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Abstract: This study was carried out to solve the problem of condensation in radiant floor cooling (RFC) 

systems. Computational fluid dynamics (CFD) simulation and back-propagation (BP) neural network 

prediction were employed to conduct thorough research to predict the effects of the displacement ventilation 

(DV) dehumidification phase in an office building located in Jinan, China. The effects of the air supply

temperature (Tas), air supply flow rate (Vas), air supply humidity ratio (Has), floor temperature (Tfloor), initial

indoor temperature (Tini) and relative humidity (Hini) on the duration and energy consumption of pre-

dehumidification were investigated. The big data show the air dew point temperature (Tad) produced the

most significant effect on the pre-dehumidification duration and energy consumption, while Tas would cause

the least significant effect. With the decrease of Tad, the pre-dehumidification duration and energy

consumption were respectively decreased by 59.1% and 44.2%. Furthermore, with the variation of Vas, the

energy consumption exhibited a fluctuating trend. This study provides a novel and effective method to assess

the pre-dehumidification control of radiant floor surfaces by considering different initial indoor conditions

and air supply parameters.
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Introduction 
Due to the improvement of the living environment and the development of urbanization, building energy 

consumption in urban areas is rapidly increasing.1 China has been the largest carbon emitter and energy 

consumer country in the world since 2011. Generally speaking, building energy consumption is mainly used 

for lighting, electrical equipment and heating, ventilation and air conditioning (HVAC) systems, of which 

about 50% is mainly from the traditional HVAC system.2,3 Therefore, the application of energy-saving 

technology in HVAC systems is a necessary means to slow down the trend of energy consumption.  

In recent years, radiant cooling systems have risen in popularity due to their energy-saving potential 

and high thermal comfort level as compared with conventional air conditioning systems.4-7 However, radiant 

cooling systems have limited use in hot and humid climates. Driven by hot pressure, high-temperature and 

high-humidity air enter indoors via gaps in buildings. Moreover, the indoor air humidity would increase due 

to the high infiltration rates and moisture generation by the occupants, resulting in an increase in the indoor 

air dew point temperature (Tad).8 These factors would increase the risk of condensation on the surface of 

radiant panels,9-10 and decrease the comfort of the indoor environment, thereby limiting the widespread use 

of radiant cooling systems. 

The occurrence of condensation is the main drawback of radiant cooling systems. Condensation occurs 

when the temperature of the radiant panel is lower than the dew point temperature of the air; thus, the use of 

radiant cooling systems in humid environments is a substantial challenge. Therefore, the prevention of 

radiant panel condensation in radiant cooling systems is one of the main areas of investigation. Current 

studies on radiant cooling system condensation prevention primarily focus on three areas, namely the basic 

theory of radiant cooling condensation,11-13 condensation prevention strategies14-16 and the improvement of 

the radiant panel to prevent condensation.17-19 
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However, as compared with radiant ceiling cooling systems,20,21 which are mostly applied in hot and 

humid climates,22 radiant floor cooling (RFC) systems have only been evaluated in a limited number of 

studies due to the potential contradictions of maintaining sufficient cooling capacity while preventing the 

condensation and local discomfort caused by lower floor temperatures and larger vertical temperature 

differences.23 Tang et al.24 theoretically and experimentally studied the condensation rate of radiant cooling 

surfaces at different locations of wet air (the floor, wall and ceiling); the results showed that with the same 

air state and surface temperature, the condensation rate on the radiant ceiling was about 3.5 times higher 

than that on the radiant floor, and about 25% higher than that on the radiant wall. Consequently, the 

condensation risk of the radiant floor is much lower than that of the radiant wall or the ceiling. Lim et al.25 

showed that to maintain the indoor temperature, controlling the water temperature is better than controlling 

the water flow. Due to the use of this control method, the floor temperature was able to be maintained above 

21°C, the surface dew was not formed, the vertical temperature difference was less than 1.9°C and the 

thermal comfort was good. Jeong et al.26 proposed a strategy for the configuration and arrangement of an 

RFC using an individual cooling source, which was derived for application to residential buildings in regions 

with a hot and humid summer climate, such as Korea. The results revealed that during most of the 

measurement period, the indoor temperature remained at the indoor set point temperature, and the floor 

surface temperature was higher than the indoor dew point temperature. Therefore, RFC combined with 

dehumidification and refrigeration equipment can meet the refrigeration and dew prevention requirements 

of multi-zone homes. In addition, the dehumidification of fresh or indoor air by an independent air supply 

dehumidification device can reduce the moisture content of the indoor air and effectively reduce the risk of 

condensation at the end of the radiant cooling.27 

When comparing ventilation strategies,28,29 air quality and thermal comfort are usually used as 

evaluation criteria. Triggered by the advent of the energy crisis, emphasis has been placed on the energy 

efficiency of office buildings. Space conditioning contributes substantially to energy consumption in office 

buildings. To reduce this high energy cost, office building design has shifted toward high levels of insulation 

and airtightness, as well as a minimal ventilation rate. However, this has led to the deterioration of indoor 

air quality. Therefore, further investigation of the indoor environment quality in ventilated office spaces 

should be oriented toward a holistic evaluation of thermal comfort, indoor air quality and energy efficiency.30 

There are two methods commonly used to supply the air in a room, namely mixed ventilation (MV) and 

displacement ventilation (DV). In MV, the air is normally supplied at a high level over the ceiling and then 

deflected down into the occupied zone by the opposite walls, thereby causing a mixing of the air jet with the 

room air. In DV, the air is supplied at a low level, usually over the floor, and then rises due to buoyancy 

before it is extracted at a high level.31 Among these two ventilation strategies, DV is regarded as one of the 

most interesting solutions because it can provide a high level of air quality at the breathing level. Xing et 

al.32 conducted a computational fluid dynamic (CFD) simulation and reported that higher air quality can be 

obtained in the working area of a room with DV as compared with a room with MV. By exploiting buoyancy 

forces in the room, DV could generate a stratified flow pattern: the warm and polluted air is concentrated in 

the upper part of the room, while the cool and clean air remains in the lower part of the room where the 

occupants are located, while also reducing energy consumption by 20% to 30%. Although some relevant 

studies have been conducted on the combination of RFC and DV systems, most have focused on indoor 

thermal comfort.33-35 The research on the pre-dehumidification of this composite system based on CFD 

modelling is limited. While experimental studies are reliable, they are characterized by the disadvantages of 

a high consumption of time, manpower and financial resources. Recently, neural network models have been 

successfully applied to buildings and air conditioning systems,36-38 but numerous studies have been based on 

TRNSYS software and neural networks to conduct forecast analyses. Because the air distribution in the room 

directly affects the effects of ventilation and air conditioning, the use of TRNSYS cannot yield the detailed 

distribution of the air in a space. Compared with experimental studies, CFD is characterized by lower costs, 

and compared with TRNSYS analysis, the detailed situation of the air distribution can be predicted. 

Therefore, in this research, CFD was adopted for numerical simulation analysis, and a neural network was 

used for the prediction.  

