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A B S T R A C T   

The construction sector is one of the main contributors to carbon dioxide (CO2) emission and causes of global 
warming. CO2 mitigation solutions are vital. New technologies can facilitate and improve these efforts. Thus, the 
paper reviews how new technologies of artificial intelligence and machine learning have contributed to CO2 
emissions reduction in construction and what techniques have been applied in the literature to provide signif
icant information that will be beneficial for the construction sector design and management. The paper provides 
the results of a content review, including their contributions and gaps. A total of 78 papers were identified to 
develop the dataset. The method was a combination of systematic reviews, including co-occurrence analytical 
map development of the main keywords, co-authorship network analyses, publication source analyses, and 
content analysis, including theme identification and review of the selected papers, which were divided into five 
conceptual clusters based on their scopes: (1) sustainable materials and components design/production, (2) on- 
site vehicles and equipment, (3) energy and life cycle assessment, (4) optimization, decision-making and 
solution-based platforms, and (5) real-world monitoring. The content of each cluster of papers was also reviewed, 
and the potential gaps were identified and discussed. A set of directions for future research investigations were 
presented that can be a valuable source for researchers in their future research. This paper contributes to the 
current knowledge base by presenting insights into intelligent techniques in the construction industry to mitigate 
CO2 emissions.   

1. Introduction 

Carbon dioxide (CO2) emission, as one of the major components of 
greenhouse gases (GHGs), plays a vital role in global warming, which is 
one of the most important environmental issues that threatens the life of 
the creatures in the world (Camp and Huq, 2013). The construction 
industry is one of the main sources of CO2 emissions (Mazurana et al., 
2021). In this regard, there is an urgent need to mitigate CO2 emissions 
(Costa and Ribeiro, 2020; Bigyeong and Sumin, 2022) in all industries, 
including construction (Lee et al., 2020; Liu et al., 2021a). The con
struction industry, accounting for up to 50%, is the largest source of 
GHG emissions globally (Mirmozaffari, 2021). Many research studies 
have addressed global warming concerns and the potential to mitigate 
CO2 emissions in different stages of the construction process, i.e., pre
construction, construction, use phase, and even post-disaster temporary 
housing and reconstruction (Robles et al., 2022; Hosseini et al., 2021; 
Farahzadi et al., 2016). The concrete industry is one of the most 

pollution-oriented sectors in construction; cement production is esti
mated to contribute to almost 8% of global warming emissions (IPCC, 
2006). 

Technology can affect CO2 emissions in both positive and negative 
ways. Recently intelligent technology/technique has been rapidly pro
gressing, and more of its application has been examined in the con
struction sector in the direction of sustainability and emission reduction 
by researchers and practitioners (Karimi et al., 2021b; Sepasgozar et al., 
2020). By transforming traditional to new construction technologies, 
materials, and automated practices in both hardware and soft 
computing aspects, there would be great potential for CO2 emissions 
reduction in the construction industry. Internet of things (IoT), artificial 
intelligence (AI), real-time monitoring, machine learning (ML), and 
optimization methods are among the novel practices in which the globe 
is shifting its direction. 

AI and ML promote more automated and accurate decision-making, 
prediction, and optimization in construction processes and activities. 
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Several papers have addressed using new technologies- AI and ML-for 
CO2 emission reduction in construction (Yang et al., 2021; Peng, 
2019; Cho et al., 2015). Most studies investigated designing and pro
ducing sustainable and environmentally friendly building materials 
(Trinh et al., 2021; Naseri et al., 2020; Kordnaeij et al., 2019b). This 
particularly applies to the cement and concrete industry (Narasimha 
Reddy and Ahmed Naqash, 2019; Park et al., 2016) as the most 
pollution-driven sector (Zhang et al., 2021; Van Tonder and Low, 2021). 
Sojobi and Liew (2022) conducted a laboratory-based examination and 
response surface methodology to design and produce a bioinspired 
sandwich carbon-fiber reinforced polymer that uses concrete wastes as 
aggregates. Faridmehr et al. (2021b) used an optimized artificial neural 
network (ANN) to investigate concrete mixes using less cement by 
replacing it with fly ash (FA) and more sustainable materials. Alaneme 
and Mbadike (2021) applied fuzzy logic to investigate the optimized 
concrete mixes replaced partly by palm bunch ash and bentonite. On the 
other hand, several papers examined CO2 emission reduction on the 
construction sites for on-site vehicles and equipment as they emit a 
significant amount of carbon. They tried to optimize the fuel and the 
activities of such vehicles (Jassim et al., 2019; Trani et al., 2016; Peng 
et al., 2016). Jassim et al. (2019) presented an ANN-based model inte
grated with a perception multilayer to predict the fuel usage of wheel 
loaders when hauling materials. Life cycle assessment (LCA) (Thilakar
athna et al., 2020; D’Amico et al., 2019) and real-world monitoring 
(Karimi et al., 2021a; Liu et al., 2020) are among other directions which 
some papers have addressed. Alabduljabbar et al. (2020) conducted LCA 
on different concrete mixes, which calculated mechanical properties 
using optimized ANN. Liu et al. (2020) presented a sensor-based real-
time system for recording and visualizing emissions for three on-site 
equipment in prefabricated construction sites. All these studies deno
ted that CO2 emissions from the construction sector are high, yet dis
regarded, implying the need for enhanced tools and methods for 
mitigation and decision-making beyond the current and traditional 
trends. The existing literature illustrates a vast perspective of the AI and 
ML contribution to CO2 reduction in construction. As there is no specific 
overview, to the best of the authors’ knowledge, there is a need to review 
the previous investigations holistically to provide a thorough picture of 
the ongoing research. This paper mainly aims to determine the di
rections of the previous research studies and to identify limitations, 
gaps, and future research potentials in this area. The initial step is to 
identify related articles in a systematic manner. Then, bibliographic and 
content analyses are conducted to evaluate the related articles thor
oughly. This involves classifying the concepts of CO2 emission mitiga
tion using AI or ML techniques into different clusters. Finally, the paper 
analyzes the gaps and develops directions for future investigations. 

2. Research methodology 

2.1. Review method 

The method of this review is designed according to two research 
questions: (1) in what directions AI and ML are used in construction to 
reduce CO2 emissions? and (2) what AI and ML techniques are applied to 
contribute to CO2 emissions reduction in construction? A systematic review 
is conducted to find the relevant articles to address these questions. The 
gathering and filtering method for the articles’ literature is a vast, top- 
down approach that collects articles using broad phrases first and then 
excludes those that may be irrelevant to the research. The methodology 
consists of the following steps: (1) categorizing the research questions 
and inclusion and exclusion criteria; (2) collecting relevant articles 
through systematic search, screening, and filtering the articles regarding 
the inclusion and exclusion criteria; (3) gathering relevant information 
from the included articles; a bibliographic analysis is presented that 
targets to illustrate a quantitative analysis to investigate the trends of 
academic publications. (4) categorizing and analyzing the significant 
findings; the paper deeply reviews and categorizes the existing relevant 

literature into different research directions. Each direction is analyzed 
by content, then, its significant findings, gaps and future research are 
addressed. 

2.2. Data extraction 

The systematic content review on the applications of AI and ML for 
CO2 emissions reduction in construction was designed as a five-step 
research protocol. This method included the establishment of a review 
protocol, (1) database selection, (2) search string design, (3) exclusion 
and inclusion criteria, (4) relevant publications filtering, and (5) review 
and analysis. No time interval was considered in the review protocol. 
Fig. 1 illustrates the method followed for selecting the relevant articles. 

The literature was searched through Web of Science and Scopus 
databases in the first step. The following combination of keywords 
(Emissions AND (CO2 OR carbon) AND construction AND ("artificial in
telligence" OR AI OR intelligent OR smart OR “machine learning” OR ML OR 
IoT OR "internet of things")) were used in the second step to search the 
relevant literature. As a result, 678 papers were identified. In the next 
step, to decide the eligibility of the detected papers for inclusion, several 
criteria were considered: (1) peer-reviewed journal papers, (2) papers in 
English, and (3) papers related to the construction of buildings and 
bridges. This led to 345 papers. After eliminating the 96 duplicated 
papers in the fourth step, 249 papers remained. In the last step, titles and 
abstract screenings were carried out, and 118 papers were kept. The full 
article review retained 78 papers for the scoping review. Based on the 
remained papers, bibliographic analysis, statistics of the literature, and 
content analysis were conducted. 

3. Bibliographic analysis 

In this part, the bibliographic analysis of the reviewed papers is 
shown in different dimensions based on the publication source, authors 
and keywords through various charts and tables. 

