, u2 � −0.5, v2 � 0.
(14)

The total energy is computed using Eq. (2), in which we set

the adiabatic exponent γ = 1.4. The interface between the two

regions is slightly perturbed to trigger the instability.

3.2 Benchmark systems

The scaling benchmark has been run on two different systems

with very different characteristics, but on both systems the Slurm

Workload Manager was used to launch all jobs.

The first system, the DGX-24, is a shared-memory architecture

with 16Nvidia TeslaV100GPUs. All the GPUs have 32 GB of local

memory each (total of 512 GB) and share 1.5 TB main memory.

The peak performance in double precision is 125 teraflops.We had

exclusive access to this system while running the experiments.

The second system, Saga5, is a distributed-memory system

and a part of the Norwegian research infrastructure. The system

has eight nodes with four Nvidia Tesla P100 GPUs installed in

each node. The GPUs have 16 GB of local memory each. Each

node has two CPUs with 24 cores and 384 GiBmemory each. The

nodes are connected by InfiniBand HDR. This system was shared

with other users while running the experiments.

3.3 Multi-GPU profiling

From Figure 6 we see that the memory operations

(downloading from, and uploading to, the GPU) and MPI

communication and synchronization with other subdomains

are performed simultaneously with the execution of the

computational kernel for the inner domain. As the domain

size is increased, so is the ratio of the inner domain area to

the halo area. Thus, at some point, the compute time for the inner

domain will hide all the cost of halo cell exchange process except

the API calls and other fixed overheads. Since there are four

conserved variables (Eq. 1) and up to four neighboring

FIGURE 5
A simulation of the Kelvin-Helmholtz instability. The four panels show density in the initial conditions and after 1, 2 and 3 s of simulation time.
See animation at https://www.youtube.com/watch?v=ejCzlwIT--w.

4 https://www.ex3.simula.no/resources. 5 https://documentation.sigma2.no/hpc_machines/saga.html.

Frontiers in Physics frontiersin.org07

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://www.youtube.com/watch?v=ejCzlwIT--w
https://www.ex3.simula.no/resources
https://documentation.sigma2.no/hpc_machines/saga.html
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

subdomains (Figure 4), this results in a total of 16 sets of

downloading, uploading and exchanging halo cell buffers for

the subdomains which are not on the global domain boundary.

3.4 Multi-GPU scaling

For all scaling experiments, the domain size is set such that

close to all available memory is used on each GPU, and we run

the simulation for 200 time steps with a fixed time-step size. For

weak scaling the subdomain size per GPU is kept fixed, and we

run experiments using from one GPU up to the available

number GPUs in the system. For strong scaling the global

domain size is fixed, and we run experiments using from

four GPUs (the domain size is scaled to fit on four GPUs)

up to the available number of GPUs in the system. All

initialization, writing of results to NetCDF files and cleanup

after the last time step are not included in the time

FIGURE 6
Screendump of timeline in the Nsight Systems UI zoomed in on one time step on one GPU (in a two-GPU simulation), showing overlap of
memory operations (in Stream 14) and MPI communication (designated MPI), and the computational kernel for the inner domain (in Stream 15). The
CUDAAPI calls are shown in the bottom row. Note that the timeline is split over two rows. The color codes for the bars are as follows: Blue is compute
kernel execution or API call, purple is download (GPU to CPU), green is upload (CPU to GPU), gray is MPI Isend/Irecv or wait, red is memory API
calls, and yellow is CUDA thread synchronization.

FIGURE 7
Results from scaling experiments on DGX-2 shared-memory system. Weak scaling (1–16 GPUs) is shown in the left panel and strong scaling
(4–16 GPUs) is shown in the right panel. Run times are normalized with respect to the single rank/GPU experiment for weak scaling and the four
ranks/GPUs experiment for strong scaling.

Frontiers in Physics frontiersin.org08

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

measurements, meaning that we measure only the stages of

Stream 1 and Stream 2 shown in Figure 3.

Results from scaling experiments on the DGX-2 system is

shown in Figure 7. For weak scaling, shown in the panel to the

left, we have a minimum efficiency of 94% compared to the

single-GPU run. There are some variations in the efficiency in

the interval between 94% and 96% efficiency from 9 to 16 GPUs.

