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A B S T R A C T

Navigation assistance is an active research area, where one aim is to foster independent living for people with
vision impairments. Despite the fact that many navigation assistants use advanced technologies and methods,
we found that they did not explicitly address two essential requirements in a navigation assistant - portability
and convenience. It is equally imperative in designing a navigation assistant for the visually impaired that the
device is portable and convenient to use without much training. Some navigation assistants do not provide users
with detailed information about the obstacle types that can be detected, which is essential to make informed
decisions when navigating in real-time. To address these gaps, we propose DeepNAVI, a smartphone-based
navigation assistant that leverages deep learning competence. Besides providing information about the type
of obstacles present, our system can also provide information about their position, distance from the user,
motion status, and scene information. All this information is offered to users through audio mode without
compromising portability and convenience. With a small model size and rapid inference time, our navigation
assistant can be deployed on a portable device such as a smartphone and work seamlessly in a real-time
environment. We conducted a pilot test with a user to assess the usefulness and practicality of the system. Our
testing results indicate that our system has the potential to be a practical and useful navigation assistant for
the visually impaired.
1. Introduction

Globally, around 2.2 billion people are diagnosed with vision im-
pairment or blindness (WHO, 2021). Several studies have reported the
difficulties faced by people with visual impairments during naviga-
tion (Manduchi & Kurniawan, 2011; Riazi, Riazi, Yoosfi, & Bahmeei,
2016). The freedom to move about independently is one component of
a dignified life, and tools to support this freedom is the key motivation
for this work.

People with visual impairments typically use white canes, guide
dogs, and sighted people to assist them (Aspinall, 2012; Hersh &
Johnson, 2010) for navigation. White canes have many advantages,
including ease of replacement, cost-effectiveness, easy maneuverabil-
ity, and low maintenance requirements. However, cane users may
encounter challenges when navigating crowded areas (Nook, 2020).
Furthermore, users cannot use their hands to hold anything else when
using canes. Guide dogs can provide companionship, love, comfort, and
respect to their handlers while keeping their users (owners) safe. How-
ever, training and managing guide dogs are incredibly time-consuming
and expensive. Moreover, there are certain places where dogs are not
permitted, such as indoor theaters, sticky floors, and some foreign
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countries that do not have accessibility laws (Austin, 2016; Nook,
2020). People with visual impairments feel safe and comfortable when
assisted by someone with sight. Nevertheless, relying on another person
to navigate might be a barrier to independence.

To address the issues, such as discomfort in public places, portability
issues, expensive and time-consuming training, constant dependability
on a second person, etc., various navigation assistant systems have been
proposed in the literature (Bhowmick & Hazarika, 2017; Chanana, Paul,
Balakrishnan, & Rao, 2017; Real & Araujo, 2019). Some were designed
for indoor use, some for outdoor use, and others for both (Real &
Araujo, 2019). However, many of these devices are uncomfortable and
lead to users’ perceived social stigma when using these solutions (Dos
Santos, Ferrari, Medola, & Sandnes, 2022).

Researchers have investigated diverse technologies, such as artificial
intelligence and machine learning, to find solutions to navigation aids
for people with visual impairments. Deep learning models have recently
been increasingly explored for obstacle detection in navigation assis-
tance systems. Despite the availability of many object detection models,
selecting a suitable model with low inference time and small memory
footprint requirement for a real-time navigation environment needs a
carefully crafted study and analysis.
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As portability is an important design consideration for navigation
support systems, researchers have been exploring the potential of using
smartphones (Kuriakose, Shrestha, & Sandnes, 2020). A lot of research
attention is being paid to how portable devices can assist people with
disabilities in daily activities, such as navigation. Modern smartphones
are promising because of their sensors, cameras, increasing processing
power, and broader availability (Kuriakose et al., 2020).

We propose DeepNAVI, a portable smartphone-based navigation
solution that uses deep learning models for obstacle detection and scene
recognition. In addition, DeepNAVI can provide detailed information
about the various attributes of obstacles, such as distance to the user,
position, and motion status (stationary or moving). Even though there
are several smartphone-based navigation assistants or deep learning-
based navigation assistance systems proposed in the literature, what
differentiates DeepNAVI is its design which gives importance to both
technical and usability factors. DeepNAVI has onboard trained deep
learning models which do not require internet connectivity to process
information. Furthermore, DeepNAVI can be integrated into a smart-
phone and uses existing sensors for giving navigation directions to
people with visual impairments. This work is an extension of our pre-
vious work reported in Kuriakose, Shrestha, and Eika Sandnes (2021).
However, this work has been extended by making substantial changes
by adding more features, training, and testing with better deep learning
models with more extensive and extended datasets. The current version
of DeepNAVI evolved after design research collaboration with the
users incorporated changes from the previous prototype. Some of the
components of the current version of DeepNAVI are discussed in detail
in the authors’ previous works. For example, in distance estimation,
scene recognition, and obstacle detection, the authors did elaborate
studies and testing and wind up with the ones used in the current
version of DeepNAVI. Many similar and recent works in the literature
have used existing general datasets or a pre-trained object/obstacle
detection model (Rao, et al., 2021; Ashiq, et al., 2022; Joshi, Yadav,
Dutta, & Travieso-Gonzalez, 2020; Mukhiddinov & Cho, 2021). But in
this work, we have created custom datasets for training models rather
than general datasets, which include only relevant objects/obstacles in
navigation scenarios. Moreover, this article also provides a detailed
evaluation of the performance of different system modules in Deep-
NAVI. Furthermore, we did extensive pilot testing with a user with
visual impairment to assess our proposed system’s practicability and
usability.

The main contributions of this work are as follows: (1) the pro-
posed design of a smartphone-based navigation assistant after carefully
considering various design choices and requirements from target users;
(2) the creation of custom datasets for obstacle detection and scene
recognition which consist of 20 different types of obstacles and 20
scene categories relevant to navigation domain; (3) lightweight object
detection and scene recognition models trained with our datasets, (4) a
detailed pilot testing and analysis of our smartphone-based navigation
assistant with a smart cane from a visually impaired user perspective,
and (5) a consolidated comparative analysis of our system with other
similar systems proposed in the domain.

The paper is organized as follows. Section 2 presents related work
reported on navigation assistants. Section 3 provides details of our
system design and implementation. The development of our smart-
phone application is described in Section 4. Section 5 provides the
experiments and results. It is followed by the discussion in Section 6.
The paper concludes in Section 7. We use the terms people with visual
impairments or visually impaired users or users throughout this article to
refer to people who are legally blind or have reduced vision to perceive
visual stimuli.

2. Related works

Many diverse systems are proposed in the literature to assist the
navigation of people with visual impairments. Researchers used various
2

criteria to categorize navigation assistants for the visually impaired.
Here, we have categorized navigation assistant systems into four major
categories based on their processing environments, which refer to the
primary device used to process information. They are hardware boards,
smart canes, smart glasses, and smartphones. The following subsections
describe each, and the example systems fall under each.

2.1. Hardware boards

Systems under this category use hardware boards such as Arduino,
Raspberry Pi, or even a laptop to process information acquired from
the environment. Such systems use external cameras, BLE beacons, and
sensors to acquire information from the navigating environment.