3.1. Analysis of articles according to publication source and year 

There is an increasing trend in the number of articles on the appli
cation of AI and ML for CO2 emissions reduction in construction pub
lished in academic journals from 2012 (Fig. 2). Table A in the Appendix 
shows the sources of the published articles in academic journals each 
year. In total, forty-three academic journals were identified. Journal of 
Cleaner Production has contributed to the highest publication propor
tion. Journal of Construction and Building Materials is on the second 
rank. Fig. 3 shows the publications per year per source for the top 7 
journals. Journals of Automation in Construction, Construction Engi
neering and Management, Energy and Buildings, and Materials stand 
next. The distribution of the articles by country is illustrated in Fig. 4a 
and b, where 26 countries were identified. China has the highest rank 
(18.5%), followed by the USA (12.3%) and South Korea (11.1%). Iran 
(7.4%), Australia (7.4%), and Spain (6.2%) are in the next places for 
having the highest publications in this area. 

3.2. Analysis of articles according to co-authorship 

The total number of authors is 264. Fig. 5 shows the total strength of 
co-authorship density and network with 234 authors and the co-authors 
with at least two links to other authors. Thus, 30 authors having fewer 
connections were not included. As the directions in CO2 emissions 
reduction with the help of AI and ML may vary with specific expertise in 
each area, the connection of authors is distributed in different small 
groups without having a more robust network within certain larger 
groups. The most extensive set of connected items consists of 13 authors, 
shown in Fig. 6. Most are from Chine, one is affiliated with academic 
institutions in the UK, and one is in Singapore. It is noteworthy to 
mention that 25.7% of the articles were carried out through 
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international collaborations. Scholars in Australia have the most inter
national collaborations (31.6%) among others. 

3.3. Analysis of articles according to the network of keywords 

The analysis map of keywords co-occurrence based on the initial 
bibliographic data set is shown in Fig. 7. The analysis map helps identify 
the common themes in CO2 reduction using AI and ML. The figure shows 
the themes such as concrete and cement, compressive strength (CS), 
optimization, onsite vehicles, LCA, etc., as high-frequently used. Thus, 
the content review and concept categorization in section 4 are based on 
the keywords analysis map and the occurrence and relationship of the 
keywords. 

4. Content review and systematic analysis 

4.1. Main concepts 

After carefully assessing, five main directions were formed out of the 
bibliometric analysis. The concepts identified in the literature related to 
the initiatives to reduce CO2 emissions in construction using new tech
nologies of AI and ML techniques have been categorized into (1) 

sustainable materials and components design/production, (2) on-site 
vehicles and equipment, (3) energy and life cycle assessment, (4) opti
mization, decision-making and solution-based platforms, and (5) real- 
world monitoring; see Fig. 8. In sections 4.1.1. to 4.1.5., all the con
cepts are discussed, then the gaps and future research directions are 
elaborated. 

As illustrated in Fig. 8, different ML techniques have been applied in 
each cluster. Some of these ML methods were more frequently used. 
Fig. 9 shows the top-used ML techniques in the existing literature. Ge
netic algorithms (GA) and regression are mostly used to find solutions to 
reduce CO2 emissions in construction. Neural networks, support vector 
machine (SVM) and random forest (RF) come next, respectively. 

4.1.1. Sustainable materials and components design/production 

4.1.1.1. Sustainable materials design/production. Concrete and cement 
production are among the most pollutants industry. Many efforts have 
been made to reduce their impact by replacing more sustainable mate
rials in the concrete design components (Dabiri et al., 2022; Kandiri 
et al., 2021) and predicting their properties using ML techniques (Kio
umarsi et al., 2020; Plevris et al., 2022). 

Long et al. (2021) used calcined clay, limestone powder, silica fume, 
as cement substitutes for a low-carbon and low-energy 3D printable 
composite. Particle packing theory for the optimization of the packing 
density of the particle components through the particle size distribution 
was applied. The results showed that the dynamic yield stress can be 
significantly improved when composites contain 33 wt% calcined clay, 
16.6 wt% limestone powder, and 5 wt% silica fume with a sand to binder 
ratio of 2.5. Wimala et al. (2019) introduced an ANN-based model to 
predict CO2 emissions from producing precast concrete. First, a survey 
was carried out for 107 precast concrete plants in Japan to acquire data 
on the CO2 emission factors. Six factors of ordinary Portland cement 
(OPC), fine aggregate, coarse aggregate, electricity, kerosene, and heavy 
oil, were considered using Principal Component Analysis to serve as the 
inputs for the ANN model to predict CO2 emissions. A backpropagation 
neural network technique with three-layer perceptron was introduced to 
train the network. The network model having 51 hidden neurons with a 
set of 0.1, 0.3, and 0.9 for learning rate, initial weight, and momentum, 
respectively, generated the best result. Mean absolute percentage error 

Fig. 1. Literature screening and paper inclusion process.  

Fig. 2. The number of articles per year, based on the search result.  
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Fig. 3. Publications per year per source (top 7 journals).  

Fig. 4. The distribution of the 78 journal articles by country (a) pie chart, and 
(b) world map. 

Fig. 5. Visualization of co-authorship network for the 234 authors based on the 
full counting technique. 

Fig. 6. Visualization of the largest co-authorship network comprising 
13 authors. 
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Fig. 7. Co-occurrence analytical network of keywords identified in the relevant search result. All 190 identified keywords are included.  

Fig. 8. Concept categorization of CO2 emissions reduction initiatives in construction using ML techniques based on the co-occurrence analytical network of keywords 
identified in the relevant search results. 
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(MAPE) value below 10% revealed that ANN could predict CO2 emis
sions in producing precast concrete with significant accuracy. Huseien 
et al. (2021) examined substituting cement with different percentages of 
FA and effective microorganism (EM) under various water to binder 
ratios (w/b) to achieve an optimized proportion to produce sustainable 
concrete with lower CO2 emission and boosted mechanical properties. 
An adaptive neuro-fuzzy inference system (ANFIS) was employed to test 
the CS of the laboratory-based database. The results revealed that the 
optimal mixture obtained for the specimen with OPC replacement with 
10% FA and EM operated optimally led to CS of 50 MPa, 41% lower 
carbon dioxide, 40% less energy consumption, and 25% lower cost. 

Other studies investigated partially replacing cement with zeolite. 
Kordnaeij et al. (2019a) employed multiple linear regression (MLR) and 
a kind of ANN named GMDH (group method of data handling) to predict 
the small strain shear modulus in zeolite–cement grouted sands. The 
small strain shear modulus function included three w/b ratios, average 
sand grain size, and cement replacement with zeolite percentage. The 
results revealed that MLR and GMDH techniques for predicting small 
strain shear modulus of grouted sands perform better when considering 
active compounds as an input factor than considering w/b and zeolite 
percentage as input factors. Furthermore, the GMDH-based model per
formed more efficiently than the MLR-based one. In another study, 
Kordnaeij et al. (2019b) conducted a lab-based study to examine the 
impact of several factors on the CS of the specimens, including sand size, 
w/b, and cement replacement percentage with zeolite. MLR and a 
GMDH-type neural network were applied to predict the CS of 
zeolite-cement grouted sands. 

Ma et al. (2018) applied a highly effective stabilizer based on cement 
and embedded FA to create a more environmentally friendly earth-based 
construction. Several parameters, such as FA content, stabilizer content, 
physical indexes, and curing duration, were considered to conduct a 
hybrid strength and embodied CO2 index measurement. MLR and power 
regression methods were employed in this study. The results revealed 
that cement-based high-efficiency stabilizer is cleaner than cement, even 
though several chemical additives have higher CO2-equal emissions. 
Abbey et al. (2017) replaced partial cement with ground granulated 
blast slag (GGBS) and pulverized fuel ash (PFA) for deep soil concrete to 
improve CS and reduce CO2 emission. Different mixes of cement, cement 
with PFA, and cement with PFA and GGBS were tested at different ages. 
MLR was used for the prediction of the unconfined compressive strength 
(UCS). Soil with less plasticity indicated greater CS than soil with higher 
plasticity. Adding GGBS and PFA reduced the cement content, reducing 
cost and CO2 emissions. The proposed method provided reliable and 

accurate prediction for CS for weak soil with UCS less than 25 kPa, and 
the proportion of w/b. The model was validated using different com
positions of binders. Ates et al. (2021) applied an ANFIS and an ANN to 
present a decision-making platform for the activity index prediction of 
GGBS for producing sustainable cement. A test duration of 28 days is 
required to obtain the activity index of GGBS, which involves the 
product’s quality, cost, and environmental effects. Thus, for the opti
mum status, durations of 2- and 7-day activity index determination are 
needed. As a result, a decision-making platform for this prediction 
environment based on machine learning techniques was developed 
through a dataset containing 1,021 data. The ANN results assessed the 
MAPE value for the total data set of 2.27%. ANN showed more superi
ority than the ANFIS method. The developed decision support system 
assisted in the optimal determination of the composition and made CO2 
emission reduction in the process of slag cement (CEM III) production. 