In this study, aiming at the problem of pre-dehumidification, a simulation model of an RFC and DV 

system was established. ANSYS Fluent 16.2 software was used to simulate the thermal and humidity 

environments of an office located in Jinan, China, in the summer. The determination of how to increase the 

air supply flow rate (Vas) and how to reduce the air supply humidity ratio (Has) and the air supply temperature 

(Tas) was explored, and the effects of the floor temperature (Tfloor), initial indoor temperature (Tini) and 

relative humidity (Hini) on the duration and energy consumption of the pre-dehumidification stage were 

further improved. Then, a back-propagation (BP) neural network prediction model was built in Python, and 



the learning sample data set was obtained by simulating the system built in ANSYS Fluent 16.2 software. 

The data set was then used as the input to learn and train the BP neural network prediction model, and the 

pre-dehumidification duration and energy consumption were then predicted.  

 

Numerical methods 
Description of the simulation model 

A typical office located in Jinan, China, was considered the study object of the simulation analysis 

conducted in this research. The size of the office was 6.0 × 4.5 × 2.5 m, and the heat sources included office 

workers, computers and a lamp, the heat flux values of which were respectively 147, 370 and 40 W. Fresh 

air was delivered into the room through two inlets located on the underside of the floor, and the outlet was 

located near the ceiling. The dimensions of the inlet and outlet were 0.2 × 0.8 m and 0.2 × 0.25 m, respectively. 

The moisture was considered mainly generated by the adult male occupants at 109 g/h in their sitting 

positions.39 The geometric model of the pre-dehumidification stage is illustrated in Figure 1, and the detailed 

configuration of the simulation model and the heat sources are described in Table 1. Because the 

phenomenon of dew condensation on the floor is mainly caused by the airflow near the floor, the vertical 

zone section z = 0.1 m closest to the floor was the main focus of this study. 

 

Table 1. The model parameters and cooling loads. 
Item Dimensions Cooling load (W) 

Human model 0.3×0.4×1.2 (m3) 147×2 

Air inlet 0.2×0.8 (m2) N.A. 

Computer 0.45×0.45×0.45 (m3) 370×2 

Window 1.2×1.5 (m2) N.A. 

Lamp 0.15×0.2×1.2 (m3) 40 

Air outlet 0.2×0.25 (m2) N.A. 

Bookcase 1.05×0.4×1.8 (m3) N.A. 

 

 
Figure 1. The schematic diagram of the model: (a) the configuration of the simulated office (1-Air inlet; 2-Computer; 3-

Human model; 4-Window; 5-Lamp; 6-Bookcase; 7-Air outlet); (b) the arrangement of the equipment in the simulated office. 
 

Mathematical model and numerical schemes 
The commercial CFD software ANSYS Fluent 16.2 was used to model the performance of the RFC and 

DV system. The temperature difference in the considered space was assumed to be low. Therefore, the 

Boussinesq approximation could be employed to consider the effect of density changes. The flow was 

assumed to be turbulent, and the air was considered an incompressible gas that includes both dry air and 

water vapour. Considering the assumptions, the governing equations, including the continuity, momentum 

and energy equations, are respectively defined as Equations (1) - (3).40  
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where u is the fluid velocity, p is the pressure and T denotes the temperature. Moreover, ρ, μ, cp and λ are 

respectively the density, viscosity, heat capacity and conductivity, g is the acceleration term and β denotes 

the thermal expansion factor. 

For the calculation of the thermal comfort and humidity of the air, the species in the transport equation 

would need to be solved, which are defined by Equation (4).40 
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where Yi is the mass fraction of the species (i), and D is the binary diffusion coefficient. The last term denotes 

the source term of the species (i). 

To better predict the indoor airflow, a suitable turbulence model was selected from various existing 

models. A study by Chen41 revealed that the renormalized group (RNG) k-ε turbulence model achieved the 

best performance among all the eddy-viscosity models for the simulation of mixed convection flow. 

Therefore, the RNG k-ε turbulence model defined as Equations (5) and (6) was implemented in this study to 

predict the indoor airflow.42  
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where k and ε are the turbulent kinetic energy and turbulent dissipation rate, respectively. The production of 

turbulent kinetic energy due to velocity gradients (G) and buoyancy effects (GB) is respectively defined as 

Equations (7) and (8). 
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The turbulent viscosity (μt) was calculated according to the turbulent kinetic energy (k) and dissipation 

rate (ε), and is defined by Equation (9). 
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𝑘2
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                                                                                                                                                 (9) 

The additional terms, which were added due to the Reynolds averaging in the energy and species 

transport equations, were modelled using the turbulent Prandtl (Prt) and Schmidt (Sct) numbers, which are 

respectively defined by Equations (10) and (11). 
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To achieve the phenomenon of water vapour being generated from the human body and diffusing into 

the surrounding environment, the human body was set as a zone to release heat and water vapour. The 

surrounding air was heated through the surface of the human body, and other heat sources released heat from 

the surface at a constant heat flow rate. 

Standard wall treatment was chosen to treat the near-wall airflow. The semi-implicit method for 

pressure-linked equations (SIMPLE) algorithm was chosen for pressure and velocity field coupling, and the 

second-order upwind discretization scheme was chosen to solve all the variables in the simulation cases, 

excluding the pressure, which was solved by a staggered scheme called pressure staggering option 

(PRESTO!). The Green-Gauss cell-based method was used for the gradient. Considering that the model 

contained a large number of complex geometric surfaces and the influence of thermal buoyant force, the 

discrete ordinate (DO) radiation model was used to simulate the transfer of radiation heat emitted from the 

internal objects. The details of the numerical methods and boundary conditions are summarized in Table 2. 

 
Table 2. The details of the numerical methods and simulation setup. 

Turbulence model RNG k-ε turbulence model 
Species model Species transport 

Numerical schemes For pressure, the staggered third scheme PRESTO!; for other terms, the second-order upwind 

discretization scheme and the SIMPLE algorithm 

 

Boundary condition setup 
The rate of floor temperature cooling was slow when the RFC system was operated, and due to the 

moisture of the human body, the air dew point temperature (Tad) near the floor would gradually increase and 



soon become higher than Tfloor, which would cause condensation. Therefore, the DV system would need to 

operate in advance for pre-dehumidification, and the key is the difference between Tfloor and Tad. In the 

simulation, the RFC system was open when Tad was lower than Tfloor = 2°C. The air inlet was set as the 

velocity inlet boundary condition, and the air outlet was set as the pressure outlet boundary condition. 

Because more than one factor could affect Tad, three air supply factors that could affect the duration and 

energy consumption of pre-dehumidification were considered, namely Tas, Has and Vas. The values of Vas 

were selected as 0.016, 0.024 and 0.036 m3/s, which were designed to satisfy the outdoor ventilation rate 

recommended in a previous study.43 Moreover, according to another study, the air supply temperature was at 

least 2°C lower than the indoor air temperature;44 thus, the values of Tas were selected as 21, 22 and 23°C, 

and the values of Has were selected as 10, 10.5 and 11 g/kg.  