This suggests that there are still some overheads connected to

the halo cell exchange that are not completely hidden. For

strong scaling, shown in the panel to the right, we observe linear

scaling from 4 to 16 GPUs, meaning that no significant extra

cost in terms of run time is incurred when going from 4 to

16 GPUs.

Results from scaling experiments on the Saga cluster is

shown in Figure 8. There are two graphs for weak scaling,

shown in the panel to the left, one for shared memory on a

single node and one for distributed memory on 1–4 nodes with

one GPU on each node. In both graphs, measurements are

normalized with respect to the single-node single-GPU run

time. The single-node weak scaling have a minimum

efficiency of 98% and the multi-node weak scaling have a

minimum efficiency of 90%. Again, this shows that there is

still some overheads connected to the halo cell exchange that

is not completely hidden. We attribute the lower efficiency in

Saga (for the distributed-memory run times), compared to the

shared-memory run times, to the interconnect and the fact

that this is a shared system with many active users. We would

have liked to use up to 16 GPUs for the weak scaling experiments,

but limitations due to congestion and Slurm setup made this

difficult. Strong scaling, shown in the panel to the right, scales

linearly from 4 to 16 GPUs.

4 Discussion

We have described a Python-CUDA C++-based prototype

framework for multi-GPU simulation of the Euler equations

using finite-volume methods. By implementing everything but

the numerical schemes in Python, the code is kept short and

manageable, which facilitates productivity. No domain specific

language has been used and only a limited number of well-

known and mature third-party libraries. This enhances the

readability of exception stack traces and reduces the

vulnerability of discontinued third-party libraries for GPU

acceleration, inter-process communication, domain

decomposition, etc. The numerical scheme is implemented in

CUDA C++, which gives a high level of flexibility and the

possibility to optimize for a particular GPU. Autotuning of

CUDA block size is implemented and can give increased

performance portability between different generations and

classes of GPUs. The code can be adapted to simulate other

conservation laws and to use different numerical schemes. The

simulator has been shown to be efficient through profiling and

scalability experiments on both shared-memory and

distributed-memory systems. As the amount of scientific

Python code bases grows together with the number of GPU-

accelerated HPC-systems, these are promising results.

The results show that there are still improvements to be

made, particularly for distributed-memory systems without a

fast interconnect. One possible option is to use ghost cell

expansion [12, 27], which would increase the size of the halo

cell regions, allowing for running multiple time steps for

each halo cell exchange. Hybrid MPI + OpenMP (threads)

would decrease the number of total MPI messages, but since

FIGURE 8
Results from scaling experiments on the Saga cluster. Weak scaling (1–4 GPUs on a single node and 1–4 nodes with one GPU on each node) is
shown in the left panel and strong scaling (4–16 GPUs divided equally between four nodes) is shown in the right panel. Run times are normalized with
respect to the single rank/GPU experiment for weak scaling and the four ranks/GPUs experiment for strong scaling.

Frontiers in Physics frontiersin.org09

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

inter-process communication costs already are efficiently

hidden by overlapping with computation on the shared-

memory system, this seems like a high investment in code

complexity for a low return in terms of reduced run time. So-

called MPI + MPI (MPI-integrated shared memory) and

experimentation with processor affinity are also something

to be explored.

Future work includes adding more applications and

numerical schemes, with extension to three dimensions. A

more robust implementation of asynchronous communication

that take GPU (PCIe, NVLink and NVSwitch) and system

interconnect into account could further increase the scaling

performance by leveraging CUDA-aware MPI, UCX, and

RDMA [28, 29]. Domain decomposition for load balancing

in heterogeneous systems (CPUs and GPUs, or different

generations and classes of GPUs) would allow for better

performance portability for simulations on heterogeneous

systems and multi-GPU simulations. The scaling benchmark

should also be run on larger systems to investigate the limits

of scalability and how the workload manager’s resource

allocation and management may affect the performance,

depending on which flags that are used. Comparison studies

on alternatives to CUDA C++ would give more insight

into efficiency-productivity considerations, including HIP (by

using HIPIFY), SYCL and even pragma/directive-based

approaches. This would also break the current dependency on

Nvidia GPUs.