Apart from FA, zeolite, and GGBS, some studies investigated 
replacing cement with other recycled materials or byproducts. Park et al. 
(2016) investigated the potential application of crumb rubber made 
from recycled tires in geopolymer concrete to diminish cement content, 
which leads to CO2 emissions reduction. The effects of aggregate size 
and amount, the molarity of sodium hydroxide, the curing method, and 
time parameters on CS were examined. Sodium silicate, sodium hy
droxide liquid mix, FA, and crumb rubber were utilized in the geo
polymer concrete. The regression model was applied to recognize the 
effect of essential parameters and their interactions on the strength of 
geopolymer concrete. It showed that the relationship between rubber 
substitution and other factors was insignificant. The ANOVA technique 
showed that the best proportion for crumb rubber is 5%, with a 95% 
confidence level in three kinds of FA. A suitable proportion of rubber 
substitution could be applied without significant strength reduction. 
Fairbairn et al. (2010) replaced cement with sugar as a by-product at 
industrial level to reduce CO2 emissions. Sugar cane bagasse ash is a 
pozzolan that can be used as a substitution for cement to boost the 
cement-based mixture properties. A simulation based on the United 
Nations Framework Convention on Climate Change for the Clean 
Development Mechanism was conducted to assess the possibility of CO2 
emission reduction. Because the average distance between cement 
plants and sugarcane ethanol factories is one of the major variables in 
estimating CO2 emissions, a GA model was created to handle this opti
mization challenge. Over 60% of the country’s sugar cane and ash 
production and a significant number of cement plants—located in Sao 
Paulo, Brazil—were selected as a case study. In total, around 520 kilo
tons of CO2 were estimated to be reduced annually by applying this 
United Nations Framework approach. Table 1 summarizes the ML 
techniques applied to design and produce sustainable materials. 

4.1.1.2. Sustainable components design/production. Besides sustainable 
material design, several studies have addressed component design and 
production (Lee et al., 2021; García et al., 2020; Baandrup et al., 2020). 
Lee et al. (2021) presented a multi-objective optimization based on 
NSGA-II algorithm to design waffle slabs with reduced CO2 emissions 
and costs. Variables such as slab thickness, concrete CS, rebar diameters, 
reinforcement yield strength, rebars’ place interval, ribs specification, 
and waffle forms specification were considered for 20 types of waffle 
slabs. Cost- and emission-efficiency analyses were carried out, and the 
results were validated on a real waffle slab of Korea Gimpo International 
Airport. It was shown that waffle form specifications, particularly the 
ribs height and the distance between ribs, among the design parameters, 
have the highest impact on optimizing cost and CO2 emissions. Trinh 
et al. (2021) introduced a method for carbon-based optimization (min
imum CO2 emissions) of a flat plate reinforced concrete (RC) building 
using a Branch-and-Reduce deterministic algorithm. Different case 
studies with varying spans of slab and floor levels were optimized using 
the Branch-and-Reduce Optimization Navigator commercial package 
and GA solver of MATLAB. The results showed that the optimized model 

Fig. 9. Top-used ML techniques in the existing literature regarding CO2 emis
sions reduction in construction. 
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Table 1 
Sustainable materials design and production using ML techniques.  

Authors Sustainable Materials Soft Computing Method Outputs 

Kim et al. (2021) Ocean-borne plastic flakes 
cement mortar 

Regression - Ocean-borne plastic flakes as fine aggregate (specific gravity: 2.47, water absorption: 3.5) 
- Not to be used in structural members 
- The coefficient of the regression model (R2) was 0.62 

Alaneme and Mbadik 
(2021) 

Green bentonite and palm 
bunch ash concrete 

Fuzzy logic technique - Applying 5% of palm bunch ash and bentonite as a replacement for cement led to the 
maximum CS, as well, to green concrete with less environmental impact 
- R2 of 84.9% and 99.1% was calculated for MLR-model and fuzzy-logic model, 
respectively 

Ahmad et al. (2021) Hemp-based bio-composite AI-based gene expression programming (GEP) technique - The CS and thermal conductivity were mainly influenced by plant aggregate to binder, w/ 
b, and density of bio-composite 
- Bio-composites absorbed 14- 35 kg/m3 CO2 from the environment 
- The GEP model proved a high R2 of 0.957 and the lowest root-mean-square error (RMSE: 
67.3) compared to other regression models 

Zhang, Huang, et al. 
(2020a) 

Recycled aggregate concrete K-nearest neighbor, regressors, random forest, support vector machine, 
backpropagation neural network (BPNN), multi-objective optimization model based 
on AI, and multi-objective firefly algorithm 

- RF and BPNN gained the best accuracy for predicting compressive and splitting tensile 
strength of recycled aggregate concrete, indicated by the highest correlation coefficients 
(0.91 and 0.84, respectively) and lowest RMSE (6.64 MPa and 0.514 MPa, respectively) 
- The model successfully optimized the recycled aggregate concrete mixture proportions 
for the CO2, cost, and CS trade-offs 

Thilakarathna et al. 
(2020) 

High and ultra-high strength 
concrete 

Artificial neural network, Gaussian process regression (GPR), support vector 
machine, decision trees (DT), and linear regression (LR) 

- Several supervised machine learning techniques of ANN, GPR, SVM, DT, and LR were 
applied to produce new concrete design compositions with low embodied carbon and 
defined CS. The result of analyzing 700,000 designed compositions revealed that the ANN 
showed the best function while the LR was the worst 
- R2 and RMSE for the ANN algorithm were 0.97 and 5.1, respectively 

Naseri et al. (2020) Sustainable OPC concrete Meta-heuristic-based technique: six machine learning techniques, including water 
cycle algorithm, soccer league competition algorithm, genetic algorithm, artificial 
neural network, support vector machine, and regression 

- Water cycle algorithm was selected as the most accurate algorithm with R2, MAE, MSE, 
and RMSE of 0.93, 2.8, 13.6, and 3.6, respectively, on the testing set 
- Six mixtures gained appropriate performance in the trade-off of all defined CS criteria, 
cost, and environmental impacts (including embodied CO2 emission and energy and 
resource consumptions) 

Alabduljabbar et al. 
(2020) 

Waste sawdust-based 
lightweight alkali-activated 
concrete 

Artificial neural network - The CS of the concrete with 100% sawdust as a replacement for natural aggregates was 
48.6 MPa. This formulation decreased CO2 below 85% fuel production compared to one 
with natural aggregates 
- Cubic-shaped molds, cured for 1, 3, 7, 28, 56, and 90 days following the ASTM C579 
specification, were applied 
- Training correlation value of 0.99 and testing correlation value of 0.99 were achieved. 
The mean error for the training data was noticed as 1.37 

Wang and Lee (2019) Low CO2 slag-blended 
Concrete 

Genetic algorithm - Concrete with various strength levels (w/b ratios from 0.20 to much higher), different 
slag substitute levels (slag replacement ratios from 0 to 80%), and various curing 
conditions (curing temperatures of 5 ◦C–80 ◦C) 
- Strength development model: the slag substitute ratios were 25%, 50%, and 75%, and CS 
was measured at 1 day, 3 days, 28 days, and 18 months 

Wang (2019) Low–cost and low–CO2 

blended concrete 
Gene expression programming, and genetic algorithm - Regression was performed on concrete CS at 28 days as a function of the w/b ratio, the FA 

to binder ratio, slag to binder ratio, and the water content 
- The correlation coefficient between the analysis results and the experimental results on 
CS was 0.99 

Narasimha Reddy and 
Ahmed Naqash (2019) 

Supplementary cementitious 
materials 

Response surface methodology - CS, splitting tensile strength, and flexural strength, were investigated 
- 20% alccofine substitution for cement gained better durability and mechanical properties 
in comparison to other mixes 
- The obtained R2 was 0.99, proving the model’s appropriate fit as the discrepancy of 
whole variation is 0.0027% and was in an acceptable error range. The residual sum of 
squares (RSS) of 2.12 proved the appropriate fit of the model 

Kurpinska and Kułak 
(2019) 

Lightweight Concrete Artificial neural network - Six cubic samples for each lightweight concrete were applied 
- CS test on day 28 
- The highest CS was determined with glass ash aggregate ratios of 75% and 100%, with 
21.3 MPa and 18.6 MPa 
- Use of 25% of granulated expanded glass aggregate resulted in about a 13% increase in 
concrete CS, a 12% decrease in density, and a 15% decrease in porosity 

(continued on next page) 

L. Farahzadi and M
. Kioum

arsi                                                                                                                                                                                                              

astm:C579


Journal of Cleaner Production 384 (2023) 135504

8

could reduce 5–17% embodied carbon compared to conventional 
buildings. The proposed method decreased 31% of the total embodied 
carbon compared to the GA method. An optimized design to reduce the 
total cost or CO2 emissions for RC frames based on the guidelines and 
provisions specified by the American Concrete Institute (ACI) using an 
integrated Big Bang and Big Crunch optimization (BB-BC) was presented 
by (Ahn et al., 2013). Two cases of structural frames were chosen to 
evaluate the efficiency of the optimization. In the first case, BB-BC 
optimization was compared with a GA in terms of the objective func
tion of cost reduction. In the second case, the frame designs compared 
BB-BC optimization with simulated annealing regarding cost and CO2 
emissions reduction objective functions. The results showed that BB-BC 
optimization performed more efficiently in both cases than GA and 
simulated annealing. In the first case, BB-BC optimization decreased cost 
by 5.2% compared to GA design. In the second case, BB-BC optimization, 
a similar frame with US standard reinforcement, could meet the ACI 
standards. In both cases, BB-BC optimization reduced 5.7% cost of the 
equivalent frame. As a result, CO2 emissions can be decreased for rela
tively low construction cost growth. In another study, a sustainable 
design method for RC members based on a discrete optimization method 
to reduce construction embodied emissions and costs was proposed by 
(Zhang and Zhang, 2021). The study used a multi-objective GA from 
“cradle to site” instead of using a single-objective one at just the material 
production phase. The optimization was followed by the numerical ex
amination of a case study to compare the Pareto optimal solutions for RC 
beams. The results showed that a 5–6% additional construction cost 
could make up for a 14.7% emission reduction. 