The deep learning-based assistive system proposed in Lin, Wang, Yi,
and Lian (2019) consisted of an RGB-D camera, an earphone, a laptop
for deep learning processing, and a smartphone for touch-based inter-
action. The system used segmentation networks that provide semantic
information using RGB and depth images. The system claimed to pro-
vide reliable feedback to visually impaired people to avoid obstacles.
The lack of portability may be one drawback of the system.

Kanwal, Bostanci, Currie, and Clark (2015) introduced a Kinect-
based navigation assistant that uses depth values from an infrared
sensor. Obstacles are detected by applying the corner detection algo-
rithm to the images, and the depth sensor provides the corresponding
distance from the obstacles. The system also suggests a safe path
with direction signals and tells the user to stop, move left, or move
right. The Kinect camera is intended for stationary home use and
is thus not practical from a portability perspective. Moreover, if the
system could provide information about obstacles, it could benefit
the users. Bhowmick, Prakash, Bhagat, Prasad, and Hazarika (2014)
presented an assistive navigation system that also used a Microsoft
Kinect depth sensor on board. The Speed-Up Robust Features (SURF)
and Bag-of-Visual-Words (BOVW) models extracts features and are
used in obstacle detection. The user would receive the audio output
through a headset. Although the system could provide information
about obstacles, there could be issues related to portability aspects.

Moharkar, Varun, Patil, and Pal (2020) proposed a single-board
PC (called an Odroid) based navigation assistant. A USB camera was
integrated with the system to capture real-time video. The system
detected obstacles, found the distance using a laser, and then provided
the results to the user using audio feedback. Obstacle detection and
classification were performed using a multimodal fusion-based faster
RCNN.

The system introduced by Ashiq, et al. (2022) uses the MobileNet
architecture for obstacle detection and uses a Raspberry Pi board to
process the information. The user receives audio feedback, and the
system can share the location with the user’s family/friends. Similarly,
in Joshi et al. (2020), the system uses YOLOv3 for obstacle detection
that runs on a Raspberry Pi board. The system can recognize different
objects, and auditory output is provided to the user in real-time. But a
few limitations existing with these systems are lack of feature support
(such as distance estimation, scene recognition, or motion detection of
obstacles) which could be useful for seamless navigation. Moreover,
even though the systems are new in the domain, their architectures
for obstacle detection were not the best among the currently available
deep learning models that can offer better detection accuracy, inference
time, and the capability to get deployed in miniature portable devices
like smartphones.

The indoor guidance system proposed in Kahraman and Turhan
(2021) uses a hybrid Radio-frequency identification (RFID)/Bluetooth
Low Energy (BLE) infrastructure to provide intelligent navigation and
guidance to the user in complex indoor environments. The system
enables users to input their navigation purpose through a specially
designed user interface and provides intelligent guidance through a
chain of destination targets, which are determined according to the

inherent procedures of the environment. The installation of RFID/BLE
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is costly and complex. Furthermore, such a system is not a viable option
in outdoor navigation environments.

Barontini, Catalano, Pallottino, Leporini, and Bianchi (2020) intro-
duced a system consisting of an RGB-D camera, a processing unit to
compute visual information to avoid obstacles, and a wearable device,
which can provide specific force feedback for guidance in an unknown
indoor environment. The main limitations of the system are associated
with portability, and the operating environment is restricted to indoors.

Navigation assistants that use hardware boards as their central
processing unit are often inconvenient and limited in portability. Hard-
ware processing boards and external cameras have power supplies and
connecting wires, so users may feel uncomfortable carrying them while
navigating.

2.2. Smart canes

Smart canes are electronic devices that fit as a handle on white
canes used by people with visual impairments. While white canes can
only detect obstacles up to knee height, smart cane detects obstacles
from knee to head height (Saksham, 2014). Sonic waves are used to
detect obstacles, and intuitive vibrational patterns indicate the presence
of obstacles in a smart cane. In recent years, several navigation systems
have been proposed that enhance and modify the basic functionality
of smart canes. The following section discusses some recent smart
cane-based navigation assistants.

Megalingam, Nambissan, Thambi, Gopinath, and Nandakumar
(2015) proposed a smart cane with a Bluetooth-enabled obstacle de-
tection module. Obstacles are detected with the help of ultrasonic
range finders. The system uses two output modalities: synthetic speech
feedback for informing distance through a Bluetooth headset and haptic
feedback to warn the user about moving obstacles.

The electronic travel aid developed in Guerrero, Quezada-V, and
Chacon-Troya (2018) consists of an ultrasonic sensor to detect possible
obstacles, a working range between 0.5 and 5 m, a sound module, and a
buzzer to alert the user about possible obstacles. An android application
was used to communicate with the smart cane through a GPS and GSM
module to help locate the user by sending a text message to a relative
to access the user’s location and visualizing it through Google Maps.

Saaid, Mohammad, and Ali (2016) proposed a smart cane with
range notification. The system used an ultrasonic sensor to measure the
distance from the obstacle. Data processing was performed using the
National Instruments myRIO-1900 controller. The cane alerted users
about obstacles using audio. The authors claim that the system can
recognize obstacles both indoors and outdoors. No user-level tests were
reported.

Smart cane is easy to learn and can be used easily as a mobility
aid with hardly any assistance. However, a person must undergo short
training to become an expert user. Moreover, although modern smart
canes are expensive and have features such as smartphone integra-
tion, they do not provide much information about the surrounding
environment or obstacles.

2.3. Smart glasses

Smart glass is a portable device that scans the navigation environ-
ment using a camera mounted on the glasses to provide information
about obstacles. Various technology firms are developing smart glass
solutions to support the various activities of people with vision impair-
ments. This section discusses some research that uses smart glasses as
navigational aid for people with visual impairments.

Rao, et al. (2021) proposed a navigation solution using Google
Glass. The camera embedded in the smart glasses was used to cap-
ture the images of the surroundings, which were analyzed using the
Microsoft Custom Vision Application Programming Interface (Vision
API) from Azure Cognitive Services. The output of the Vision API
about various obstacles was converted into speech and presented to
3

the user. This system required constant network connectivity to process
environmental data. This could be a limitation when users travel to
basements or areas with limited network connectivity.

The smart glass solution introduced in Mukhiddinov and Cho (2021)
includes a transformer-based object detection model and text recogni-
tion model that use computer vision and deep learning methods. The
proposed system runs these models on an external server connected
to a smartphone. The authors claim that the system can detect and
recognize obstacles from low-light and dark-scene images to assist users
in a nighttime environment. This system also required constant access
to a network that could limit the operation, similar to Rao, et al. (2021).

Suresh, Arora, Laha, Gaba, and Bhambri (2017) proposed smart
glasses that consist of ultrasonic sensors to detect obstacles during
navigation. The central processing part was a Raspberry Pi which
analyzes the input data. The system could also provide warning through
vibrations in the recognized direction. The software framework was
managed in a Robot Operating System (ROS). The embedded external
sensors and the Raspberry Pi board might be inconvenient to users
during navigation.

Although smart glasses are convenient to use, their main drawback
is their high cost. Most users living in middle or low-income countries
cannot afford to buy smart glasses.