According to previous research,45,46 the air supply was efficiently spread along the floor at temperatures 

Tfloor below 25°C, and Tfloor should not be lower than 18°C when the RFC system was adopted. Therefore, 

the floor was set as a constant-temperature surface, and the values of Tfloor in the simulation were selected as 

22, 23 and 24°C. In addition, Tini and Hini were also considered, and the values of Tini were selected as 

between 26 and 28°C based on the floor surface temperature. The selection range of Hini was from 14.7 to 

18.88 g/kg, as shown in Figure 2. In the figure, zones “a” and “b” indicate the selection ranges of Tini and 

Hini when Tfloor = 22°C, and Tad ranged from 20 to 22°C; zones “b” and “c” indicate the selection ranges of 

Tini and Hini when Tfloor = 23°C, and Tad ranged from 21 to 23°C; zones “c” and “d” indicate the selection 

ranges of Tini and Hini when Tfloor = 24°C, and Tad ranged from 22 to 24°C. Based on this, the selected values 

of different influencing factors are exhibited in Table 3, and the selection of the simulation parameters 

generated 243 data sets under different combinations of the five variables. The personnel and equipment 

cooling were ignored, as there was no occupant in the numerical simulation of pre-dehumidification. 

Considering the building that housed the office, and considering that work commences at 08:00, negligible 

solar radiation and negligible infiltration of doors and windows were assumed in the pre-dehumidification 

stage. The ceiling, side walls and the window were set as constant-temperature surfaces, and the bookcase 

was set as the adiabatic boundary condition. Moreover, the outdoor temperature was assumed 30°C and the 

relative humidity was 80%. Table 4 shows the detailed boundary conditions established in the CFD 

simulation. 

 

Table 3. The parameter setup for different simulation cases. 
Parameters Selected values Unit 

Vas 0.016, 0.024, 0.032 m3/s 

Tas 21, 22, 23 °C 

Has 10, 10.5, 11 g/kg 

Tfloor 22, 23, 24 °C 

Tini and Hini 

Case 1* (26.5,76.12), (27,78.57), (28,78.71) 

°C, % Case 2** (26,76.04), (26.5,78.5), (27.5,78.64) 

Case 3*** (26,73.71), (26.5,76.12), (27.5,76.27) 

*: the selected values of Tini and Hini when Tfloor = 22°C 

**: the selected values of Tini and Hini when Tfloor = 23°C 
***: the selected values of Tini and Hini when Tfloor = 24°C 

 
 

 
Figure 2. The initial conditions located in the i-d diagram, including zones “a,” “b,” “c” and “d”. 
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Table 4. The boundary condition setup in the CFD simulation. 
Boundary Simulation setup 

Air inlet Velocity inlet 

Air outlet Pressure outlet 
Ceiling Constant temperature, 26°C 

Walls Constant temperature, 26°C 

Window Constant temperature, 26°C 

Floor Constant temperature, 20, 21 and 22°C 

Occupants Uniform heat flux, 147 W 

Lamp Uniform heat flux, 40 W 

Computer Uniform heat flux, 370 W 

Bookcase Adiabatic wall 
Outdoor weather Temperature, 30°C; relative humidity, 80%  

 

Energy demand for ventilation 
CFD simulation has been widely used for the prediction of airflow in office environments. However, 

issues regarding heat transfer and energy usage in office spaces have not been successfully addressed using 

CFD techniques. The primary interest of this study is the pre-dehumidification stage, in which only the DV 

system was operated. Based on a survey of previous experimental and numerical research on the 

quantification of the energy efficiency of ventilation systems, the energy used by the ventilation system was 

divided into two main components,47 namely the fan and cooling energy consumption, both of which could 

be derived from the CFD estimations. 
(1) Fan energy consumption 

Fan energy is an important factor in annual energy consumption and is defined by Equation (12).48  

𝐸𝑓𝑎𝑛 =
𝑝𝑣𝑒𝑛𝑡

3600×𝜂1×𝜂2
𝑉𝑎𝑠𝜏𝑝𝑟𝑒                                                                                                                            (12) 

where Efan is the fan energy consumption (kWh), pvent is the full pressure of the fresh air unit (Pa), Vas is the 

air supply flow rate (m3/h), τpre is the pre-dehumidification duration (h), η1 is the transmission efficiency, the 

value of which was considered 0.85, and η2 is the fan efficiency, the value of which was considered 0.78.  

(2) Cooling energy consumption 

In light of the previous methods used for energy usage prediction with alternate ventilation systems, the 

cooling energy requirement can be subdivided into two portions. This study mainly analyzed the pre-

dehumidification stage, in which only the DV system was operated. Therefore, the energy consumption 

generated by cooling coils to eliminate the heat load of the indoor space was not included in the calculation 

of cooling energy consumption. Only the cooling energy portion used to condition the outdoor fresh air to 

the air supply state was included. According to the calculation of cooling energy consumption in previous 

studies,49,50 the calculation of this portion of energy consumption was according to Equation (13).50  

𝐸𝑣𝑒𝑛𝑡 = 𝑉𝑎𝑠𝜌(ℎ𝑜𝑢𝑡 − ℎ𝑎𝑠)𝜏𝑝𝑟𝑒                                                                                                                    (13) 

where Event is the portion of cooling energy used to condition the outdoor fresh air to the air supply state 

(kWh), ρ is the air density, the value of which was assumed to be 1.29 kg/m3, and hout and has are respectively 

the specific enthalpies of the outdoor and supply air (kJ/kg).  

As a supplement to the previous statement, the following assumptions were imposed on the energy 

analysis for the ventilation system. The energy used by the condenser water pump, chilled water pump and 

fans in the cooling tower was excluded. The chilled water heat exchanger was presumed to work under 

perfect conditions, i.e., the heat transfer efficiency in each component was assumed to be 1. The ducts were 

assumed to be perfectly tight, and airflow through the ductwork was adiabatic. There was no temperature 

gradient along the duct when there was no other energy generation equipment. Finally, the effect of the fan 

power on the supply air temperature was neglected.50 

Grid independence analysis 
ANSYS ICEM CFD software was used to generate structured hexahedral meshes for the studied model. 

Due to the large variations of the temperature and velocity gradients around the heat sources (the human 

body and equipment), the resulting grid was fine enough to capture the thermal environment behaviour and 

solve the boundary layer. In other regions where the temperature and velocity gradients changed little and 

the flow characteristics were relatively consistent, the grid was relatively sparse. Grid independence tests 

play an important role in the accuracy of the results and the prediction cost of CFD simulation. Therefore, 

coarse, medium and fine grids were selected to study the grid independence of the numerical simulation 

conducted in this study. The case with specific values of Tas, Has, Vas, Tfloor and Tini and Hini was taken as an 

example to evaluate the performance of different numbers of grids, as listed in Table 5. The values of Tas, 
Has, Vas, Tfloor and Tini and Hini were selected as 23°C, 11 g/kg, 0.032 m3/s, 22°C and 28°C and 78.71%, 

respectively. The temperature and humidity results of section z = 0.1 m were compared. Figure 3 presents 
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the variations of the temperature and humidity under different grids. By comparing the simulation results, 

there were no significant variations in temperature and humidity distributions with the increase of the number 

of grid cells from the medium grid to the fine grid, and the maximum errors of temperature and humidity 

were 0.058 (0.23%) and 0.093 (0.63%), respectively. Nevertheless, with the increase of the number of grid 

cells from the coarse grid to the medium grid, the maximum absolute errors of temperature and humidity 

were 0.08°C and 0.20 g/kg, respectively. Therefore, the medium grid with 529276 computing units was 

selected for subsequent numerical simulation. The grid diagram is exhibited in Figure 4. 