Lanikova et al. (2014) applied a probabilistic optimization method 
called reliability-based structure optimization to optimize the design of 
structures considering environmental and economic aspects (embodied 
energy (EE) related to concrete production, CO2 emission, and cost). 
Monte Carlo, customized by the Latin hypercube sampling, was applied 
to evaluate the designed structure reliability. Two pole case studies of 
reinforced fiber concrete and prestressed spun concrete were used to 
demonstrate the method’s applicability. The results showed that the 
quality and characteristics of the products should be considered in the 
design stage. Using the optimization method, 8.9% of cost and 11.1% of 
emissions were reduced compared to conventional design processes. 
Gan et al. (2019) applied an optimality criteria GA to introduce a new 
optimization method for high-rise RC, which is low carbon and 
cost-effective, first, by developing the optimum structural typology 
through crossover and mutation in GA, then, by single-member size 
optimization via the optimality criteria. The algorithm was continually 
employed to generate new designs until the optimal solution was 
determined. With this technique, the carbon emissions and cost of ma
terials decreased by 18–24%. The framework can be used for other 
building types, such as steel structures. Mergos (2018) established an 
optimization platform to design an earthquake-resistant RC frame with 
minimum CO2 emissions and cost. The author performed a 
mixed-integer GA with MATLAB for a three-floor building with two bay 
RC frame based on Eurocode 8 ductility groups for different peak ground 
accelerations, concrete classes, and embodied CO2 scenarios for mate
rials. Overall, thirty sorts of RC frame designs were assessed to select the 
optimum designs by running ten separate GAs for every RC design. 
Seismic designs with low ductility could produce more CO2 emissions, 
up to 60%, compared to medium and high ductility designs. Moreover, 
peak ground accelerations design significantly enhanced the amount of 
CO2 emissions, yet concrete classes less affected the amount of CO2 
emissions. Besides, for the low unit ratio value of the environmental 
impact of reinforcing steel to the respective impact of concrete, designs 
for the minimum costs generate more CO2 emissions up to 13% than the 
designs for the minimum CO2 emissions; however, the same unit ratio 
for medium and high value, the minimum CO2 design solutions are 
nearly connected to the minimum cost design ones. Park et al. (2013) 
proposed an optimization model based on a GA for the optimum design 
of steel RC columns in tall buildings to diminish CO2 emissions and cost Ta
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in the construction stage. To consider both CO2 emissions and cost, the 
overall CO2 emissions amount was transformed to equal cost based on 
the concept of certified emissions reductions. Then the total cost was 
minimized using the optimization model, in parallel, meeting the con
straints, including stress and constructability. The results showed that 
although the CO2 emission and cost unit of materials with high strength 
are higher than the conventional materials, using high-strength steel and 
concrete (more concrete than steel) was required to obtain an optimum 
design. The proposed optimized design could decrease 30% CO2 emis
sions, 31% cost, 7.8% steel section, and total concrete weights. Table 2 
summarizes some of the sustainable components design and production 
using ML techniques. 

4.1.1.3. Hybridized ML techniques in sustainable materials and compo
nents design/production. Classical optimization algorithms offer better 
estimation results than numerical and statistical methods; however, 
hybridized ML techniques address several issues of standalone ML al
gorithms. Golafshani et al. (2020) applied ANN and ANFIS techniques 
hybridized by Grey Wolf Optimizer to boost the function of the predic
tive models of CS for ordinary and high-performance concrete, including 
blast furnace slag and FA. The authors stated that meta-heuristic opti
mization algorithms used in the training stage of ANN and ANFIS 
methods decreased the weakness of classical optimization and resulted 
in more reliable outputs. Liu et al. (2021b) used ANN hybridized with 
swarm intelligence algorithms to predict carbonation depth for recycled 
aggregate concrete. The standalone machine learning models and hybrid 
ones were developed to compare the performance of the models. All the 
ANN models hybridized with swarm intelligence algorithms showed 
better performance than the standalone ANN model, particularly for the 
hybridized ANN model with a whale optimization algorithm. Moreover, 
hybrid methods were applied (Ashrafian et al., 2020; Moghaddas et al., 
2022b) to prevent the local minima and boost the function of standalone 
optimization algorithms (Cook et al., 2019; Moghaddas et al., 2022a). A 
recent research (Golafshani et al., 2020) shows that applying the swarm 
intelligence algorithm to optimize the parameter of the ANN method can 
improve its generalization ability for predicting the mechanical perfor
mance of conventional concrete. 

Other studies have also investigated hybridized ML techniques. 
García et al. (2020) introduced a hybrid particle swarm optimization 
method based upon db-scan clustering, which is an effective technique 
in binary combinatorial issues dealing with the design of reinforced 
earth retaining wall targeting to make a trade-off between cost and CO2 
emissions. Db-scan was applied as a discretization means. Thirty-two 
parameters (including geometric, geotechnical, safety, and ambient 
exposure factors) were involved in the wall design. The algorithm was 
employed to select low-cost and low-carbon designs. It was then 
compared with a random operator and K-means method. The results 
showed that the proposed optimization algorithm performs better 
quality of solutions and performance. When comparing db-scan with 

K-means, it gained significantly smaller dispersions. When comparing 
db-scan with an efficient algorithm adapted from the harmony search, 
db-scan achieved better results. Marti et al. (2016) applied a heuristic 
optimization algorithm combination of simulated annealing and muta
tion operator to find the best solution in a road bridge u-beam pre
cast/prestressed concrete based on EE and cost, taking into account 
concrete type, geometry, slab, and beam reinforcement and prestressing 
steel. The results showed parabolic relation between span length and 
minimum energy. The estimated energy savings were calculated at 
around 24%. The optimum solution reached less span length in the cross 
direction and decreased the thickness and reinforcement of the slab. The 
study showed that cost and energy reduction did not have any contra
diction. One Euro decrease in cost could save energy up to 4 kWh. 
Faridmehr et al. (2021a) applied an optimized artificial neural network 
combined with metaheuristic Bat optimization method to produce sus
tainable self-compacting geopolymer concrete, containing 50% of FA in 
the GBFS-FA with suitable strength as well as environmental impact 
mitigation. Zhang et al. (2020b) used a hybrid AI model based on a 
random forest–modified beetle antennae search algorithm to make oil 
palm shell concrete. The model had high prediction accuracy with a 
correlation coefficient of 0.96 on the test set. Along with appropriate CS, 
the oil palm shell concrete led to CO2 reduction, natural resources 
conservation, and cost-efficiency. Golafshani et al. (2021) applied the 
combination of two types of machine learning algorithms. Type-1 and 
type-2 fuzzy inference systems were used to predict the CS of recycled 
aggregate concrete in a dataset containing 1868 data samples. The re
sults showed higher accuracy and reliability than other standalone 
machine learning techniques. Martinez-Martin et al. (2012) provided a 
procedure for designing bridge RC piers to reach the optimized solutions 
based on the objective functions of cost, CO2 emissions, and the 
congestion of reinforcing steel. A hybrid simulated annealing algorithm 
was applied considering the independent variable of materials, steel 
reinforcement usage, and dimensions. Three simulated annealing-based 
multi-objective algorithms based on the GAs mutation operator named 
MOSAMO1 to 3 were applied. The solutions assessment met the struc
tural concrete Spanish Code. The optimization procedure was employed 
for a 23.97 m bridge pier. This case study contained 110 variables. 
Results revealed that the MOSAMO2 algorithm performed better than 
others considering the Pareto fronts definition. CO2 and cost relation
ship were shown almost significant. The correlation between congestion 
of the bars with either cost or CO2 was very inferior. In another study, 
Baandrup et al. (2020) introduced computational morphogenesis pro
cesses as a design concept to save weight in the girder design of long 
suspension bridges while maintaining manufacturability targeting 
reducing CO2 emissions. Density-based topology optimization technique 
SIMP (Solid Isotropic Material with Penalization) based on 
gradient-based optimization algorithms was applied. The optimization 
aimed to enhance the model’s stiffness in the center section while using 
a certain volume of materials. The method was applied to a bridge case 

Table 2 
Sustainable components design and production using ML techniques.  