2.4. Smartphones

The exponential growth of the smartphone industry paved the way
to explore them more in navigation assistance research. The navigation
assistance system proposed in Bai, Liu, Su, and Fu (2017) used a smart-
phone to interact with the user through voice input. Stereo cameras
were used to capture video from the environment and then send it to
the cloud computing platform. Similar to Rao, et al. (2021), Mukhiddi-
nov and Cho (2021), the system also required constant connectivity to
the data network to function.

The system introduced in Lin, Lee, and Chiang (2017) consists of
an image recognition system integrated with a smartphone application.
The system supports two operation modes based on the availability
of the network: online and offline. A smartphone was used to capture
objects in front of the user and send them to a back-end server. Two
algorithms, Faster R-CNN and YOLO, were applied for object recog-
nition. The faster R-CNN algorithm was used in the offline mode of
the system to obtain higher accuracy. In contrast, the YOLO algorithm
was applied in online mode to get a higher processing speed. After
identifying obstacles and their distance, the user would be informed
about the results through audio mode.

Bai, et al. (2019) presented a navigation assistance system with an
RGB-D camera, an inertial measurement unit (IMU) mounted on a pair
of glasses, and a smartphone as its main components. A lightweight
CNN was installed on the smartphone to detect obstacles and their po-
sition and orientation. Although the authors claim that the system was
tested and works indoors and outdoors, the cables connecting various
system components might inconvenience the users while navigating.

The system proposed in Fusco and Coughlan (2020) has a real-time
smartphone app that combines computer vision, a 2D map, and the IMU
of the smartphone to estimate and track the user’s location in an indoor
environment. At the same time, the app requires the user to hold the
smartphone or wear it with the camera facing forward while walking,
which might be uncomfortable for the user.

PERCEPT-II is a smartphone-based indoor navigation system pro-
posed in Ganz, Schafer, Tao, Wilson, and Robertson (2014). It is an
android application that allows the visually impaired to receive navi-
gation instructions to the target destination when they touch specific
landmarks equipped with Near Field Communication tags. The major
limitation of the system is associated with NFC tags installation, which
involves high maintenance in a large-scale deployment.

ARIANNA (pAth Recognition for Indoor Assisted NavigatioN with

Augmented perception) (Croce, et al., 2014) allows the users to find
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points of interest in an indoor navigation environment by following a
path painted or stuck on the floor. A smartphone camera detects the
path, and the phone also generates a vibration signal that provides
feedback to the user to correct the direction. Similar to Ganz, et al.
(2014), the maintenance and deployment are not practicable in real-life
situations.

Tapu, Mocanu, Bursuc, and Zaharia (2013) came with smartphone-
based real-time obstacle detection and classification system to help
visually impaired people navigate indoor and outdoor environments.
The system tried to estimate the camera and background motion using
homographic transforms. A HOG descriptor was used with the Bag of
Visual Words (BoVW) retrieval framework for obstacle classification in
video streams.

Peng, Peursum, Li, and Venkatesh (2010) proposed a smartphone-
based navigation assistance system to detect objects on the floor re-
gardless of their height. The proposed system assumes that the user
can always keep the smartphone at a tilt angle, such as 45 so that the
floor in front of the user is always visible in the image. Because of
this assumption, the authors claim that obstacles on the floor in front
of the user can be detected in real-time using the proposed system.
The system was tested under different floor conditions, and a field
trial was conducted with five users. The limitations described in the
paper describe most users’ difficulty in holding the smartphone at the
requested tilt angle (around 45).

In summary, the significant limitations associated with most of the
systems reviewed here are associated with portability, which makes
them inconvenient during navigation. Although there are portable
solutions, many depend on network connectivity and server processing.
Users who need to connect to the internet while navigating could
raise concerns about privacy and security. Although some have ex-
plored general-purpose object detection models with better accuracy,
they have not shown how they can be integrated into a portable
system with low computational resources. Generally, when used in real-
time environments, object/obstacle detection models should have a
low inference time without compromising accuracy. However, when
general-purpose objection models have been used, they could have
adequate accuracy but take more time to deliver the result, which
could cause accidents or collisions during navigation due to a delay
in response time (Kuriakose, Shrestha, & Sandnes, 2021b).

3. Proposed system and implementation

To identify the limitations of existing navigation systems, we re-
viewed the findings of our literature survey reported in Kuriakose,
Shrestha, and Sandnes (2022) and considered the recommendations we
made. We also considered the results of our study on the capability
and potential of modern smartphones to be used as a navigation assis-
tant (Kuriakose et al., 2020). Based on all these studies, we focused on
several design attributes that could improve the navigation experience
of users with visual impairments. Furthermore, these attributes (or
the design choices) were consolidated with a visually impaired user
with experience using technology-based navigation aids. The user was
actively involved in our requirement analysis and user testing process.
This section discusses the design considerations, our proposed system,
and its implementation details.

3.1. Design considerations

Various design considerations that we learned to be significant in a
navigation assistant for the visually impaired are as follows:
Accuracy and Speed: The trade-off between the accuracy and speed of
obstacle detection is vital in a real-time application. Based on this
realization, we choose lightweight deep learning models for object
detection and scene recognition in our system. Both models offered
a balance between accuracy and speed attributes without compro-
mise. Moreover, it is optimal to deploy on a mobile device to have
4

lightweight models, which all favored selecting appropriate models in
our application scenario.
Reduction in Latency: Low-latency systems are believed to have the
best user experience. Therefore, instead of deploying the deep learning
models on a cloud computing server, we decided to deploy them on a
mobile device. The smartphone can act as the core of our navigation
system, which computes and provides navigation-related information
to the user.
Ensured data privacy: Some of the systems proposed in the litera-
ture (Rao, et al., 2021; Bai et al., 2017; Mukhiddinov & Cho, 2021) use
an external network or cloud computing services to process information
about the environment for navigation. But there are potential privacy
issues when sending environment data to an external cloud server. In
our case, the information captured from the navigation environment
would be processed in the local device. Thus, complete privacy of the
data is ensured for the user and the environment entities.
Affordability: The main hardware component of our system is a smart-
phone. Smartphones are standard and miniature computing devices
available to any individual. Since we are not dependent on external
cloud computing servers or other hardware devices, such as external
cameras, it reduces the cost of implementation.
Low Power Consumption: There is no requirement for WiFi or an external
data network to operate our system, hence the power consumption
could be lower (Tawalbeh, Eardley, et al., 2016). Furthermore, our
system does not use external cameras to capture images, as in Ashiq,
et al. (2022), Bhowmick, et al. (2014), Kanwal et al. (2015). All these
reasons can contribute to the reduction in power consumption.
Portability: Portability is a crucial design attribute that was missed in
many navigation assistants. Our system can be deployed on a portable
device such as a smartphone. Hence device could be carried easily by
a person (in our case, a person with visual impairment) and does not
need additional bulky hardware to capture or process data as in Ashiq,
et al. (2022), Kanwal et al. (2015), Lin et al. (2019).