 

Table 5. The grid independence test. 
Item Total number of elements Temperature maximum error (°C) Humidity maximum error (g/kg) 

Coarse grid 337542   
Medium grid 529276 0.08 0.20 

Fine grid 836336 0.06 0.09 

 
Figure 3. The variations of the (a) temperature and (b) humidity under different grids at z = 0.1 m. 

 
Figure 4. The grid distribution diagram of the medium grid. 

 

Validation of the fluid flow 
To verify the accuracy of the RNG k-ε turbulence model in the prediction of the indoor thermal 

environment, the simulation data of the indoor air velocity and temperature distributions were compared 

with data from an experimental study by Xu et al.51. Figure 5(a) illustrates the schematic diagram of the 

experimental chamber. The simulation was performed in a typical small room with dimensions of 6.0 × 3.9 

× 2.35 m (length × width × height) with two heat sources, including one occupant (76 W) seated in front of 

a table and one computer (40 W) located on the table. The dimensions of the supply and exhaust diffusers 

were respectively 0.4 × 0.15 m and 0.34 × 0.14 m. The air supply flow rate was 43 m3/h, which was equal 

to 0.79 ACH (air change per hour), and the air supply temperature was 19°C. Different temperature values 

were used for the bounded walls, ceiling and floor. Two poles, namely poles 1 and 2, were used in this 

validation to predict the temperature and velocity distributions. The distribution diagrams of the two poles 

are exhibited in Figure 5(b). Figures 5(c) and 5(d) respectively present the comparisons between the 

temperature and velocity along the height direction of poles 1 and 2 in the simulation and experiment. Pole 

1 exhibited a small temperature difference in the room area of less than 0.5 m. In this area, the simulated 

temperature was higher than the experimentally measured value. This was because the heat flux of the human 



model was constant in the simulation. In contrast, the evenly distribution of the heat flux was difficult in the 

experiment. The leg area of the mannequin would have a lower heat flux than the rest of the body, and pole 

1 was located between the legs; thus, the simulation of pole 1 reflected a higher temperature. 
 

Validation of the humidity distribution 
To verify the accuracy of the humidity distribution, the simulation data were compared with data from 

an experimental study of the indoor humidity distribution conducted by Ma et al.52 As shown in Figure 6(a), 

the dimensions of the laboratory were 4 × 3 × 2.5 m (length × width × height). Air entered from the top of 

one sidewall and was discharged from the bottom of the other sidewall. The indoor ventilation volume was 

302 m3/h, and there was no heat source in the room. The humidification rate was 0.052 g/s. The temperature 

of all walls was maintained at 22 ± 0.9°C. Points 1 and 2 were used to predict the indoor humidity 

distribution in the validation study. The location distribution diagrams of the two points are presented in 

Figure 6(b). Moreover, Figures 6(c) and 6(d) respectively present the comparisons of the humidity ratios 

obtained from the experimental measurement and the simulation. The simulated data were consistent with 

most of the experimental measurement data. Point 1 exhibited a deviation in the initial stage, and Ma et al. 

52 mentioned that the fluctuation of the experimental measurement data was caused by the instability of the 

system in the initial stage. Point 1 was close to the entrance; thus, the error between the experimental and 

simulation data would have been relatively large. The simulation of point 2 was significantly consistent with 

the experimental data. The good consistency indicates that the accuracy of this model was sufficient for 

further study.  

 

 

 
Figure 5. (a) The schematic diagram of the validation room model; (b) the locations of poles 1 and 2; the comparison 

between the simulated and experimental (c) velocity and (d) temperature at the two poles. 

 



 
Figure 6. (a) The schematic diagram of the validation room model; (b) the locations of points 1 and 2; the comparison 

between the simulated and experimental humidity ratios at (c) point 1 and (d) point 2. 

 

BP neural network 
An artificial neural network (ANN) is a machine learning tool that can be used to learn the relationships 

between input and output variables to predict system performance. It works like a black-box model that 

requires no detailed system parameters.53 The ANN architecture consists of an input layer, an output layer 

and one or more hidden layers. Each layer is composed of neurons that receive signals from previous layers 

and produce outputs based on activation functions. 

The most widely used ANN structure in prediction models is the multilayer perceptron (MLP) model. 

A MLP model with a single hidden layer containing a sufficient number of neurons has been proven54,55 that 

it can approximate any function with the desired accuracy. Therefore, a MLP network was established in this 

study to predict the duration and energy consumption of the pre-dehumidification stage, as shown in Figure 

7. The MLP network consists of an input layer, a hidden layer and an output layer, in which all inputs are 

connected to neurons and all neurons are connected to outputs. 

The correlation between the input u(k) and output y(k) in the MLP network can be written 

mathematically as Equations (14) and (15).56 

𝑦(𝑘) = 𝑓2(𝑤
2𝑥(𝑘) + 𝑏2)                                                                                                                            (14) 

𝑥(𝑘) = 𝑓1(𝑤
1𝑥(𝑘) + 𝑏1)                                                                                                                             (15) 

where x(k) indicates the output vector from the hidden layer, and w2 and w1 respectively represent the 

connection weight matrixes from the hidden layer to the output layer and from the input layer to the hidden 

layer. Moreover, b1 and b2 represent bias numbers in the input and output layers, respectively, and f1(.) and 

f2(.) respectively represent the transfer functions of the hidden and output layers. The transfer function used 

in the present study was a tangent sigmoid function, which can be expressed as Equation (16).57 

𝑓(𝑧) =
(1−𝑒−2𝑧)

(1+𝑒−2𝑧)
                                                                                                                                             (16) 

where z represents a function of z = f(∑wixi), where i is the index of inputs to the neuron, xi is the input to 

the neuron, wi is the weighted factor attached to the input and z is the weighted input. The prediction accuracy 

was measured using the root mean square error (RMSE), as defined by Equation (17).53 

𝑅𝑀𝑆𝐸 = √
1

𝑝
∑ ∣ 𝑡𝑗 − 𝑜𝑗 ∣2𝑗                                                                                                                           (17) 

where p represents the number of data sets, tj is a target and oj is an output value. 



 

 

Figure 7. The multilayer perceptron network. 

 
The structure of the ANN is exhibited in Figure 8, and was designed with 5 inputs, 10 neurons and 2 

outputs. The inputs were the air supply temperature, air supply humidity ratio, air supply flow rate, floor 

temperature and initial indoor temperature and relative humidity, respectively. The outputs were the pre-

dehumidification duration and energy consumption, respectively. The simulation duration was at least about 

4 h and at most nearly 12 h. Nearly 30 days was needed to finish all the simulations. The 243 simulated data 

were divided into two parts; 80% of the data were randomly selected for neural network training and the 

remaining 20% were used for validation.  