Authors Sustainable 
Components 

Soft Computing Method Output 

Lee et al. (2021) Waffle slabs NSGA-II algorithm - Reduced CO2 emissions and costs 
- Waffle forms specifications, particularly the ribs height and the distance between ribs, among the design 
parameters, had the highest impact on optimizing cost and CO2 emissions 
- Regarding NSGA-II, the maximum generation was set to 40, and the crossover and mutation rates were 
0.95 and 0.05, respectively 

Zhang and Zhang 
(2021) 

RC beams Multi-objective genetic 
algorithm 

- The results showed that a 6% additional construction cost could make up for a 14.7% emission reduction 

Lanikova et al. 
(2014) 

Structure design Reliability-based structure 
optimization 

- 8.9% of the cost and 11.1% of emissions were reduced in comparison to conventional design processes 

Gan et al. (2019) High-rise RC 
structure 

Optimality criteria genetic 
algorithm 

- CO2 emissions and cost of materials decreased by 18–24% 

Park et al. (2013) Steel RC columns Genetic algorithm-based 
optimization 

- The proposed optimized design could decrease 30.3% of CO2 emissions, 31.5% of the cost, and 7.8% of 
steel section and total concrete weights  
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Table 3 
Sustainable materials and components design/production using hybrid ML techniques.  

Authors Sustainable Materials/ 
Components 

Soft Computing Method Outputs 

Sojobi and Liew (2022) Bioinspired sandwich carbon- 
fiber reinforced polymer 

Hybridized Taguchi method– 
response surface methodology–multiple objective optimization 

- Substitution for steel in the recycled concrete beam led to CO2 emissions reduction 
- Lightweight; 0.7 to 4.4 times better than RC structures in terms of fracture toughness, cost- 
effectiveness 
- Suitable for semi-automated systems and 3D printing 

Faridmehr, Nehdi, Huseien, 
et al. (2021a) 

Sustainable self-compacting 
geopolymer concrete 

Optimized artificial neural network combined with metaheuristic bat 
optimization method 

- Applying 50% of FA in the ground blast furnace slag (GBFS)-FA composition in self- 
compacting geopolymer concrete obtained suitable strength as well as environmental 
impact mitigation 

Faridmehr, Nehdi, Nikoo, 
et al. (2021b) 

Industrial byproduct-based 
alkali-activated mortars 

Optimized hybrid model of principal component analysis – optimized artificial 
neural network –combined with the cuckoo optimization algorithm 

- Mixtures with high content of FA had the least EE and CO2 emissions 
- Mixtures with high content of POFA and GBFS had the most rate of EE and CO2 emissions 
- All the above had less EE and CO2 emissions than OPC-based mortar 
- Estimating EE and CO2 emissions with R2 values of 0.97 and 0.98, respectively 

Zhang et al. (2021) Silica fume concrete Hybrid beetle antennae search algorithm– back propagation neural network - Trade-off between embodied emissions and financial costs. An extra 6% cost could make up 
for a 14.7% emission reduction 
- The ML model had a high correlation coefficient (R-value of 0.96) and a low RMSE (value of 
6.95 MPa) on the test set 

García et al. (2020) Reinforced earth retaining wall 
design (buttressed wall) 

Hybrid particle swarm optimization based upon db-scan clustering - Low-cost and low-carbon designs 
- The proposed optimization algorithm performed better quality of solutions and 
performance compared with the random operator and K-means method 

Ahn et al. (2013) RC frames Integrated big bang and big crunch optimization - Reduction in the total cost or the CO2 emissions 
- By the optimization, 5.7% cost was reduced compared with the equivalent frame 

Marti et al. (2016) Road bridge u-beam precast/ 
prestressed concrete 

Heuristic optimization algorithm combination of simulated annealing and 
mutation operator 

- Concrete type, geometry, slab and beam reinforcement, and prestressing steel were input 
parameters 
- 24% energy saving was calculated 

Mergos (2018) Earthquake-resistant RC frame Mixed-integer genetic algorithm - Low ductility could produce more CO2 emissions by up to 60% compared with medium and 
high ductility design 
- Designs for the minimum costs generated more CO2 emissions by up to 13% than the 
designs for the minimum CO2 emissions 

Baandrup et al. (2020) Girder design of long 
suspension bridges 

Density-based topology optimization technique based on gradient-based 
optimization algorithms 

- The results showed that 28.4% material weight saving, equal to 19,000 m3 of concrete and 
13,000 tonnes of steel, equal to 43,000 tonnes of CO2 emissions reduction, was obtained 

Martinez-Martin et al. 
(2012) 

Bridge RC piers Hybrid simulated annealing-based multi-objective algorithms based on the 
genetic algorithms 

- CO2 and cost relationship were shown to be almost practical 
- The correlation between congestion of the bars with either cost or CO2 was inferior  
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study in Turkey. The results showed that the reduction of 28.4% of 
material weight savings, 19,000 m3 of concrete, and 13,000 tonnes of 
steel equals 43,000 tonnes of CO2 emissions. Table 3 summarizes some 
of the sustainable materials and components design/production using 
hybrid ML techniques. 

4.1.2. On-site vehicles and equipment 
On-site vehicles and equipment such as excavators, bulldozers and 

trucks for construction expose significant environmental impacts, which 
have been less addressed in research studies in comparison to the 
environmental impact of the building during the use phase, design, or 
even demolition and recycling stages (Sandanayake et al., 2017; Chena 
et al., 2017). Masih-Tehrani et al. (2020) developed a genetic-based 
optimization model to decrease the fuel usage and emissions of 
heavy-duty construction vehicles. A tracked bulldozer was modeled as 
the case study. The fuel usage and emissions maps were calculated using 
ADVISOR’s data and the scaling process. The dry sandy soil was deter
mined as the vehicle’s working site on three different terrains, and a 
particular digging depth was defined for the optimization problem. The 
design variables considered were transmission gear number, engine 
speed, and throttle position. The trade-off between objective functions 
of fuel usage and engine emissions was addressed. By increasing the 
digging depth, the throttle position enhances. The range of 1,800 to 2, 
400 rpm for engine speed is optimum, and the third gear is the optimum 
for fuel usage and emissions compared to other gears. In another study, 
Masih-tehrani and Ebrahimi-nejad (2018) proposed an optimization 
model based on the integration of integer linear programming and GA to 
solve the fuel rate and engine emissions elements problems in Caterpillar 
D6T bulldozer used in construction. The results proved that emissions 
and fuel rate performed better, with more than 31% in five case studies, 
when digging less than the maximum digging depth of the vehicle’s 
blade. Emissions and fuel consumption showed improvement in emis
sions and fuel consumption up to 17.7% with the same digging time and 
up to 31.6% without the digging time limit in case of replacing the ve
hicle’s manual transmission with a continuously variable transmission. 
Peng et al. (2016) employed a modular portable emissions measurement 
system of SEMTECH-DS, and a particle sampler to capture 
carbon-contained emissions and particulate matter pollutants in eleven 
different on-site equipment, including loaders, bulldozers, and excava
tors. The results revealed that CO emission factor was higher when the 
machinery was in idle status than when is operating. In construction 

vehicles, in comparison to road machinery, the CO emission was much 
more significant than NOx emission. The papers which have addressed 
the reduction of CO2 emissions by reaching optimization models for 
on-site vehicles and equipment are summarized in Table 4. 

4.1.3. Energy and life cycle assessment 
Several studies addressed carrying out LCA on different concrete 

compositions (Thilakarathna et al., 2020; Alabduljabbar et al., 2020; 
Naseri et al., 2020). The mixture designs were predicted with varying 
techniques of ML. In (Thilakarathna et al., 2020), different supervised 
ML techniques of ANN, Gaussian process regression, SVM, decision 
trees, and linear regression were applied to predict the CS. ANN ach
ieved the most accurate prediction function. LCA for different phases of 
raw material extraction, transport, and materials manufacturing (pro
duction stage) was conducted on more than 70,0000 concrete compo
sitions created by differing input parameters. The benchmark function 
was provided successfully to evaluate the appropriate limit for 
embodied carbon and ML algorithms to produce concrete compositions 
with lower embodied carbon and the defined specific CS. In another 
study, Naseri et al. (2020) examined 232 different concrete mixture 
collected from previously published literature seeking for the most 
sustainable mixture considering other criteria of cost, CS and environ
mental effects (such as energy, resource usage and CO2 emission) using 
meta-heuristic-based ML technique. Then the most sustainable compo
sition was compared to a conventional concrete composition through 
LCA to indicate its long-term advantages for sustainability. Alabdul
jabbar et al. (2020) conducted LCA on various concrete compositions, of 
which mechanical characteristics were calculated using optimized ANN. 
The compositions reduced the cost of the alkali-activated aggregate 
composition by 41.2% in comparison to the natural aggregate ones. The 
CO2 emissions were below the 85% fuel production gained using natural 
aggregates. Mao et al. (2019) introduced a regression model to predict 
the CO2 emission of a building during its life cycle regarding designing 
parameters. Four methods of principal component analysis, multi-layer 
perceptron, SVM, and RF were then employed to initiate regression 
models. Finally, process analysis and comparisons of the developed 
model were carried out. SVM proved to have the best function for ac
curate prediction, with having 0.8 coefficient of determination among 
the four methods. Table 5 shows the ML techniques combined with LCA 
to mitigate CO2 emissions in construction. 