3.2. Proposed system

The main components of our system are a smartphone and a bone
conduction headset, and six different software modules, namely obsta-
cle detection, distance estimation, position estimation, motion detec-
tion, and scene recognition, as shown in Fig. 1. The smartphone camera
captures videos of the navigation environment while the user navigates.
The video frames are then sent to the software modules. The obstacle
detection module results help estimate the position estimation module
results, which is why both modules are connected in dashed lines in
Fig. 1. After receiving the results from each module, the output module
concatenates them and sends them to the user in audio format. The
user receives the navigation information through a bone conduction
headset. The reason for using bone conduction headphones is that they
enable voice directions from the app without losing situational aware-
ness (Lock, Gilchrist, Cielniak, & Bellotto, 2019). Bone conduction
headsets use plates on the cheekbones to send sound vibrations directly
through the jaw and skull bone to the cochlea in the inner ear. Using
two relatively lightweight hardware components, such as a smartphone
for capturing and processing information and the bone conduction
headset to output navigation information, we ensured the portability
and convenience of our navigation assistant. The six software modules
are described below, followed by their implementation.
Obstacle detection: This module gets an image acquired by the smart-
phone camera as input and detects obstacles. Obstacle detection is
critical as it helps users avoid collisions and be vigilant along the
navigation path.
Distance estimation: To avoid collision with obstacles while navigating,
the knowledge about their distances from the user is crucial. The
distance estimation module estimates the distance of the obstacles
detected by the obstacle detection module. The distance estimation
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Fig. 1. Modular design of the DeepNAVI navigation assistant.
module shows how far the obstacle is from the user. This can help the
user bypass obstacles when they are near.
Position estimation: The position estimation of obstacles gives infor-
mation about the obstacle’s position concerning the user. Position
information helps the user locate obstacles and avoid them during
navigation.
Motion detection: Motion detection of obstacles helps the user identify
whether the obstacle is moving or stationary. In a real-time navigation
environment, obtaining information about the movement status of the
object is essential as it is valuable information to avoid collisions
compared to stationary obstacles.
Scene recognition: Scene recognition can provide a fundamental descrip-
tion of the environment. With a navigation system integrated with
a scene recognition module, people with visual impairments could
recognize scenes in an emergency, such as fire escape or river, on
the navigation route. Many existing navigation solutions lack this fea-
ture (Kuriakose et al., 2021b). From our requirement analysis, we
understood the relevance and significance of such a module in the
navigation system and therefore included it in our system.
Output : The information from various modules about obstacles and the
navigation environment should be given to the user in a suitable output
format. The output module converts the results from various modules
to an audio format and is given to the user.

3.3. Implementation

3.3.1. Obstacle detection
Several methods from classic machine learning and deep learning

are used in the literature for object/obstacle detection. We learned that
deep learning-based methods could provide better results by consid-
ering the real-time application scenario and the need to deliver the
output in minimal time to users. For obstacle detection, we used a
lightweight model, EfficientDet-Lite4, from the EfficientDet family. Effi-
cientDet (Tan, Pang, & Le, 2020) model has a scalable framework that
expresses the same architecture on different model sizes. EfficientDet
uses EfficientNet (Tan & Le, 2019) as the backbone of the network.
EfficientNet is a convolutional neural network pre-trained with the
ImageNet (Deng, et al., 2009) image database for classification. Effi-
cientDet utilizes several optimizations and backbone tweaks, such as
a BiFPN (Bidirectional Feature Pyramid Network) and a compound
5

scaling method that uniformly scales the resolution, depth, and width
for all backbones, feature networks, and box/class prediction networks
at the same time. Fig. 2 shows the architecture of the EfficientDet
obstacle detection model.

The EfficientDet model is evaluated in the COCO (Common Objects
in Context) dataset (Lin, et al., 2014), which is considered a general-
purpose challenge for object/obstacle detection. According to Tan et al.
(2020), the EfficientDet model has been shown to outperform similar-
sized models in the benchmark data sets with better mean average
precision (mAP) using fewer parameters and less computation. Hence,
the model is faster on both the GPU and CPU than other object
detectors.

EfficientDet-Lite(versions 0–4) is a family of mobile/IoT-friendly
lightweight object detection models derived from the EfficientDet
architecture. EfficientDet-Lite models are designed for performance
on mobile CPU, GPU, and EdgeTPU and optimized for TensorFlow
Lite, an open-source framework for mobile and embedded devices.
After comparing the latency and average precision of each version
of the EfficientDet-Lite model, we understood that the EfficientDet-
Lite4 model is appropriate because of the accuracy and latency offered
by the model in a real-time application scenario. The EfficientDet-
Lite4 model has the EfficientNet-Lite4 backbone with BiFPN feature
extractor, shared box predictor, and focal loss, trained in the COCO
2017 dataset (Lin, et al., 2014).

3.3.2. Distance estimation
Researchers have explored various distance estimation methods

using additional sensors and external cameras. As a part of our design
choice, we researched various distance estimation methods that can
be used with a smartphone alone. Thus, we considered Rule of 57 for
the distance estimation module in our system. We selected this method
due to our detailed experiment reported in Kuriakose, Shrestha, and
Sandnes (2021a). Moreover, the method could be implemented with a
smartphone camera alone, thus offering portability and convenience to
the navigation assistant.

The Rule of 57 indicates that an object (obstacle) with an angular
size of 1◦ is about 57 times farther away than it is significant (see
Fig. 3). Therefore, the ratio of an obstacle’s angular size (in degrees)
to the whole 360-degree circle should equal the ratio of the obstacle’s
actual size to the circle’s circumference at that distance from the
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Fig. 2. The EfficientDet model that uses EfficientNet as the backbone network and a BiFPN feature network.
Source: Inspired from Tan et al. (2020).
Fig. 3. The Rule of 57.
Source: Adapted from Harvard (2012).

observer. This method has been derived from measuring the distance
and angles of the images of telescopes in astronomy (Harvard, 2012).
The key to using telescope images to measure distances is to realize
that an obstacle’s apparent angular size is directly related to its actual
size and distance from the observer. This means that the obstacle
appears smaller as it is farther away from the observer. However, our
experiments found that it can be applied to find the distance to the
obstacle even if the obstacle’s angular size is more than 1◦ to the field
of view of the smartphone camera sensor.

From Fig. 3, we can write that
𝑎𝑛𝑔𝑢𝑙𝑎𝑟_𝑠𝑖𝑧𝑒

360°
= 𝑎𝑐𝑡𝑢𝑎𝑙_𝑠𝑖𝑧𝑒

2𝜋𝐷
(1)

Using the distance of the obstacle for the angular size and the dis-
tance of the obstacle for the actual size, we get the following equation
to calculate the distance.

𝑜𝑏𝑗𝑒𝑐𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑜𝑏𝑗𝑒𝑐𝑡_𝑠𝑖𝑧𝑒) × 1
(𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

× 57 (2)

To use this approach, estimating the obstacle’s size is necessary
before finding its distance. To calculate the same as that in Eq. (2), we
used the method illustrated in Fig. 4. Then the height of the obstacle
(H) is calculated as

𝐻 =
ℎ(tan(𝐴) + tan(𝐵)) (3)
6

tan(𝐵)
The geomagnetic field sensor, accelerometer, and gyroscope present
on the smartphone give the angular size.1,2,3

3.3.3. Position estimation
The obstacle detection model returns an array of four numbers

representing a bounding rectangle that surrounds its position for each
detected obstacle: [top, left, bottom, right]. The image space is divided
into three regions (left, center, and right), and then the area where
the detected obstacle covers most is found. The position estimation
module returns the region covering the central part of the obstacle as
its position.