The training process was carried out by optimizing the weights and deviation coefficients to minimize 

the error between the target and the output of the ANN. The BP neural network was adopted for use in this 

study. The BP neural network was a multilayer feedforward neural network. Its name was derived from the 

adjustment rules of network weights, for which the error back-propagation learning algorithm was used. The 

sample was submitted to the network, and the size of the error was preset according to the training of the 

error limit. When the network converges, the training ends. When the number of training iterations has 

reached the maximum, the training was terminated, and when the network cannot converge, this represents 

the end of the learning process. The error propagation process was then reversed, and training was carried 

out continuously according to the error feedback until the condition was satisfied or until the network was 

trained to the maximum number of iterations.58 

The BP neural network is mainly used in function approximation, relation identification, data 

classification and data compression. The use of the BP neural network as the core of the prediction model 

can theoretically yield the approximation of any nonlinear model by taking advantage of its function 

approximation feature. Figure 9 presents the flowchart of the BP neural network algorithm. The learning 

process of the BP neural network was divided into a forward calculation process, reverse calculation process 

and memory training process. During the forward calculation process, the input signal was received by the 

input layer, processed by the hidden layer and then transmitted to the output layer. After the forward 

calculation process, if the output obtained by the output layer was not the desired output, the reverse 

propagation stage of the error was entered, i.e., the output error signal returned along the connection path of 

the neurons, from the output layer to the hidden layer and then back to the input layer. The weight of the 

neuron in each layer was modified according to the received error signal to minimize the error signal. During 

the memory training process, the weights of neurons were constantly adjusted. To obtain the preset error 

value, the forward calculation and reverse calculation of the BP neural network were carried out alternately 

until the error reached the allowable range, or until the maximum number of iterations of the algorithm was 

reached. 



 

Figure 8. The structure of the neural network with inputs and outputs. 

 

Figure 9. The flow chart of the BP neural network algorithm. 

 

Results and discussion 
Analysis results of CFD simulation  
Distributions of the indoor air temperature and humidity 

According to the calculation of simulation results, when Tas, Vas, Has, Tfloor and Tini and Hini were 23°C, 

0.016 m3/s, 11 g/kg, 22°C and 26.5°C and 76.12%, respectively, the pre-dehumidification duration was 120 

s. Due to the long pre-dehumidification duration and the temperature and humidity variations, this simulated 

case was further investigated. To better understand the variations in the indoor temperature and humidity in 

javascript:;


the pre-dehumidification stage, another case of Vas = 0.024 m3/s with other factors remaining unchanged was 

selected for further investigation. The section y = 1.425 m was used to study the temperature and humidity 

environment, as shown in Figure 10. 

Figures 11 and 12 respectively present the air temperature and humidity contours at y = 1.425 m at 

different times when Vas = 0.016 m3/s. The distributions of the indoor temperature and humidity exhibited 

stratification phenomena. The temperature and humidity gradually increased from bottom to top. Due to the 

low temperature and humidity of the air entering the room from the inlet near the ground, the temperature 

and humidity at the bottom of the room were usually relatively low. As the ventilation time was increased, 

the low temperature and humidity of the air near the floor were both gradually increased. Figure 11(a) 

exhibits the air temperature contour at τ = 40 s, the 299.6 K contour line was shown 0.22 m away from the 

ground. As shown in Figure 11(c), the ventilation time was increased to 120 s till the end of pre-

dehumidification, the contour line rose to close to 0.35 m. In addition, with the increase in the ventilation 

time, the bottom 295.6 K contour line also gradually rose from 0 m to about 0.35 m above the ground. 

Regarding the humidity, the same effect as presented in Figure 11 is exhibited in Figure 12. Taking the 0.0165 

contour line as an example, with the increase in the ventilation temperature, the area of low-humidity air at 

the bottom was increased gradually; moreover, the 0.0165 contour line was 0.15 m from the ground after 40 

s, and 0.27 m from the ground after 120 s. 
 

 

 
Figure 10. The schematic diagram of the study section y = 1.425 m. 

 



 
Figure 11. The air temperature contours at y = 1.425 m when Vas = 0.016 m3/s: (a) the air temperature at τ = 40 s; (b) the 

air temperature at τ = 80 s; (c) the air temperature at τ = 120 s. 
 

 



 
Figure 12. The air humidity contours at y = 1.425 m when Vas = 0.016 m3/s: (a) the mass fraction of H2O at τ = 40 s; (b) 

the mass fraction of H2O at τ = 80 s; (c) the mass fraction of H2O at τ = 120 s. 

 
Figures 13 and 14 respectively present the air temperature and humidity contours at y = 1.425 m at 

different times when Vas = 0.024 m3/s. Figure 13(a) presents the air temperature contour at τ = 35 s; taking 

the 299.6 K contour line as an example, the contour line was 0.225 m away from the ground at τ = 35 s, 

which could achieve the effect of Vas = 0.016 m3/s and τ = 40 s. Figure 13(b) presents the air temperature 

contour at τ = 70 s; the 299.6 K contour line was 0.25 m away from the ground, which could achieve the 

effect of Vas = 0.016 m3/s and τ = 80 s. Figure 14 presents the air humidity contour; taking the 0.0165 contour 

line as an example, the contour line was 0.16 m away from the ground at τ = 35 s and 0.195 m away from 

the ground at τ = 75 s, which could achieve the effects of Vas = 0.016 m3/s and the ventilation times of 40 

and 80 s, respectively. These phenomena all demonstrate that increasing the value of Vas can effectively 



shorten the pre-dehumidification duration and increase the area at the bottom representing low-temperature 

and low-humidity air. Furthermore, the pre-dehumidification stage had been completed when Vas = 0.024 

m3/s with τ = 70 s. 

 
Figure 13. The air temperature contours at y = 1.425 m when Vas = 0.024 m3/s: (a) the air temperature at τ = 35 s; (b) the 

air temperature at τ = 70 s. 
 



 
Figure 14. The air humidity contours at y = 1.425 m when Vas = 0.024 m3/s: (a) the mass fraction of H2O at τ = 35 s; (b) 

the mass fraction of H2O at τ = 70 s. 

 

Simulation results of the effects of the control factors 
Eleven cases were selected for the comparative analysis of the effects of Tas, Vas, Has, Tfloor and Tini and 

Hini on the pre-dehumidification duration and energy consumption. For the energy consumption, an office 

building was taken as an example for the analysis. The building was assumed to be 5 floors, and each floor 

had 20 rooms. The analyses of the pre-dehumidification duration and energy consumption are provided as 

follows. 

Figure 15(a) exhibits the effects of the variation in Tas on the pre-dehumidification duration and energy 

consumption. Regarding the pre-dehumidification duration, when Tas = 23, 22 and 21°C, the pre-

dehumidification duration was respectively 45.5, 45.3 and 45.2 s, and the maximum time difference was 

only 0.3 s. With the decrease in Tas from 23 to 21°C, the pre-dehumidification stage was only shortened by 

0.65%. Thus, reducing Tas was found to have no significant effect on the pre-dehumidification duration. 

Regarding the energy consumption, when Tas = 23, 22 and 21°C, the energy consumption was respectively 

2.27, 2.31 and 2.36 kWh. With the decrease in Tas from 23 to 21°C, the energy consumption was increased 

by 3.8%. According to Equations (12) and (13), with the variation of Tas, the energy consumption was related 

to the pre-dehumidification duration and the difference in the enthalpy of the air supply and the outdoor air. 