Table 4 
ML techniques for CO2 emission reduction of on-site vehicles and equipment.  

Reference ML Technique Equipment Type Activities 

Masih-Tehrani et al. 
(2020) 

Genetic algorithm-based optimization Tracked bulldozer Three different terrains and particular 
digging depth 

Masih-tehrani and 
Ebrahimi-nejad (2018) 

Integer linear programming and genetic algorithm Caterpillar D6T bulldozer Different digging programs 

Jassim et al. (2019) Artificial neural network integrated with perception multilayer network 
(backward propagation learning method based on the 
Levenberg–Marquardt algorithm) 

Caterpillar wheel loader Material hauling 

Choi et al. (2018) Colony optimization algorithm Ready-mixed concrete vehicle Travel scheduling 
Jassim et al. (2017) Artificial neural network Excavator Material hauling 
Trani et al. (2016) Cluster analysis and linear regression Earthwork vehicles of loaders, 

compactors, and excavators 
Earthwork activities 

Lewis et al. (2015) Multiple linear regression Wheel loaders, motor graders, 
and backhoes 

Highway maintenance project: 
material hauling, excavating, fine and 
light grading 

Hajji (2015) Multiple linear regression Excavator, bulldozer, and 
dump truck 

Earthwork 

Ahn and Lee (2013) Discrete-event simulation Excavator Earth-moving activities and excavation 
Abolhasani and Frey 

(2013) 
Linear regression Dozers, excavators, front-end 

loaders, off-highway trucks 
Excavating and digging the earth, 
moving dirt from one location to 
another, etc. 

Lewis et al. (2012) Regression Highway construction 
equipment 

Idle and non-idle time of on-site 
construction operations 

Boriboonsomsin et al. 
(2011) 

Regression Trucks Traffic speed  
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4.1.4. Optimized decision-making and solution-based platforms 
Rapid, automatic, and optimized decision-making platforms can 

highly contribute to CO2 emission reduction in construction. Some 
research studies have focused on developing solution-based platforms 
using AI and ML techniques (Huynh et al., 2021; Li et al., 2017a; Koo and 
Park, 2012). 

NoParast et al. (2021) developed an integrated single-product, 
multi-stage and multi-objective model of a sustainable closed-loop 
supply chain to optimize the concrete supply chain. Customers, 
manufacturing factories, suppliers, and recycling areas were taken as the 
network components of the concrete industry. In addition, other pa
rameters included transportation costs, transportation options, cus
tomers’ demand, sorts of expenses, each category’s distances, centers’ 
capacity limits, divided products’ unit limits, GHG emissions in the 
duration of the supply chain, and generated wastes were considered. A 
mixed-integer linear and multi-objective model of genetic algorithm 
(NSGAIII) was selected to assess and optimize the function of the supply 
chain in a closed loop consisting of a four-level network. The results 
from the Pareto solution revealed that increasing the usage of recycled 
aggregates can decrease the quarries’ excavation in concrete production. 
Besides, in the case of green cement usage in the concrete supply chain, 
the main parameter that determines the amount of GHG emissions is the 
transportation distance from the source of the green cement. In the case 
of inward recycling unit provision, GHG emissions decreased by 14%, 
while the demand for virgin aggregates was enhanced by 16%, and the 
cost was boosted by 24% compared to the outward recycling plant 
system. Li et al. (2017b) also introduced a genetic-based optimization 
platform to assess and decrease the CO2 emissions generated from 
construction labor allocation in cold winters. First, the construction 
activities and processes were simulated by applying discrete event 
simulation using Simphony.NET to measure and analyze the generated 
CO2 emissions for each construction activity and on-site heating in 
winter. Then, the labor-intensive laborer size for construction activities 
(such as framing, siding, drywall boarding, drywall taping, stage1 fin
ishing, and painting) was optimized with a GA-based on CO2 emissions. 
A case study was used for the applicability and validation of this plat
form. This hybrid simulation and optimization platform could decrease 
CO2 emissions by 21.7% in winter by selecting a different activity start 
date and optimizing labor allocation. In another study, Huynh et al. 
(2021) developed a multiple objective social group optimization, which 
is stated to be a new evolutionary optimization method containing 
different stages of starting, improving, interacting and ending to 

optimize four factors of time, quality, and cost in the construction in
dustry CO2 emission. Two case studies were applied to validate the 
method solutions. Besides, evidence-based reasoning was used to choose 
the best solution for the project operation. The results showed that the 
proposed optimization model surpassed the four popular NSGA-II, 
MOABC, MOPSO, and MODE algorithms in terms of effectiveness and 
efficiency and illustrated convergence and diversity, vaster spread, and 
more excellent uniformity of the solutions. Yazdani et al. (2021) pre
sented a new method to optimize the production scheduling and due 
dates for off-site prefabricated construction projects to find high-quality 
alternatives. As production issues have a stochastic nature dealing with 
complexity and uncertainty, a meta-heuristic framework containing 
three integrated simulation-optimization algorithms of GA, differential 
evolution, and an imperialist competitive algorithm was applied. The 
test showed that the differential evolution method performs better than 
other methods. Moreover, differential evolution still acted robustly 
regarding the behavior of the developed methods in indifferent problem 
size levels. The suggested algorithm yielded the highest values of 
diversification measurement of 26.11 and 40.27; the highest values of 
hyper-volume of 0.88 and 0.89 in the first and the second cases, 
respectively. The suggested algorithm found solutions with the lowest 
mean ideal distance and spread values of 0.88 and 0.45 in the case 1 and 
of 0.75 and 0.69 in case 2. 

Li and Gao (2018) implemented an optimized algorithm of inte
grated particle swarm optimization and back propagation neural 
network to predict the CO2 emission peak in the cement industry in 
China from 2016 to 2050. Carbon emissions were calculated and 
compared under various scenarios. Then, the technology integrated with 
the most effective CO2 reduction impact was suggested. The outcomes 
showed that only China’s strategies for CO2 reduction in the cement 
industry are plans execution related to capacity reduction and second 
generation of new technology systems of dry cement technology. In this 
regard, before 2030, carbon emissions reached peak CO2 emissions. The 
authors suggested 2,482 million tons of carbon emission control in the 
cement industry by 2030. These predictions provided sources for the 
government for further decision-making. Zhang and Wang (2017) 
assessed the uncertainty of building construction embodied emissions in 
the phases of material manufacturing, transportation, and construction 
job-site tasks. A stochastic analysis based on data quality indicators, a 
partly quantitative procedure to determine the original data quality, was 
conducted. A 17-storey building was selected as a case study for the 
comparison of deterministic emissions with stochastic ones. Standard 

Table 5 
ML techniques combined with LCA to mitigate CO2 emissions.  

Reference ML Techniques Activity 

Thilakarathna et al. 
(2020) 

Artificial neural network, Gaussian process regression, 
support vector machine, decision trees, and linear regression 

Minimizing the embodied carbon of different high-strength concrete and ultra-high- 
strength concrete compositions while predicting the CS and proportion of the mixes 

Naseri et al. (2020) Meta-heuristic-based ML Looking for the most sustainable concrete mixture considering different criteria of cost, CS, 
and environmental effects (such as energy, resource usage, and CO2 emission) out of 232 
concrete mixtures 

Alabduljabbar et al. 
(2020) 

Artificial neural network Conducting LCA on the various concrete compositions, of which mechanical 
characteristics were calculated 

Mao et al. (2019) Principal component analysis, multi-layer perceptron, 
support vector machine, and random forest 

Predicting the CO2 emissions of a building during its life cycle regarding 12 determining 
designing parameters 

Olanrewaju (2021) Integration of three methods of index decomposition analysis, 
artificial neural network, and data envelopment analysis 

Introducing an integrated model for energy savings leading to GHG emissions reduction 
for the construction industry from 1994 to 2016 

Mergos (2018) Genetic Algorithm Establishing an optimization platform to design an earthquake-resistant RC frame with 
minimum CO2 emissions and cost. A cradle to gate LCA in the stages of raw material 
extraction and factory manufacturing was considered 

Ferreiro-Cabello et al. 
(2018) 

Meta-model based on deep learning Predicting the best solutions for T-shaped one-way slab design considering deflection, 
rigidity, cost, CO2 emissions, and EE 

Fellaou et al. (2018) Multiple linear regressions Optimizing the combustion in cement kiln precalciners and reducing CO2 emissions by 
decreasing the unburned rate by analyzing historical and experimental design data 

Shen and Lepech 
(2017) 

Stochastic life cycle impact assessment and lifecycle 
optimization 

Proposing a platform for reducing the environmental impact of the preservation of RC 
transportation infrastructure by applying stochastic life cycle impact assessment and 
lifecycle optimization 