The code is available at https://github.com/babrodtk/

ShallowWaterGPU.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://github.com/babrodtk/

ShallowWaterGPU.

Author contributions

AB—conceptualization; methodology; software;

writing—original draft; writing—review and editing;

visualization; funding acquisition. MS—conceptualization;

software; validation; investigation; writing—original draft;

writing—review and editing; visualization; funding acquisition.

Funding

The research contribution of MS is funded by The Norwegian

Research Council under the project “HAVVARSEL—Personalized

ocean forecasts in a two-way data flow system” (310515). The shared-

memory simulations were performed on a system provided by Simula

Research Laboratory under the eX3 project6. The Saga cluster

simulations were performed on resources provided by Sigma2—the

National Infrastructure for High Performance Computing and Data

Storage in Norway under project number nn9882k.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Larsen E, McAllister D. Fast matrix multiplies using graphics hardware. In: ACM/
IEEE Conference on Supercomputing. New York, NY, USA: ACM (2001). p. 55.

2. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, et al. A
survey of general-purpose computation on graphics hardware. Computer Graphics
Forum (2007) 26:80–113. doi:10.1111/j.1467-8659.2007.01012.x

3. Owens J, Houston M, Luebke D, Green S, Stone J, Phillips J. GPU computing.
Proc IEEE (2008) 96:879–99. doi:10.1109/JPROC.2008.917757

4. Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO. State-of-the-
art in heterogeneous computing. Scientific Programming (2010) 18:1–33. doi:10.
3233/SPR-2009-0296

5. Brodtkorb AR, Hagen TR, Sætra ML. Graphics processing unit (GPU)
programming strategies and trends in GPU computing. J Parallel Distributed
Comput (2013) 73:4–13. doi:10.1016/j.jpdc.2012.04.003

6. Barba LA. The Python/jupyter ecosystem: Today’s problem-solving
environment for computational science. Comput Sci Eng (2021) 23:5–9. doi:10.
1109/MCSE.2021.3074693

7. Nanz S, Furia CA. A comparative study of programming languages in rosetta
code. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, 1 (2015). p. 778–88. doi:10.1109/ICSE.2015.90

8. Prechelt L. An empirical comparison of seven programming languages.
Comput J (2000) 33(10):23–9. doi:10.1109/2.876288

9. Holm HH, Brodtkorb AR, Sætra ML. GPU computing with Python:
Performance, energy efficiency and usability. Computation (2020) 8:4. doi:10.
3390/computation8010004

10. Brodtkorb AR, Sætra ML, Altinakar M. Efficient shallow water simulations on
GPUs: Implementation, visualization, verification, and validation. Comput Fluids
(2012) 55:1–12. doi:10.1016/j.compfluid.2011.10.012

6 https://www.ex3.simula.no/.

Frontiers in Physics frontiersin.org10

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://github.com/babrodtk/ShallowWaterGPU
https://github.com/babrodtk/ShallowWaterGPU
https://github.com/babrodtk/ShallowWaterGPU
https://github.com/babrodtk/ShallowWaterGPU
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.3233/SPR-2009-0296
https://doi.org/10.3233/SPR-2009-0296
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1109/MCSE.2021.3074693
https://doi.org/10.1109/MCSE.2021.3074693
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1109/2.876288
https://doi.org/10.3390/computation8010004
https://doi.org/10.3390/computation8010004
https://doi.org/10.1016/j.compfluid.2011.10.012
https://www.ex3.simula.no/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

11. Brodtkorb AR, Sætra ML. Explicit shallow water simulations on GPUs:
Guidelines and best practices. CMWR (2012).XIX international conference on
water resources.

12. Sætra M, Brodtkorb A. Shallow water simulations on multiple GPUs. In:
Jónasson K, editor. Applied parallel and scientific computing. Springer Berlin/
Heidelberg (2012).