The effect of Tas on the pre-dehumidification duration was found to be very small. Thus, the energy 

consumption mainly depended on the difference in the enthalpy of the air supply and the outdoor air. The 

greater the value of Tas, the smaller the difference in the enthalpy of the air supply and outdoor air. Hence, if 

Tas increases, the energy consumption will decrease. 

Figure 15(b) exhibits the effects of the variation of Has on the pre-dehumidification duration and energy 

consumption. Regarding the pre-dehumidification duration, when Has = 10, 10.5 and 11 g/kg, the pre-
dehumidification duration was respectively 39.7, 42.2 and 45.5 s. With the decrease in Has from 11 to 10 

g/kg, the pre-dehumidification duration was shortened by 12.7%. Regarding the energy consumption, when 

Has = 10, 10.5 and 11 g/kg, the energy consumption was respectively 2.10, 2.21 and 2.27 kWh. With the 



decrease of Has from 11 to 10 g/kg, the energy consumption was reduced by 7.5%. 

 
Figure 15. The effects of the variations in (a) Tas and (b) Has. 

 

Figure 16(a) presents the effects of the variation in Vas on the pre-dehumidification duration and energy 

consumption. Regarding the pre-dehumidification duration, when Vas = 0.016, 0.024 and 0.032 m3/s, the pre-

dehumidification duration was respectively 45.4, 60.2 and 96.7 s. With the increase in Vas from 0.016 to 

0.032 m3/s, the pre-dehumidification duration was shortened by 52.7%. According to the comparative 

analysis data, the increase in Vas had the most significant effect on the pre-dehumidification duration. 

Regarding the energy consumption, when Vas = 0.016, 0.024 and 0.032 m3/s, the energy consumption was 

respectively 2.41, 2.25 and 2.27 kWh. With the increase in Vas from 0.016 to 0.024 m3/s, the energy 

consumption was decreased by 6.6%. With the increase in Vas from 0.024 to 0.032 m3/s, the energy 

consumption was increased by 0.8%. 

Figure 16(b) presents the effects of the variation in Tfloor on the pre-dehumidification duration and 

energy consumption. Regarding the pre-dehumidification duration, when Tfloor = 22, 23 and 24°C, the pre-

dehumidification duration was respectively 51.4, 45.5 and 41.1 s. With the increase in Tfloor from 22 to 24°C, 

the pre-dehumidification duration was shortened by 20%. Regarding the energy consumption, when Tfloor = 

22, 23 and 24°C, the energy consumption was respectively 2.56, 2.27 and 2.05 kWh. With the increase in 

Tfloor from 22 to 24°C, the energy consumption was decreased by 19.9%. 

 

 
Figure 16. The effects of the variations in (a) Vas and (b) Tfloor. 

 
Figure 17 exhibits the effects of the variation of Tad on the pre-dehumidification duration and energy 

consumption. Because Tini and Hini are directly related to Tad, Tad was used to represent the effects of Tini and 

Hini on the pre-dehumidification duration and energy consumption. Regarding the pre-dehumidification 

duration, when Tad = 22, 22.5 and 23°C, the pre-dehumidification duration was respectively 31, 39.1 and 

45.5 s. With the decrease in the initial indoor Tad from 23 to 22°C, the pre-dehumidification duration was 

shortened by 31.8%. Regarding the energy consumption, when the initial indoor Tad = 22, 22.5 and 23°C, 

the energy consumption was respectively 1.54, 1.95 and 2.27 kWh. With the decrease in the initial indoor 

Tad from 23 to 22°C, the energy consumption was decreased by 32%. 



 
Figure 17. The effects of the variation in Tad. 

 

Training and validation results of the BP neural network model 
Training results for the duration and energy consumption of pre-dehumidification 

Figures 18 and 19 exhibit the training results of the BP neural network for the duration and energy 

consumption of pre-dehumidification. The values obtained by the BP neural network almost coincided with 

the CFD simulation values. The coefficient of determination (R2) and RMSE values of the training results 

for the pre-dehumidification duration were respectively 0.9962 and 1.2267, and the values of the pre-

dehumidification energy consumption were respectively 0.9897 and 0.0004. The R2 values of both the 

duration and energy consumption of pre-dehumidification were high, indicating that the training results of 

the BP neural network were better. 

 
Figure 18. The training results of the pre-dehumidification duration: (a) the comparison and (b) the correlation of the 

predicted and simulated values. 

 
Figure 19. The training results of the pre-dehumidification energy consumption: (a) the comparison and (b) the correlation 

of the predicted and simulated values. 

 

Validation results for the duration and energy consumption of pre-dehumidification 
Through repeated training and the continuous debugging of the learning rate of the BP neural network, 

a well-trained model was obtained. The verification results of the data predicted by the trained prediction 



model and the simulated data are presented as follows. 

Figures 20 and 21 exhibit the validation results of the BP neural network for the duration and energy 

consumption of pre-dehumidification. The values predicted by the BP neural network had a high degree of 

fitting with the simulated values. The R2 and RMSE values of the validation results for the pre-

dehumidification duration were respectively 0.9916 and 1.6319, and those for the pre-dehumidification 

energy consumption were respectively 0.9872 and 0.0004. The R2 values of the validation results were both 

high, indicating that the BP neural network can well reflect the internal relationships between the duration 

of the pre-dehumidification stage and the input variables, and is characterized by a strong nonlinear mapping 

ability and high prediction accuracy. The model with the best results was then saved for subsequent 

prediction analysis. 

 

 
Figure 20. The validation results of the pre-dehumidification duration: (a) the comparison and (b) the correlation of the 

predicted and simulated values. 
 

 
Figure 21. The validation results of the pre-dehumidification energy consumption: (a) the comparison and (b) the 

correlation of the predicted and simulated values. 

 
Analysis results of BP neural network prediction 
Prediction of simulation cases 

All the effect factors of the input samples in the pre-dehumidification stage were taken as the new 

predictive input data and input into the trained BP neural network model. The predicted results were 

compared with the simulation results presented in Figures 22 and 23. 

The values predicted by the BP neural network model were found to have a high degree of fitting with 

the simulated values, and the fitting lines almost completely overlapped. Thus, in future practical 

applications, the BP neural network can be used to accurately estimate the pre-dehumidification duration 

and energy consumption according to the running parameters of the indoor environment. The best pre-

dehumidification duration will then be used as a signal that is transmitted to the fan. The fan will then run in 

advance after receiving the signal to prevent condensation on the floor. 



 
Figure 22. The comparison of the predicted and simulated values of the pre-dehumidification duration. 

 
Figure 23. The comparison of the predicted and simulated values of the pre-dehumidification energy consumption. 

 

Prediction results of the effects of the control factors 
To determine the universal laws of the effects of the control factors on the pre-dehumidification duration 

and energy consumption, larger ranges of data were set based on the scopes of different parameters, as 

reported in Table 6. Tini and Hini are directly related to Tad, and the dehumidifying period was designed to 

end when Tad was lower than Tfloor = 2°C. The difference between Tfloor and Tad has an important influence 

on the setting of the initial Tad. Therefore, the difference ΔT between Tfloor and Tad was selected to represent 

the initial value of Tad for different values of Tfloor. The value ranges of the other parameters were in 

compliance with the values reported in boundary condition setting section. The data set was substituted into 

the trained BP neural network model for prediction, and the influences of different control parameters on the 

pre-dehumidification duration and energy consumption were obtained, as subsequently discussed. 