Gardezi et al. (2016) Multivariate regression Developing a novel tool to predict CO2 integrating LCA, building information modeling 
(BIM), and ML technique  
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deviation of 248.9 tCO2e of the whole emissions was achieved for the 
uncertainty of input factors and the sample mean of 5,891.97 tCO2e, 
consistent with the deterministic outcomes. Meanwhile, scenario ana
lyses, encompassing system boundary, possible decrease in material 
usage and emissions, usage of local production and low energy con
sumption was performed to measure the uncertainty of the scenario. The 
results illustrated that application of only primary materials led to 
5–10% of embodied emissions underestimation. scenarios containing 
local production of concrete, steel, and masonry led to a significant 
decrease in emissions. Proper data duration and transformation co
efficients are necessary for model uncertainty reduction. Koo and Park 
(2012) established an optimization model based on a GA to find the best 
transfer route in the process of construction materials delivery to 
minimize fuel consumption and CO2 emission. The factors of road type, 
truck type, and fuel efficiency were considered, and the constraints 
contained truck numbers, capacity, trip length, and overall delivery 
load. A case study of a real construction was conducted to validate the 
model. Finally, the GA and the simulated-annealing model were 
compared to prove the model’s feasibility. The results showed that the 
genetic-based model performs better than simulated annealing 
regarding fuel usage in similar weight of materials delivery. All these 
optimization platforms help automated and more accurate 
decision-making in reducing CO2 emissions in different construction 
parts. 

4.1.5. Real-world monitoring 
Real-world data acquisition and monitoring were investigated by 

several scholars (Van Tonder and Low, 2021; Liu et al., 2020) for the 
reduction of CO2 emissions by installing sensors and applying IoT. Tao 
et al. (2018) reported offering a GHG emission monitoring platform 
based upon IoT to monitor emissions of prefabricated manufacturing in 
near real-time. Radio Frequency Identification (RFID) sensors were used 
for the manufactured component identification. Wu et al. (2014) 
developed a platform for real-time measurement and data transfer 
model of the energy usage and CO2 emissions key factors like building 
materials quantity, transportation, electricity, and fuel consumption in 
the complete building life cycle using RFID system. 

Karimi et al. (2021a) developed a model for the proper duty cycle of 
wheel loaders in construction in order to reduce heavy diesel machinery 
fuel consumption and emissions. They collected 80,000 data on wheel 
loader digging activity by placing a global positioning system (GPS). A 
GA model was carried out to choose the best composition of micro-trips. 
The results showed that the emitted carbon monoxide was lower than 
Environmental Protection Agency (EPA). But, in terms of fuel, Tehran 
wheel loader duty cycle consumes 265% more than European NRTC and 
86.12% greater than EPA. Liu et al. (2020) presented a sensor-based 
real-time system for recording and visualizing emissions in pre
fabricated construction sites for three on-site equipment: construction 
elevators, tower cranes, and transfer vehicles. This cyber-physical sys
tem included four physical, sensing, computing, and interaction layers. 
To monitor the operational condition of the tower crane, acceleration 
sensors were applied. The working condition of construction elevators 
was monitored with barometric sensors. GPS sensors were used for the 
travel time records of transfer vehicles and to record and transfer the 
operating hours of these vehicles to a remote server through a connec
tion like Wi-Fi or GPRS (General Packet Radio Service) module. A 
database was responsible for storing the data of numbers, quantities, 
machine power, unit energy consumption, and emission parameters. 
Machines’ carbon emission was estimated at the computing level based 
on data computing and LCA. At the interaction level, the carbon emis
sion data could be sent to and visualized in an application on a smart
phone or laptop. To effectively address the 3D visualizations, a BIM 
model of the site was used to show GHG emission data. Addressing 
on-site real-time monitoring for off-road machinery and measuring 
machinery run time which leads to optimization of the construction task 
schedules, are among the novelties of this study. The authors suggested 

strengthening the visualization of emissions data, bilateral interaction 
between virtual and physical environments, and further debugging and 
more comprehensive system optimization for future studies. 

4.2. Discussion, gaps, and future research directions 

The content analyses showed that five main conceptual themes could 
be derived from the related literature. Almost 60% of the articles were 
related to sustainable materials and components design/production, 
mainly focusing on reducing CO2 in cement and concrete mixture pro
duction, such as (Long et al., 2021) and (Wimala et al., 2019). The 
second category investigated the on-site vehicles and equipment 
(Masih-tehrani and Ebrahimi-nejad, 2018) and (Peng et al., 2016). En
ergy and life cycle assessment (Thilakarathna et al., 2020; Alabduljabbar 
et al., 2020), optimization, decision-making, and solution-based plat
forms (NoParast et al., 2021; Li et al., 2017b), and real-world monitoring 
(Wu et al., 2014; Liu et al., 2020) were the other categories. Lu et al. 
(2020) reviewed studies on carbon emissions in the green building 
construction sector. In the existing literature, they reached five main 
themes of building carbon emissions reduction prospects, properties of 
materials, performance measurement, management practice, and 
decarbonizing design, model, and strategies. 

This paper reviewed the existing literature for CO2 emission initia
tives in construction using ML techniques. In this section, as the results 
of the content review, limitations, gaps, and a set of key directions for 
future research investigations are presented for each cluster as follows: 

1- There are several directions for future research studies that can be 
addressed. For sustainable concrete development, investigating the 
quality depreciation and materials loss in the recycling process by 
considering a broader range of input variables (e.g., cement type, curing 
conditions, and aggregate types and grading) is recommended to in
crease the generalization ability of the proposed model (NoParast et al., 
2021; Zhang et al., 2021). Furthermore, more intelligent models need to 
be developed to design or predict different concrete mixtures (Teixeira 
et al., 2021; Zhang et al., 2021) with different types and volumes of 
supplementary materials such as fly ash, slag, silica fume, manufactured 
sand, coarse mineral aggregate, and fibers, recycled aggregates (Teixeira 
et al., 2021), different cement raw materials (Ates et al., 2021), binder 
(Shubbar et al., 2018), etc. that minimize materials (Van Tonder and 
Low, 2021), construction and environmental costs (Gan et al., 2019), 
reduce CO2 emissions, and maximize favorable mechanical properties. 

More accurate data is needed for training and testing the multi- 
objective optimization model (Zhang et al., 2021). This ensures more 
refined tuning of hyperparameters and further improves the ability of 
the model to obtain meaningful patterns from data with noise. In 
addition, improving the mathematical model by modifying the model 
scenario and employing other solution methods for multi-objective 
optimization (NoParast et al., 2021), applying more improved and 
new prediction models capable of predicting the CS of OPC (Ates et al., 
2021), introducing advanced data pre-processing techniques such as 
missing data imputation and semi-supervised learning to replace the 
input and output missing values in the database (Zhang et al., 2020b) are 
suggested for future research. Furthermore, upgrading optimization al
gorithms and extending the proposed algorithms to solve reliability 
optimization (Huynh et al., 2021; Zhang et al., 2020b) of trade-off time, 
cost, quality, labor, and carbon dioxide emission factors in generalized 
construction projects (Zhang et al., 2020a) are other future directions. 

2- In the context of on-site vehicles and equipment, most studies have 
investigated the CO2 emissions of a few on-site vehicles, like wheel 
loaders, bulldozers, and excavators. The study effort should be expanded 
to include the other equipment types (Karimi et al., 2021a) in real-world 
data sets, including off-road trucks and track loaders. In most studies, 
the driving cycle of these vehicles are synthetic rather than examining 
real-world driving patterns (Karimi et al., 2021a). One limitation of 
these research studies could be the assumption that vehicles operate in a 
steady state and with the same performance efficiency throughout 
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excavation operations. Another limitation could be that using basic data 
extracted from the manufacturer’s handbook for the excavators to 
generate the input data of the proposed models ignores the effects of 
uncertain conditions, such as a long idle time when the excavator has to 
move to a new location (Jassim et al., 2017). Also, output data for en
ergy and CO2 emission depend on indirect measurement. It is strongly 
recommended that the calculation of emission inventory should be 
based on massive real-world emission results (Peng et al., 2016; Choi 
et al., 2018). More emission tests on construction equipment are thus 
required. Future studies will focus on operational-level emission 
modeling of on-site earthmoving equipment (Jassim et al., 2019), such 
as hydraulic excavators, wheel loaders, bulldozers, etc. (Barati and 
Shen, 2016; Lewis et al., 2015). It will also be required to investigate the 
effect of driving behavior on the emission rates of construction equip
ment and the best strategies for emission reduction at operational level 
(Barati and Shen, 2016). 