3.3.4. Motion detection
Our motion detection module is inspired by the work described

in Moo Yi, Yun, Wan Kim, Jin Chang, and Young Choi (2013) which
involves three main steps. Initially, pre-processing on the image is
performed with simple spatial Gaussian filtering and median filtering
on the image. Then, a dual-mode SGM (single Gaussian model) is
performed for background modeling. Finally, a tuned motion compen-
sation using Kanade–Lucas–Tomasi (KLT) is performed for the back-
ground movements by mixing models. This method was tested on a
smartphone and proved that the time taken to compute the results is
less than other similar methods (Moo Yi, et al., 2013).

3.3.5. Scene recognition
We proposed a scene recognition model, SceneRecog, in our previ-

ous work (Kuriakose et al., 2021b). We used the same model here but
with extended and updated scene classes relevant to navigation. We
used the EfficientNet-Lite44 model by employing the transfer learning
technique with the 20 custom scene classes that can commonly occur
in indoor and outdoor navigation environments. The scene classes used
are described in detail in Section 3.3.7.

We also incorporated a threshold parameter to minimize false posi-
tives with unknown scenes in our implementation. The module reports
a scene as unknown when the probability is below the threshold value.
The threshold was adjusted to 0.7 after trials and errors.

1 https://developer.android.com/guide/topics/sensors/sensors_position
2 https://github.com/SensingKit/SensingKit-iOS
3 https://stackoverflow.com/questions/15949777/how-can-we-measure-

distance-between-object-and-android-phone-camera
4 https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-

with-efficientnet-lite.html

https://developer.android.com/guide/topics/sensors/sensors_position
https://github.com/SensingKit/SensingKit-iOS
https://stackoverflow.com/questions/15949777/how-can-we-measure-distance-between-object-and-android-phone-camera
https://stackoverflow.com/questions/15949777/how-can-we-measure-distance-between-object-and-android-phone-camera
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
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Fig. 4. Estimation of smartphone height from the ground.
3.3.6. Output
The output module converts the textual information about the

obstacles and the scene obtained from various modules to audio format
and fed to the user through a bone conduction headset. We used
Python’s Text-to-Speech (TTS) library, Pyttsx5 in the output module to
convert textual information into audio output. Pyttsx works seamlessly
offline on multiple platforms.

3.3.7. Custom datasets
We created a custom dataset comprising 20 different types of ob-

stacles relevant to indoor and outdoor navigation environments to be
used in our obstacle detection module. They are Bench, Bicycle, Bill-
board, Bookcase, Cabinetry, Car, Chair, Dog, Door, Fire hydrant, Furniture,
Kitchen appliance, Person, Plant, Stairs, Stop sign, Table, Traffic light, Tree
and Waste container. The dataset was created by collecting images from
four different sources, Google Open Images V6 (Kuznetsova, et al.,
2020), ImageNet (Deng, et al., 2009), LISA Traffic Sign Dataset (Mo-
gelmose, Trivedi, & Moeslund, 2012), and our own images.

The Google Open Images V6 dataset is used mainly for object
detection or segmentation-related research. The ImageNet project is
vital in advancing computer vision and deep learning research. The
LISA Traffic Sign dataset is a set of images and videos containing
annotated frames of US traffic signs. Images for the 20 obstacle classes
were extracted from these data sources. After examining the extracted
images, we found that many of the images require some preprocessing,
such as relabeling. Furthermore, we collected some sets of images from
localities and labeled them manually using externally available tools.6

For the scene recognition module, we identified 20 common scene
categories that are commonly found in indoor and outdoor navigation
environments: Balcony, Basement, Bridge, Bus station, Cafeteria, Class-
room, Construction site, Crosswalk, Fire escape, Hospital room, Kitchen,
Library indoor, Parking Lot, Playground, Railway track, Reception, River,
Shopfront, Street, Supermarket. The dataset is created by collecting
images from three main sources, MIT’s Places365 (Zhou, Lapedriza,
Khosla, Oliva, & Torralba, 2017), Google Open Images V6 (Kuznetsova,
et al., 2020), and Flicker.7 Moreover, additional images are added to
have some real images from the locality to increase the number of
images in the dataset and, in turn, improve the model’s performance.

4. Android application

An android application is the central part of our DeepNAVI navi-
gation assistant. The trained obstacle detection and scene recognition
models were converted to TFLite format and deployed in the android
app along with integrating other modules.

5 https://pypi.org/project/pyttsx3/
6 https://github.com/tzutalin/labelImg
7 https://www.flickr.com/
7

The app has an incorporated voice assistant feature. The voice
assistant is designed to recognize two different voice instructions and
activate the app accordingly. When the user says Activate Navigation,
the app is activated in navigation mode and scans the environment. The
app then provides information about the obstacles in front of the user
via audio mode in real-time. The app also displays recognized obstacles
and related information as text on the smartphone screen. If the user
wants to know the scene of the navigation environment, that can be
obtained from the app by giving the Identify scene voice command.
Then the scene identification module will be activated to recognize the
scene and give the output again in audio modality. The working of our
android application is illustrated in Fig. 5. The results from the app in
two different modules (obstacle detection and scene recognition) are
shown in Fig. 6.

5. Experiments and results

This section describes the experiments conducted to evaluate the
five core modules: obstacle detection, scene recognition, distance es-
timation, motion detection, and position estimation, and their results.
The section then describes the user testing procedures and the feedback
received from the pilot test with a user. Subsequently, our navigation
assistant is compared with other similar navigation systems in terms of
various features and functionalities.

5.1. Evaluation of object detection and scene recognition models

We used an Intel Xeon processor with 64 GB RAM and an NVIDIA
GeForce GTX 1080 Ti GPU to train both the deep learning models
for obstacle detection and scene recognition. The experimental plat-
form settings are TensorFlow-GPU 2.4, NVIDIA CUDA toolkit 11.0,
and CUDNN 8.1. The models are trained, validated, and tested by
randomly shuffling and splitting the data set in the 80:10:10 ratio,
respectively. The performance of the obstacle detection model and the
scene recognition model is given in terms of the accuracy metric in
Tables 1 and 2 respectively. Fig. 7 shows few test results from the
obstacle detection module. The results illustrate how the model detects
various obstacles.

The accuracy of the obstacle detection model is 87.8%. The accuracy
of most trained obstacle dataset images is good (above 80%), although
some classes (such as cabinetry and stairs) need improvement (see
Table 1). The test results in Fig. 7 show the model’s performance in
different instances.

The results of the indoor navigation environment (see the first row
of Fig. 7) show that the model can recognize most of the obstacles in the
environment. In Fig. 7(b), it can be seen that the stairs are not detected,
but other obstacles are detected. Maybe the model could not detect it
because of the image’s proximity to stairs. Furthermore, in Fig. 7(c), the
shelf on top of the kitchen appliance is incorrectly detected as a bookcase.
This could be due to the similarity of both obstacles in terms of color

and other features, which caused the model to give an incorrect result.

https://pypi.org/project/pyttsx3/
https://github.com/tzutalin/labelImg
https://www.flickr.com/
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Fig. 5. Working of DeepNAVI android application.
Fig. 6. Results of the smartphone app from obstacle detection and scene recognition modules.
The results from the outdoor navigation environment (see the sec-
ond row of Fig. 7) show some instances where the model did not
recognize obstacles. From Fig. 7(d), it is visible that the model faced
some challenges in detecting white car and white door correctly. In
Fig. 7(f), the model incorrectly detects the person in the orange dress
as fire hydrant. One of the possible reasons for this case might be due
to the inability of the model to differentiate the color similarity of the
orange dress with fire hydrant.