 
Table 6. The data ranges for prediction. 

Decision variables Range Unit 

Vas 0.02-0.035 m3/s 

Tas 20-23 °C 

Has 7.25-11 g/kg 

Tfloor 21-24 °C 

△T 0-1.5 °C 

 

Figure 24(a) exhibits the three-dimensional diagram of variation trends of the pre-dehumidification 

duration with variations of Tas and Has. Tas was varied from 20 to 23°C, and the other parameters remained 

constant. The pre-dehumidification duration increased with the increase in Tas. The blue histogram in Figure 

25(a) presents the pre-dehumidification duration at different values of Tas. The variation of the pre-

dehumidification duration with the variation in Tas was not obvious. With the increase in Tas by 0.2°C, the 

maximum pre-dehumidification duration was 0.27 s. With the increase in Tas from 20 to 23°C, the pre-

dehumidification duration was increased from 43.9 to 44.97 s, a variation of only 2.38%. Moreover, with the 
increase in Tas, the air humidity ratio was increased, and the difference in the indoor air humidity ratio was 

reduced. Furthermore, the dehumidification speed became slow, and the effect of the humidity ratio on the 



air dew point temperature was greater. Therefore, with the increase in Tas, the initial indoor Tad took a long 

amount of time to reduce to the Tfloor difference of 2°C. Hence, when Tas was increased, the pre-

dehumidification duration would be increased, and vice versa. 

As shown from the three-dimensional diagram in Figure 24(a), the pre-dehumidification duration 

exhibited an increasing trend with the increase of Has under the condition of the other parameters remaining 

unchanged. The blue histogram in Figure 25(b) shows the pre-dehumidification duration at different values 

of Has. With the variation of Has from 7.25 to 11 g/kg, the pre-dehumidification duration was increased from 

35.76 to 44.97 s, a variation of 20.5%. With the increase of Has, the speed of the dehumidification became 

slow. Therefore, when Has was increased, the pre-dehumidification duration would also be increased.  

Figure 24(b) presents the three-dimensional diagram of the variation trends of the energy consumption 

with the variation of Tas and Has. The energy consumption was found to decrease with an increase of Tas and 

a decrease of Has. The red histogram in Figure 25(a) presents the energy consumption at different values of 

Tas. With the decrease in Tas from 23 to 20°C, the energy consumption was increased from 1.99 to 2.04 kWh, 

an increase of 2.4%. With the variation of Tas, the energy consumption was related to the pre-

dehumidification duration and the difference in the enthalpy of the air supply and the outdoor air. The effect 

of Tas on the pre-dehumidification duration was found to be very small. Thus, the energy consumption was 

mainly dependent on the difference in the enthalpy of the air supply and the outdoor air. The greater the 

value of Tas, the smaller the difference in the enthalpy of the air supply and the outdoor air. Hence, if Tas was 

increased, the energy consumption would be decreased. 

The red histogram in Figure 25(b) shows the energy consumption at different values of Has. With the 

decrease in Has by 0.25 g/kg, the energy consumption was decreased by 0.01 kWh. With the variation of the 

value of Has from 11 to 7.25 g/kg, the energy consumption was decreased from 1.99 to 1.82 kWh. Because 

only the value of Has was varied, the energy consumption was also related to the pre-dehumidification 

duration and the difference in the enthalpy of the air supply and the outdoor air. The variation of Has was 

small, and the difference in the enthalpy of the air supply and the outdoor air was also small. Therefore, the 

decisive factor of energy consumption was found to be the pre-dehumidification duration. The smaller the 

value of Has, the shorter the pre-dehumidification duration; thus, the energy consumption was also smaller. 

 
Figure 24. The three-dimensional diagram of the variation trends of the pre-dehumidification (a) duration and (b) energy 

consumption with the variations of Tas and Has. 

 



Figure 25. The pre-dehumidification duration and energy consumption at different values of (a) Tas and (b) Has. 

 

Figure 26(a) exhibits the three-dimensional diagram of variation trends of the pre-dehumidification 

duration with the variation of Vas and Tfloor. The value of Vas varied from 0.02 to 0.035 m3/s, and the other 

parameters were kept constant. The pre-dehumidification duration was decreased with an increase in Vas. 

The blue histogram in Figure 27(a) presents the pre-dehumidification duration at different values of Vas. With 

an increase in Vas from 0.02 to 0.035 m3/s, the pre-dehumidification duration was decreased by 47.7%. With 

an increase in Vas, the dehumidification speed was increased, which allowed the indoor Tad to be rapidly 

reduced to reach the target difference from the value of Tfloor. Therefore, with the increase in Vas, the pre-

dehumidification duration was increased. Furthermore, the value of Vas was found to have a significant effect 

on the pre-dehumidification duration. As shown from the three-dimensional diagram in Figure 26(a), the 

pre-dehumidification duration exhibited a decreasing trend with the increase in Tfloor under the condition of 

other parameters remaining unchanged. The blue histogram shown in Figure 27(b) shows the pre-

dehumidification duration at different values of Tfloor. With the variation in Tfloor from 21 to 24°C, the pre-

dehumidification duration was varied from 93.98 to 51.25 s, which is a decrease of 45.4%. With the increase 

of Tfloor, the set initial indoor Tad was increased, which means that the humidity ratio of the indoor air was 

increased, resulting in the increase in the difference between the humidity ratio of the air supply and the 

indoor air, as well as the increase of the dehumidification rate. Therefore, with the increase in Tfloor, the pre-

dehumidification duration was decreased. Thus, Vas and Tfloor were both found to have significant effects on 

the pre-dehumidification duration. 

Figure 26(b) shows the three-dimensional diagram of the variation trends of the energy consumption 

with the variation in Vas and Tfloor. The figure indicates that the energy consumption was decreased with the 

increase of Tfloor. However, with the increase in Vas, the energy consumption exhibited a fluctuating trend. 

The red histogram in Figure 27(a) reveals the energy consumption at different values of Vas. With the increase 

in Vas from 0.02 to 0.026 m3/s, the energy consumption was decreased by 2.7%; with the increase in Vas from 

0.026 to 0.03 m3/s, the energy consumption was increased by 8%; then, with the increase in Vas from 0.03 to 

0.035 m3/s, the energy consumption was decreased by 5.3%. In addition, the minimum energy consumption 

occurred with the variation in Vas in the range of 0.02 to 0.03 m3/s; when Vas = 0.026 m3/s, the energy 

consumption was 1.78 kWh. This indicates that the effect of Vas on the energy consumption was not 

significant, and a minimum energy consumption value would occur within a certain range of the variation in 

Vas.  

The red histogram in Figure 27(b) displays the energy consumption at different values of Tfloor. With 

the increase in Tfloor from 20 to 24°C, the energy consumption was decreased from 3.02 to 1.83 kWh, a 

decrease of 39.4%. With the variation in Tfloor, the energy consumption was dependent only on the pre-

dehumidification duration. With the increase in Tfloor, the pre-dehumidification duration was decreased, and 

the energy consumption was gradually decreased.  