13. Witherden FD, Farrington AM, Vincent PE. PyFR: An open source
framework for solving advection–diffusion type problems on streaming
architectures using the flux reconstruction approach. Computer Phys Commun
(2014) 185:3028–40. doi:10.1016/j.cpc.2014.07.011

14. Walker AS, Niemeyer KE. Applying the swept rule for solving two-
dimensional partial differential equations on heterogeneous architectures. Math
Comput Appl (2021) 26:52. doi:10.3390/mca26030052

15. Oden L. Lessons learned from comparing C-CUDA and Python-Numba for
GPU-Computing. In: 2020 28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing. PDP (2020).

16. Barba LA, Klöckner A, Ramachandran P, Thomas R. Scientific computing
with Python on high-performance heterogeneous systems. Comput Sci Eng (2021)
23:5–7. doi:10.1109/MCSE.2021.3088549

17. Fink Z, Liu S, Choi J, DienerM, Kale LV. Performance evaluation of Python parallel
programming models: Charm4Py and mpi4py. In 2021 IEEE/ACM 6th International
Workshop on Extreme Scale Programming Models and Middleware (ESPM2) (2021).

18. van Leer B. Towards the ultimate conservative difference scheme. V. A
second-order sequel to Godunov’s method. J Comput Phys (1979) 32:101–36.
doi:10.1016/0021-9991(79)90145-1

19. van Leer B. On the relation between the upwind-differencing schemes of
godunov, engquist–osher and roe. SIAM J Scientific Stat Comput (1984) 5:1–20.
doi:10.1137/0905001

20. Harten A, Lax PD, van Leer B. On upstream differencing and godunov-type schemes
for hyperbolic conservation laws. SIAM Rev (1983) 25:35–61. doi:10.1137/1025002

21. Toro E. Riemann solvers and numerical methods for fluid dynamics: A practical
introduction. Heidelberg: Springer Berlin Heidelberg (2013).

22. WarmingRF, BeamRM.Upwind second-order difference schemes and applications
in aerodynamic flows. AIAA J (1976) 14:1241–9. doi:10.2514/3.61457

23. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and
PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel
Comput (2012) 38:157–74. doi:10.1016/j.parco.2011.09.001

24. Dalcín L, Paz R, Storti M. MPI for Python. J Parallel Distributed Comput
(2005) 65:1108–15. doi:10.1016/j.jpdc.2005.03.010

25. Dalcin L, Fang Y-LL. Mpi4py: Status update after 12 Years of development.
Comput Sci Eng (2021) 23:47–54. doi:10.1109/MCSE.2021.3083216

26. Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. Best
practices for scientific computing. PLOS Biol (2014) 12:e1001745. doi:10.1371/
journal.pbio.1001745

27. Ding C, He Y (2001). A ghost cell expansion method for reducing
communications in solving PDE problems. In: ACM/IEEE Conference on
Supercomputing. Los Alamitos, CA, USA: IEEE Computer Society.

28. Li A, Song SL, Chen J, Li J, Liu X, Tallent NR, et al. Evaluating modern GPU
interconnect: PCIe, NVlink, NV-sli, NVswitch and GPUDirect. IEEE Trans Parallel
Distributed Syst (2020) 31:94–110. doi:10.1109/TPDS.2019.2928289

29. Choi J, Fink Z, White S, Bhat N, Richards DF, Kale LV. GPU-Aware
communication with UCX in parallel programming models: Charm++, MPI,
and Python. In: 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops. IPDPSW (2021). p. 479–88. doi:10.1109/
IPDPSW52791.2021.00079

Frontiers in Physics frontiersin.org11

Brodtkorb and Sætra 10.3389/fphy.2022.985440

https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.3390/mca26030052
https://doi.org/10.1109/MCSE.2021.3088549
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.1137/0905001
https://doi.org/10.1137/1025002
https://doi.org/10.2514/3.61457
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1109/IPDPSW52791.2021.00079
https://doi.org/10.1109/IPDPSW52791.2021.00079
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.985440

	Simulating the Euler equations on multiple GPUs using Python
	1 Introduction
	2 Materials and methods
	2.1 Mathematical formulation
	2.2 Program structure
	2.3 CUDA implementation
	2.4 Extension to multiple GPUs
	2.5 Profiling multi-GPU applications

	3 Results
	3.1 Experiment description
	3.2 Benchmark systems
	3.3 Multi-GPU profiling
	3.4 Multi-GPU scaling

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