The sample results from the scene recognition model are shown
in Fig. 8. The results give an overview of the performance of the
scene recognition model with different scene classes predicted from
the test dataset. The green label indicates the correct prediction of
the scene recognition model, and the red label indicates the incorrect
8

class predicted by the model. The scene recognition model can give
an accuracy of 85% with our dataset. The scene classes that give low
accuracy (less than 80%) are classroom, construction site, and reception
(see Table 2).

5.2. Evaluation of distance estimation module

The distance estimation module is evaluated through experiments,
where some obstacles of varying sizes were placed at four different dis-
tances (1 m, 3 m, 5 m, and 10 m). And the estimated distances from the
distance estimation module are compared with the group truth. Table 3
shows the actual and estimated distances of the obstacles. The results
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Fig. 7. Example test results from obstacle detection module.
Table 1
Accuracy of obstacle detection.

Class Accuracy

Bench 93.7
Bicycle 88.5
Billboard 84.6
Bookcase 90.2
Cabinetry 78.8
Car 92.1
Chair 94.7
Dog 87.5
Door 83.2
Fire hydrant 88.9
Furniture 87.5
Kitchen appliance 92.7
Person 84.7
Plant 86.6
Stairs 79.5
Stop sign 91.7
Table 90.9
Traffic light 83.7
Tree 81.5
Waste container 94.6

Average 87.7

are estimated from the experiments to analyze the performance of the
distance estimation module on obstacles of varying sizes at varying
distances. During the test case of 1 m, it is visible that small obstacles
(such as chair, fire hydrant, table, and waste container) have a high
deviation from the actual distance compared to other bigger obstacles.
The same phenomenon can be observed when the actual distance is 3 m
and 5 m. The results in the 5-meter case are estimated after averaging
the result from five consecutive outputs since the method could not
provide a fixed result. We could not find distances when the obstacle
was placed more than 5 m away. That is one reason why no results
were reported for 10 m case.
9

Table 2
Accuracy of scene recognition.

Class Accuracy

Balcony 86.2
Basement 81.4
Bridge 88.2
Bus station 83.6
Cafeteria 88.1
Classroom 79.4
Construction site 78.5
Crosswalk 85.5
Fire escape 84.4
Hospital room 83.3
Kitchen 87.3
Library indoor 84.7
Parking lot 89.6
Playground 84.3
Railway track 88.4
Reception 77.8
River 86.5
Shopfront 88.7
Street 84.7
Supermarket 91.2

Average 85.0

5.3. Evaluation of motion detection and position estimation modules

The motion detection is evaluated with some moving objects. Fig. 9
illustrates objects (class people) in motion with two frames in a video.
The first figure indicates that almost all moving obstacles in the frame
were detected by the module, but the second figure indicates that there
were also a few misinterpretations. The movement status of obstacles
will be detected, and the users will be indicated about it along with
other information related to the obstacles such as its type, distance from
the user, etc.
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Fig. 8. Example test results from the scene recognition module. The green labels indicate correct detections, and the red labels indicate incorrect detections.

Fig. 9. Example results showing motion detection from two different frames of the same video.
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Table 3
Results from the distance estimation module.

Obstacle Estimated distance when actual distance was

1 m 3 m 5 m

Bench 0.9 2.6 4.5
Billboard 0.9 2.5 4.6
Bookcase 0.9 2.5 4.2
Chair 0.8 2.7 4.1
Door 0.9 2.3 4.5
Fire hydrant 0.8 2.2 3.6
Person 0.9 2.8 4.3
Table 0.8 2.2 4.3
Tree 1.1 2.8 4.6
Waste container 0.8 1.9 3.8

The position estimation module results indicate that it can give the
results as intended without any problems (see Fig. 6). The module gives
the position of various obstacles, such as waste container and door.

5.4. User testing

The purpose of user testing is to ensure that the navigation assistant
system is working correctly and to assess our navigation assistant’s
practicality and usability with a user who is legally blind. The user
testing experiment was carried out in two test cases: (1) Navigation
with the proposed smartphone-based assistant (DeepNAVI) and (2)
Navigation with a smart cane with which the user was familiar. These
two test cases were designed to compare the effectiveness of both tools
from a user perspective. The two test cases were conducted in the
same experimental setup, and the results are compared to analyze the
effectiveness of the two tools. The experimental setup, process, and the
two test cases are described in the following subsection, and the results
are finally presented.
Experimental Setup and Process: The test experiment was conducted
in an on-campus indoor building. A navigation path of about 100
m was created with various obstacles placed at different points. The
environment or test location was decided after considering multiple
factors, such as user safety, placement of obstacles that the trained
model deployed in the app can detect, and weather concerns. We
also consider the security protocols existing in the current pandemic
situation due to COVID-19. According to the user, the smart cane does
not perform well in conditions such as rain or snow. Considering all
these reasons, we decided to select an indoor test location on campus.

The selection of a smart cane to compare the proposed smartphone-
based navigation assistant was based on a few reasons. The smart cane
is one of the commonly used non-conventional navigation assistants.
The participant from the experiment has been using the smart cane
for daily navigation for a while and is comfortable with the usage.
Consequently, we decided to compare and analyze the comfortability
offered by the smart cane against our proposed smartphone-based
navigation assistant from a user point of view.

The participant’s goal is to travel from a starting point to the
destination point. The destination point is defined by an obstacle (a
refrigerator (class kitchen appliance)) and is already communicated to
the participant during the pre-experiment phase. The participant was
not familiar with the navigation environment before the test. Various
obstacles such as doors, chairs, tables, billboards, waste bins, cabinetry,
and kitchen appliances were present along the navigation path to add
more complexity to the test environment. The test location was not
blocked from external interferences. Therefore, people can enter the
test location at any time. This arrangement is made to simulate much
closer to a real-time navigation environment. In such a situation, the
mobile app can also detect persons and provide information about that
particular obstacle to the user. A timer is set to calculate the time it
takes for the participant to reach the destination in each of the test
cases. Before the experiment, instructions were given to the user about
11
Fig. 10. User testing setup of the navigation assistant. The app is deployed in the
smartphone and is placed in the vest where the camera is facing outwards. The user
has a bone conduction headset for receiving audio instructions.

the plan, the tasks, and the goals to be achieved. There was no private
data collection during any stage of the experiment. No approval from
the ethics committee was required to experiment.