 
Figure 26. The three-dimensional diagrams of the variation trends of the pre-dehumidification (a) duration and (b) energy 

consumption with the variations in Vas and Tfloor. 



 
Figure 27. The pre-dehumidification duration and energy consumption at different values of (a) Vas and (b) Tfloor. 

 

Figure 28(a) displays the three-dimensional diagram of the variation trend of the pre-dehumidification 

duration with a variation in Tad. ΔT was used to represent the corresponding initial indoor Tad under different 

values of Tfloor. The pre-dehumidification duration was decreased with an increase in ΔT; this means that as 

the initial Tad was decreased, the pre-dehumidification duration was decreased. The value of ΔT was varied 

from 0 to 1.5°C. The blue histogram in Figure 29 shows the pre-dehumidification duration at different values 

of ΔT. With an increase in ΔT by 0.1°C, the pre-dehumidification duration was shortened by about 3 s. 

Moreover, with an increase in ΔT from 0 to 1.5°C, the pre-dehumidification duration was shortened from 

71.2 to 29.11 s, a decrease of 59.1%. As the difference was increased, the value of Tad was decreased. This 

means that the humidity ratio of the indoor air was decreased and the dehumidification rate was increased. 

Thus, the pre-dehumidification duration was gradually decreased with an increase in ΔT. 

Figure 28(b) exhibits the three-dimensional diagram of the variation trend in the energy consumption 

with a variation in Tad, which indicates that the energy consumption was decreased with an increase in ΔT. 

The red histogram in Figure 29 presents the energy consumption at different values of ΔT. With an increase 

in ΔT from 0 to 1.5°C, the energy consumption was decreased from 1.83 to 1.02 kWh, a decrease of 44.2%. 

With a variation in the initial indoor Tad, the energy consumption was dependent only on the pre-

dehumidification duration. With a decrease in Tad, the pre-dehumidification duration was decreased; thus, 

the energy consumption also was decreased. Therefore, based on the preceding analysis, Tad had the most 

significant effect on the pre-dehumidification duration and energy consumption. 

 
Figure 28. The three-dimensional diagrams of the variation trends of the pre-dehumidification (a) duration and (b) energy 

consumption with a variation in ΔT. 



 
Figure 29. The pre-dehumidification duration and energy consumption at different values of ΔT. 

 

Discussion 
In view of the pre-dehumidification problem, a CFD model of a typical office room with RFC and a 

DV system was constructed. Typical working cases with different initial indoor conditions and air supply 

parameters were considered in this study. The standard for the end of the pre-dehumidification stage was 

whether the difference between the dew point temperature of the air near the floor and the floor temperature 

reached 2°C. Therefore, the duration of the pre-dehumidification of the air supply system was determined, 

and the energy consumption was calculated according to Equations (12) and (13). Because the CFD 

simulation required a substantial amount of calculation time, the shortening of which is a strict requirement 

for the computer, a BP neural network prediction model was established and trained based on the sample 

data set. Finally, the CFD simulation was replaced by the trained BP neural network prediction model, which 

provided a novel and effective method for the control of pre-dehumidification. In summary, compared to 

similar research, the unique advantage of this study is that CFD simulation was combined with a BP neural 

network. This method can predict the detailed situation of the indoor air distribution and the duration. The 

energy consumption of pre-dehumidification can also be quickly predicted according to different initial 

conditions. 

While this study provided a novel and effective evaluation method for RFC pre-dehumidification 

control, it was characterized by some limitations for practical engineering applications. For example, the 

influences of only five factors on the duration and the energy consumption of pre-dehumidification were 

analyzed, and only a typical office was chosen for the study of thermal performance and variations in 

temperature and humidity. Therefore, the established prediction model can only be used in a specific 

situation. Although the energy consumption of the whole building was assessed, it was only the result of 

multiplication on the basis of the room studied. In reality, the energy consumption would vary according to 

the size and function of the room. Questions about the space of the heat transfer and energy use have not 

been successfully addressed via the use of CFD technology. Thus, based on previous studies, Equations (12) 

and (13) were established. However, the energy consumption of the chiller and other equipment that was 

used to meet the requirements of the cooling load was ignored in the calculation process.47 Thus, the 

calculation of energy consumption was not carried out comprehensively. Different sizes of the air supply 

inlet and different ventilation methods (mixed ventilation, stratum ventilation and underfloor ventilation) 

could affect the duration and energy consumption of pre-dehumidification to a certain extent. Therefore, the 

established BP neural network prediction model has certain limitations, and further research would be needed 

to consider the influencing factors more comprehensively.  

In addition, the simulated data were divided into two parts; 80% was used for BP neural network 

training, and 20% was used for forecasting model validation. However, the data set was small and contained 

only 243 data sets. In follow-up research, more influencing factors should be considered to set up more 

simulation conditions, which will be used to expand the BP neural network training data set. Thus, the 

universality of the prediction model can be improved. 

Regarding the variation of the floor temperature, the floor was assumed as a constant-temperature 

surface in this study. Previous studies have shown that RFC systems have thermal inert,59,60 and that the 

floor temperature would vary due to variations in the water supply temperature and flow rate. Building 

thermal inertia is a complex phenomenon that depends on the time-varying characteristics of heat transfer 
and heat flows. From this perspective, transient external climatic conditions, such as the outdoor air 

temperature and solar radiation, have important impacts on the thermal performance of RFC systems due to 



the effect of thermal inertia.61 In other words, via the investigation of the thermal mass of a building envelope, 

overheating risks induced by the time-varying outdoor air temperature can be delayed or reduced, thereby 

preventing the thermal discomfort of the building occupants.62 

Therefore, further studies must consider this influencing factor. Moreover, the simulation speed can be 

improved by dimensionality reduction calculation.63 For example, the proper orthogonal decomposition 

(POD) calculation method64 can reduce the dimension of differential equations. Within a certain precision 

loss range, fast calculation and prediction can be realized, thereby reducing the calculation load and 

shortening the calculation time. Finally, future work will be carried out in a self-built laboratory to control 

the indoor thermal environment,65 and to better illustrate the universality and feasibility of the established 

prediction model. The ultimate objective is to achieve a more practical control and provide a reliable 

reference for the operation control of the composite system. 

 

Conclusion 
In this study, the combination of CFD simulation and BP neural network prediction was adopted to 

investigate the effects of Tas, Vas, Has, Tfloor and Tini and Hini on the pre-dehumidification stage in RFC and 

DV systems. The conclusions of this research are as follows. 

The BP neural network validation results demonstrated that the R2 values of the training and validation 

results were very high, and respectively reached 0.99 and 0.98. These findings indicate that the BP neural 

network model established in this study can be used for the prediction of moisture condensation risk on the 

surface of the RFC system.  

The results predicted by the BP neural network revealed that decreasing the initial Tad can effectively 

shorten the pre-dehumidification duration and the energy consumption. With an increase in ΔT from 0 to 

1.5°C, the pre-dehumidification duration was shortened from 71.2 to 29.11 s, a decrease of 59.1%, and the 

energy consumption was decreased by 44.2%. Furthermore, the effect of Tas on the pre-dehumidification 

duration was not found to be significant. With a variation in Vas, the energy consumption fluctuated. Thus, 

increasing the value of Vas was found to have no significant effect. 
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