Future data collection should include information regarding the 
vehicle task and components of the duty cycle, such as lateral movement 
of the vehicle and usage of vehicle accessories and attachments, such as 
blades and buckets. Furthermore, data regarding the extent of the 
vehicle task, such as the volume of dirt excavated, could be the basis for 
the development of production activity-specific emission factors (e.g., 
the mass of pollutant emitted per cubic yard of material excavated). 
Field studies should be designed and conducted for a variety of purposes, 
such as characterization of emission factors and inventories, comparison 
of vehicle technologies, and evaluation of operational strategies for 
performing a given task, among others (Abolhasani and Frey, 2013). 
Combining the real-world driving cycle of on-site vehicles with incor
porating other parameters, such as construction site soil type, digging 
program, and digging load (Masih-Tehrani et al., 2020), can provide 
valuable information on the working activity of these vehicles and can 
help the process being optimized regarding fuel usage and emissions. 
Regarding excavators, using different values of performance efficiencies 
for excavator fleets to cover all real-life operational scenarios employed 
in earth-moving operations can be further investigated. In addition, the 
study of other parameters that highly affect the behavior under different 
conditions of earth density and bucket payload, such as engine torque 
(Masih-Tehrani et al., 2020), to compare the prediction efficiency of the 
proposed model in the case of using engine load factor or engine torque 
is recommended. 

Regarding fuel energy consumption during earthworks (Jassim et al., 
2019), in-depth methodology developments are needed, through the 
involvement of earthmoving machine producers and their users, 
particularly earthworks sub-contractors. The comparison between pre
dicted and real data in several case studies could strongly validate the 
method. Some machinery producers have specific fuel counters installed 
on their latest equipment models. However, for other significant 
earthwork types, such as civil construction, a future in-depth analysis 
considering different consumption agents and materials would be 
required to fit the predictive method (Trani et al., 2016). Furthermore, 
for estimating fuel use and carbon dioxide emissions, it is recommended 
for future research to validate and calibrate the presented models by 
real-world fuel use and CO2 emissions data collected from construction 
equipment. This will be done by using a portable emissions measure
ment system that is able to record second-by-second fuel use, emissions 
and engine data from the equipment performing earthwork activities 
(Hajji, 2015). 

Carbon emission rates for vehicle non-idle and idle modes were 
determined by using some representative data rather than equipment- 
specific data, as data are limited on the fuel use and emission rates 
that can be linked to different operation modes of a variety of con
struction equipment. Additional research is required to build a database 
of fuel use and emission rates that can be expandable to commonly used 
construction equipment with various engine sizes, model years, and 
service hours (Ahn and Lee, 2013). Future research endeavors will focus 
on examining factors that affect the idle rate of equipment through 

further investigation of equipment usage patterns related to the oper
ating equipment efficiency found in various types of construction op
erations. Further research will also involve developing a feasible 
monitoring system for the operational efficiency of construction equip
ment in use. 

3- Regarding LCA, developing life cycle cost in addition to an eco- 
friendly optimal design model and integrating the two to produce 
more efficient solutions to mitigate the environmental impact of the 
construction of structural elements like long-span waffle slabs (Lee et al., 
2021) are essential for CO2 emissions reduction. Enrichment of data 
sources to accomplish a thorough LCA is essential (D’Amico et al., 2019; 
Mao et al., 2019). Thus, future research should include the integration 
and implementation of a database with energy (cooling and electricity 
demand), environmental (considering all phases of an LCA), economic 
(costs and return time) and social aspects. It should provide a compre
hensive building sustainability assessment (D’Amico et al., 2019). It is 
suggested to consider the trade-off between potential life cycle impact 
and structural capacity when conducting maintenance and specifying a 
maintenance regime (Shen and Lepech, 2017). 

4- In the construction sector, assembly technology should be used to 
optimize the production structure while also focusing on research and 
development (Yang et al., 2021). Additionally, off-site operations should 
reduce energy consumption and provide clean energy for building ma
terial production. Several behavioral, technical, infrastructure, market 
and legal barriers can be overcome by establishing centers of excellence 
for prefabrication construction, effective regulatory guidelines, and 
standards for prefabricated construction. Architects, engineers, and 
built-environment professionals are required to be re-trained in design 
building technology (NoParast et al., 2021). This training can help 
minimize construction and demolition waste generation at the end of the 
useful life of prefabricated and traditional concrete structures, extend 
the useful life of building components, avert waste disposal of recyclable 
construction wastes in landfills (Alaneme and Mbadike, 2021), and 
extend the service life of landfills. Semi-automated systems are recom
mended for prefabricated and modular construction to harness the 
benefits of 3D printing (NoParast et al., 2021). Some policy suggestions 
should be addressed, such as encouraging building energy conservation, 
improving the energy efficiency of the construction industry, adjusting 
the use of building materials, and improving the extant policies for 
building emission reduction (Peng, 2019). 

Upgrading the optimization algorithms (Zhang et al., 2020a) and 
proposing frameworks that allow adapting the parameters based on the 
algorithm’s results would generate even more robust methods than the 
current ones. In addition, real-time data in some construction tasks, e.g., 
scheduling, is recommended for future research (Yazdani et al., 2021). 

5- The number of studies for real-time data capturing in construction 
targeting CO2 emission reduction is insufficient, mostly on a small or 
laboratory scale. Real large-scale research studies are recommended. 
Strengthening the proposed system in terms of the visual presentation of 
GHG emission data and two-way interaction between the physical and 
virtual worlds requires additional optimization and debugging work 
before these systems can be used at a broader scale (Liu et al., 2020). The 
application scope of real-world monitoring should be expanded to the 
entire construction phase. Emission activities, including components 
manufacturing, components transportation, on-site installation, and 
construction waste transportation, should be monitored in future studies 
together in one real project. Meanwhile, additional GHG emission 
sources, such as fuel consumption, water consumption, and construction 
auxiliary material usage, should be considered. More advanced tech
nology also is needed to be considered. For instance, a one-way laser 
sensor should be used instead of a dual one to avoid the risk of laser light 
deviation (Tao et al., 2018). In addition, a reliable communication 
network should be built to transmit emission data over an extended 
distance. 
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5. Conclusions 

The present review implemented a systematic review and content 
analysis led to identifying five main sub-topics that have been investi
gated in the construction ML-based CO2 emission reduction literature: 1) 
sustainable materials and components design/production, 2) on-site 
vehicles and equipment, 3) energy and life cycle assessment, 4) opti
mization, decision-making and solution-based platforms, and 5) real- 
world monitoring. 

The paper applied a mixed method of bibliographic analysis and 
content review to identify different directions in construction to use ML 
for CO2 emissions reduction in the current literature. It provided a 
detailed content review of five clusters, the gaps and future research 
directions. The gaps and future research can be valuable for scholars in 
further investigations. Various AI and ML techniques, such as artificial 
neural networks, genetic algorithms, regression models, support vector 
machines, and decision trees, were used to predict and optimize CO2 
emissions in different construction parts. These tools help in more 

automatic and accurate prediction and optimization of sustainable 
construction to reduce CO2 emissions. 
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Appendix  

Table A 
Journals publishing the relevant articles based on the search result.  

Journal 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total % 

Cleaner Production 0 0 0 0 0 0 0 0 0 1 0 1 0 5 2 9 11.53 
Construction and 

Building Materials 
0 0 0 0 0 0 0 0 0 1 1 1 1 0 4 8 10.25 

Automation in 
Construction 

0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 4 5.12 

Construction 
Engineering and 
Management 

0 0 0 0 0 1 2 0 0 0 0 1 0 0 0 4 5.12 

Energy and Buildings 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 4 5.12 
Materials 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 4 5.12 
Transportation Research 

Record 
0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 3 3.84 

Building Engineering 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2.56 
Energy 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 2.56 
International Journal of 

Civil Engineering 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 2.56 

International Journal of 
Sustainable 
Engineering 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 2.56 

Sustainability 
(Switzerland) 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 2.56 

Sustainability 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 2.56 
Advanced Engineering 

Informatics 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1.28 

Advances in Structural 
Engineering 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1.28 

Aerosol and Air Quality 
Research 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1.28 

Air and Waste 
Management 
Association 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1.28 

Building and 
Environment 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.28 

Case Studies in 
Construction 
Materials 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.28 

Composite Structures 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.28 
Energies 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1.28 
Engineering, Design and 

Technology 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.28 

Engineering Structures 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1.28 
Environmental 

Engineering (United 
States) 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1.28 

Environmental Science 
and Pollution 
Research 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.28 

(continued on next page) 
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Table A (continued ) 

Journal 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total % 

Geotechnical and 
Geological 
Engineering 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1.28 

Geotechnical Testing 
Journal 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1.28 

Habitat International 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1.28 
Infrastructure Systems 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1.28 
Environmental 

Management 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1.28 

International Journal of 
Engineering, 
Transactions B: 
Applications 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1.28 

International Journal of 
Sustainable 
Construction 
Engineering and 
Technology 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1.28 

Journal of Zhejiang 
University: Science A 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1.28 

Materials-Design and 
Applications 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.28 

Mathematics 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1.28 
Nanomaterials  0 0             1 1.28 
Nature Communications 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1.28 
Resources, Conservation 

and Recycling 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.28 

SAE International 
Journal of 
Commercial Vehicles 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.28 

Sensors (Switzerland) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.28 
Soils and Foundations 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1.28 
South African Journal of 

Industrial Engineering 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.28 

Sustainable Production 
and Consumption 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.28  
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