After the whole experiment was completed, post-experiment ques-
tions were asked to the user related to the experience of using our
smartphone-based navigation assistant and the smart cane. Questions
about the overall experience of using the navigation aids, difficul-
ties encountered, suggestions/additional features the user considers
appearing on the app, etc., were asked.
Test cases: This section describes in detail the two test cases of our pilot
study.
(1) Navigation with the proposed smartphone-based assistant (DeepNAVI):
A smartphone is placed in a vest with a phone holder with a small
hole opening for the smartphone camera, which ensures the camera in a
fixed position, reduces the effect of getting it tilted or rotated on image
acquisition. The user wears a bone conduction headset connected to the
smartphone via Bluetooth. This arrangement ensured that the user did
not need to carry anything else and could be free-handed. The proposed
DeepNAVI navigation assistant worn by the user is shown in Fig. 10.
The user testing setup includes the smartphone with the app installed
and the bone conduction headsets. Fig. 11(a) shows a photo taken when
the user navigates with the help of the DeepNAVI navigation assistant.
(2) Navigation with the smart cane: The smart cane used in the ex-
periment was WeWalk.8 The user was familiar with the usage and
practicalities of the smart cane, as the device was the default navigation
assistant for the user. The cane uses ultrasonic sensors to detect the
presence of obstacles. When obstacles are around, the cane handle
starts to vibrate, helping the user notice obstacles. Fig. 11(b) shows
the user’s image navigating with the smart cane’s help.
Results: This section describes the results of the two test cases of the
experiment.
(a) Using the DeepNAVI navigation assistant: The app provided infor-
mation about obstacles in the user’s path. However, there were a few
incorrect outputs from the app for detecting obstacles along the path.

8 www.wewalk.io/en/

http://www.wewalk.io/en/
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Fig. 11. Photos of the participant navigating with DeepNAVI navigation assistant and smart cane.
At one point, the app incorrectly identified a photocopier machine on
the indoor path as a kitchen appliance (class refrigerator). But when
the user touched the obstacle, they realized it was a photocopier. On
the other hand, the user was happy to know about the presence of
an obstacle so that a possible collision was avoided. Also, with the
scene recognition feature of the DeepNAVI, the user found it helpful
to recognize the kitchen environment. Because of that, it was helpful
for the user to locate the end goal of the experiment, that is, to locate
the refrigerator in the kitchen. The time to complete the test case was
3.5 min.
(b) Using the smart cane: Even though the user was repeating the same
path for the second test case with the smart cane, the user got lost at
one point, trying to identify the objects/obstacles around. The user was
assigned a door as a point on the spot to determine the destination area
from the experience of the previous test case. However, using the smart
cane, the user found it challenging to locate door on the navigation path
and, therefore, the route to the destination point. However, fortunately
for the user, a person entered the test area during the experiment,
which helped the user spot the door ’s location and thus the destination.
Also, with the smartcane, it was difficult for the user to understand
the environment (such as kitchen) where the end goal (to identify the
refrigerator) was located. Hence, the user needs to spend more time than
in the previous test case to accomplish the task goal. The time to reach
the destination with the smart cane was 5.5 min, more than the time
taken with our navigation assistant.

The user was optimistic about the features supported and the con-
venience offered by the DeepNAVI navigation assistant. Few relevant
comments from the user by comparing the experiences with both navi-
gation assistants are mentioned below. Here, the smartphone assistant
refers to the proposed DeepNAVI navigation assistant, and the cane
refers to the WeWALK smartcane used for the experiment.

‘‘I felt comfortable using the smartphone assistant since I have nothing
to carry and have freehanded. But while using the cane, I should always
need to dedicate one of my hands to the cane’’.
12
‘‘I like the feature of knowing obstacles, the distance to them, and other
information while using the smartphone assistant. It helped me to keep
vigilant about various obstacles on my path’’.

‘‘I like the feature of telling me about the scene where I am located. When
the app said I was in the ’kitchen,’ it helped me to finish the end goal
easily’’.

‘‘I felt carrying a cane was difficult for me because of its weight. I might
get tired easily if I use it for a long time’’.

The user also provided some improvisations that could be consid-
ered for the future versions of DeepNAVI, such as (1) including more
obstacles to be detected by the navigation assistant, (2) the user should
have the possibility to adjust the rate, pitch, or voice used for the
app’s feedback, (3) in addition to the audio feedback, it would be good
to have another feedback modality, such as vibrations/haptic, and a
pleasant sound (such as relaxing music) should be played continuously
in the background, at a low sound volume while the app is working to
ensure that the app is working. It should not be interrupted by another
system-level application on the smartphone.

5.5. Comparison of navigation systems

This section gives a comparative analysis of navigation systems
similar to our proposed navigation assistant. The comparison is based
on qualitative attributes that should be present in a navigation assistant
for the visually impaired. These features are described in Table 4. The
features were selected and finalized through user discussions through
a requirement analysis study. These features could give an idea of
the important characteristics that users are looking for in a navigation
assistance system.

The comparison analysis between various navigation systems and
our proposed DeepNAVI assistant according to the feature table (see



Expert Systems With Applications 212 (2023) 118720B. Kuriakose et al.
Table 4
Characteristics/features used for comparative analysis and its respective criteria.

Feature Analysis criteria

Portability The system should be a single portable device convenient to carry by the user.
No external cameras, sensors, or wires should be present.

Lightweight model If the system uses a deep learning-based model or any computer vision model, it should be
lightweight and run on a miniature device without much delay for a real-time operation.

Data network undependability The system should not depend on an external data network or WiFi for processing or giving outputs.

Coverage (indoor/ outdoor) The system should work indoors and outdoors.

Obstacle recognition The system should be able to recognize the type of obstacle or at least detect the presence of an
obstacle during the navigation path.

Distance estimation The system should be able to estimate an approximate distance to the obstacles.

Position estimation The system should be able to output the obstacle’s position.

Scene recognition The system should be able to recognize the scene (indoor and outdoor) during navigation.

Motion detection The system should be able to detect if the obstacles are moving.

Multimodal feedback The system should be able to provide two or more output options.
Table 5
Comparison of features of DeepNAVI with similar systems.

Sl.
No

System Portability Lightweight
model
(Real-time)

Data network
undependability

Coverage
(indoor/
outdoor)

Obstacle
recognition

Distance
estimation

Position
estimation

Scene
recognition

Motion
detection

Multimodal
output

1 Lin et al. (2019) ✓ ✓ ✓

2 Kanwal et al. (2015) ✓ ✓ ✓ ✓ ✓

3 Bhowmick, et al. (2014) ✓ ✓ ✓

4 Moharkar et al. (2020) ✓ ✓ ✓ ✓

5 Ashiq, et al. (2022) ✓ ✓ ✓ ✓

6 Joshi et al. (2020) ✓ ✓ ✓ ✓ ✓

7 Kahraman and Turhan (2021) ✓ ✓

8 Barontini, et al. (2020) ✓ ✓ ✓ ✓

9 Megalingam, et al. (2015) NA ✓ ✓ ✓

10 Guerrero et al. (2018) NA ✓ ✓ ✓

11 Saaid et al. (2016) NA ✓ ✓

12 Rao, et al. (2021) ✓ ✓ ✓ ✓ ✓

13 Mukhiddinov and Cho (2021) ✓ ✓ ✓

14 Suresh, et al. (2017) ✓ ✓ ✓

15 Bai, et al. (2019) ✓ ✓ ✓ ✓

16 Lin et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓

17 Bai et al. (2017) ✓ ✓

18 Fusco and Coughlan (2020) ✓ NA ✓

19 Ganz, et al. (2014) ✓ NA
20 Croce, et al. (2014) ✓ NA ✓

21 Tapu et al. (2013) ✓ ✓ ✓ ✓ ✓ ✓

22 Peng et al. (2010) ✓ NA ✓

23 DeepNAVI (Proposed System) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Table 4) is shown in Table 5. Our DeepNAVI navigation assistant is
enriched with more features than other navigation systems. Several
systems were developed to work both indoors and outdoors. However,
only a few systems used lightweight deep learning models for obstacle
detection, which requires working on portable devices in real-time
with shorter response times. There is only one system with multimodal
output in the comparative study (see Table 5).

6. Discussion

This section provides an elaborated discussion of system perfor-
mance, experiments conducted with the user, and the results received
at various stages.

The obstacle detection model’s low accuracy of some obstacle
classes may be due to duplicate detection, misclassification, mislo-
calization, or misclassification and mislocalization. However, the de-
tection accuracy and the inference time to compute the results in a
13

real-time application should be balanced, and we must compromise.
It is visible that the model faces a few issues with the white objects
(see Fig. 7(d)). One possible reason for this model’s performance
degradation could be the daylight conditions of the image taken in the
outdoor environment. Also, there are some false detections reported by
the model at various instances (see Fig. 7(f)). Training the model with
a large dataset involving various colored obstacles in the same category
could resolve this issue.

A limitation of the distance estimation module is that its results
are less accurate than those obtained via stereo vision cameras or
other distance estimation devices/sensors. Although, it can provide
the user with a sense of distance from obstacles, allowing them to
navigate more cautiously. The main advantage of this single-camera-
based method is that it can work even on a smartphone without any
other external hardware being connected to the system. This ensures
portability and hence convenience for the user during navigation. It
should also be mentioned that the distance estimation method used
for this system cannot provide results when obstacles are more than

5 m from the user/smartphone. This could be a limitation compared to
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other methods that use external devices/cameras/sensors to estimate
distance.

Our results suggest that the motion detection module needs to
improve the response time when working in a real-time environment.
The results indicate that the module can accurately detect the state of
motion in many cases. But, as mentioned, we had performance issues
with speed in computation. Despite this, on the positive side, we realize
that as the motion status of an obstacle is introduced, it can improve
the navigation experience of users with visual impairment. Thus the
module can help make decisions for a user during navigation and act
accordingly.

The position of obstacles is detected correctly in our experiments.
We defined three different positions based on the relative space of the
navigation space to the display space of the smartphone. The method
used here could also be improved with more positions such as the
top for hanging obstacles and the bottom (or similar) for ground-
level obstacles. We must admit that, due to the arrangement of our
navigation assistant in the vest, it is challenging to capture ground level
and hanging obstacles when they are in proximity to the user.

From the test results (see Fig. 8), it is visible that there are few mis-
classifications associated with the scene recognition model. And these
misclassifications can occur due to labeling ambiguity, the similarity
between images, and overlap between two categories in the same scene.
A larger dataset with more scenes and accurate labels can mitigate
these issues. Our previous work (Kuriakose et al., 2021b) provides a list
of possible solutions. Despite this, adding a scene recognition module
could be helpful to the user during navigation as it would allow them
to learn more about the environment in which they are navigating.

Pilot testing with the user gives an impression of the practicality
and usefulness of our system. It was easier for the user to get an idea of
the obstacles and avoid them with the additional information provided
by the system. Since the system is portable, the user was optimistic
about that. Our smartphone-based navigation assistant took the user
less time to reach the destination than a smart cane. We received
feedback after the evaluation that, in a real-life environment, it would
be more useful if the user could know what obstacles to avoid while
navigating. Awareness of the obstacles in a user’s environment could
help the user get to the destination safely. After the user-level testing,
the feedback reflects that DeepNAVI performs well and enables the
user to reach the destination by providing valuable information such as
obstacle type, distance, and position. In contrast with similar navigation
systems, DeepNAVI can provide environmental information regarding
obstacles and the surrounding environment.

We considered this pilot testing to collect valuable suggestions from
the user to further develop and refine our navigation assistant. Since
the testing process was done in a controlled environment, we know
the experiment’s limitations. And at the same time, we got constructive
feedback from the user for improving the system. Because of the ethical
complications and challenging concerns of recruiting more visually im-
paired participants, we conducted this testing procedure with a single
user. But we plan to extend and elaborate the testing environments and
procedures by including more participants in our future work.

The comparative analysis with the quantitative attributes in Table 5
shows that our proposed system is enriched with many features that
are not currently present in similar systems. This shows how a portable
system such as DeepNAVI is valuable and practical for navigation assis-
tance in indoor and outdoor environments. Based on the comparative
analysis, it is evident that we lack multimodal output functionality in
our current system version. But we intend to include it in the extended
version of our navigation assistant in the future.

Many systems proposed in the literature used miniature hardware
boards such as Raspberry Pi as the central processing component. We
analyzed the design of such systems and interacted with people with vi-
sual impairments regarding the same concept. To our knowledge, those
systems are not available in the market, so we could not compare them
14

in our experiments. Such systems need external cameras and sensors to
make them a deployable solution. And this involves wires to connect
each component to the board. All these factors could question the
concept of portability. During the interactions with people with visual
impairments, we also got responses about the inconvenience caused by
the wires entangled all over the body. Therefore, we suspect a system
that uses external cameras and connecting wires is not a portable and
convenient solution for people with visual impairments to navigate.
Moreover, through this research, we aim for a more viable solution that
users can use in a real-time environment without much hassle. Hence,
the design search concluded with a smartphone-based solution that is
already integrated with cameras, sensors, and processing units.

Furthermore, as DeepNAVI does not require any network connec-
tivity, it is more convenient for the users to avoid potential network
delays that might arise in a system that utilizes an external server or
a cloud service process environment data while navigating. Moreover,
depending on an external data network for retrieving results would not
always work in areas with no network access (such as underground
stations, basements, etc.). But there are few opportunities and scope
in having internet connectivity. It can be used for on-the-go model
training and collecting relevant images for the dataset by the users. The
real challenge in such a scenario is regarding the privacy and security
concerns that arise while capturing images from public and private
environments or people without concern. Hence, such a data collection
and model training plan is another potential research direction to
explore.

7. Conclusion

The proposed smartphone-based navigation assistant offers a conve-
nient solution that can work in real-time. Besides providing information
on detected obstacles, the assistant also provides necessary informa-
tion such as distance, position, motion status, and scene information
during navigation. The solution also offers convenience, portability,
and comfort since users do not need to carry any additional hardware.
The results show that our models can perform well in a real-time
environment without relying on the external data network. This makes
our proposed navigation assistant may be helpful in situations where
data networks are not readily available. The current system version can
detect 20 different types of obstacles and 20 scenes relevant to indoor
and outdoor navigation environments. The system can be extended
to detect more obstacles and scenes if necessary after collecting and
training additional datasets. A comparison of our navigation assistant
with similar systems indicates it provides many features not available in
similar systems, including scene recognition, motion detection, position
estimation, etc. The pilot testing with a real user validates that our
system could be a promising solution for navigation assistance for
visually impaired people.

Future enhancements to the proposed solution may include adding
features such as multimodal output and a more enriched voice assistant
that provides seamless navigation. In addition, adding a reinforcement
component to the deep-learning models can be considered, which
can be used to re-train models on the go as observed by the users.
This might be used to generate a larger dataset and improve the
classification and detection accuracy of models. Furthermore, based
on the feedback from the user testing, we plan to refine the proposed
DeepNAVI system and then conduct elaborated user testing with more
users.
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