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Abstract: In axistationary, asymptotically flat spacetimes, zero angular momentum observers
(ZAMOs) define an absolute standard of non-rotation locally, as can be verified by the absence
of any Sagnac effect for these observers. Nevertheless, we argue that on a global scale the only
physically meaningful concept is that of relative rotation. The argument is substantiated by solving
Einstein’s equations for an approximate thin shell model, where we maintain a degree of freedom,
by relaxing the natural assumption of vanishing rotation at asymptotic infinity, at the outset of the
analysis. The solution reveals that Einstein’s equations only determine differences in the rotation
rate of ZAMOs, thereby establishing the concept of relative rotation globally. The interpretation of
rotation as relative in a global context is inherently linked to the freedom to transform between
coordinate systems rotating relative to each other, implying that an arbitrary ZAMO located at
any radius may claim to be the one that is non-rotating on a global scale, and that the notion of
an asymptotic Lorentz frame relative to which one may measure absolute rotation is devoid of
any meaning. The concept of rotation in Kerr spacetime is then briefly discussed in the context of
this interpretation.

Keywords: general relativity; rotation; relative rotation; inertial dragging; frame dragging; Lense–
Thirring effect; Mach’s principle; ZAMO

1. Introduction

The dragging of inertial frames, often called the Lense–Thirring effect, is now a well-
established prediction of Einstein’s general theory of relativity, whereby rotating matter, due
to its angular momentum, drags test particles or observers with zero angular momentum
(ZAMOs) [1] in a co-rotating direction, and causes the spin axes of gyroscopes to precess.
The effect of frame dragging of orbits was first predicted by H. Thirring [2] (1917) and by J.
Lense and H. Thirring [3] (1918), while the closely related effect of (Schiff) frame dragging
of gyroscope axes around the Earth was calculated by L. I. Schiff [4] in 1960, and much
more recently confirmed experimentally by Gravity Probe B [5].

With the continuing advancement of experimental precision and sensitivity, the effects
of frame dragging may constitute increasingly important aspects of experimental tests of
general relativity, and of other, alternative theories of gravity in a wide range of gravitating
systems. Indeed, the feasibility of detecting frame dragging and other gravitomagnetic
effects in relation to systems such as, e.g., the planets in our solar system, the sun, super-
massive black holes and even on the laboratory scale, has been investigated in several fairly
recent reports [6–14]. Moreover, a test for the Lense–Thirring effect was recently conducted
even in the strong-field regime of double pulsars [15]. For an historical account of the
Lense–Thirring effect, see, e.g., [16]. For frequent misconceptions related to gravitomagnetic
effects, see [17].

The seminal predictions by Thirring, Lense and Schiff were, however, based on
approximations of slowly rotating and weak gravitational sources of matter. D.R. Brill
and J.M. Cohen [18] later considered an idealized model of a slowly rotating, infinitely
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thin shell of matter, and obtained a strong-field solution to the dragging rate of inertial
frames, by treating the geometry due to the rotating shell as a first order perturbation in
the shell’s angular velocity ωS of the static Schwarzschild geometry. When evaluated to
first order in ωS, the thin shell was spherically symmetric, and spacetime in the interior
of the shell was that of the flat Minkowski spacetime. Thus, Brill and Cohen found that
the angular dragging velocity Ω of the inertial frames in the exterior of the shell steadily
increased as one approached the shell radius, until it reached a maximal value equal to a
constant angular dragging velocity in the interior of the shell. In particular, the constant
angular dragging velocity in the interior of the shell approached the angular velocity
of the shell itself, as the shell mass increased and the Schwarzschild radius approached
the shell radius. Hence, they concluded that, within this limit, the inertial properties of
space in the interior of the shell did not depend on the inertial frames infinitely far away
from the shell, but were completely determined by the shell itself. This effect is often
called perfect or exact dragging of inertial frames. If one considers, as Brill and Cohen
did, the shell of matter as an idealized model of the distant matter in our universe, then
one may establish a connection between the notion of perfect inertial dragging and the
origin of inertia and Mach’s principle. Expressed in Brill’s and Cohen’s own words: “In
this sense our result explains why the “fixed stars” are indeed fixed in our inertial frame,
and in this sense the result is consistent with Mach’s principle”.

Mach’s principle—essentially the idea that notions of acceleration and rotation relative
to an empirically unverifiable absolute space or element are meaningless, and that these
quantities can be meaningfully defined only with respect to the average motion of the total
matter of the universe—and its connection with frame dragging has been discussed in
great detail by several authors (see, e.g., [1,19–27] and references therein. For a somewhat
different viewpoint on incorporating Mach’s principle in general relativity, see also [28]).

In a homogeneous and isotropic spacetime governed by general relativity, there is per-
fect inertial dragging relative to the cosmic matter [27]. More generally, using cosmological
perturbation theory, C. Schmid [23,24] convincingly demonstrated perfect dragging and
the validity of Mach’s principle within cosmological general relativity.

However, even if Mach’s principle is demonstrably valid in a general-relativistic
cosmological context, many important solutions to Einstein’s equations evidently do not
share this property. In particular, this is true for the asymptotically empty and flat solutions,
such as the Schwarzschild and Kerr solutions or Brill’s and Cohen’s approximate shell
model, which all approach flat Minkowski spacetime in regions far away from the localized
mass distribution. These solutions are completely devoid of any cosmic matter at great
distances from the localized mass. In the far-away regions, the physical mechanism of frame
dragging induced by the total matter present in these spacetimes is certainly far too weak
to account for the perfect dragging required for the inertial frames to be fully determined
by the motion of the present matter. Invoking fictitious cosmic matter not included in
Einstein’s equations as external causes outside of the theory, as an explanation for the origin
of inertia, would render general relativity as a gravitational theory of spacetime and matter
incomplete. (This should not, however, be confused with the seemingly remarkable fact
that the general-relativistic predictions of frame dragging in asymptotically flat solutions
do match the experimental measurements made relative to the fixed stars, which could
be explained by somehow merging the metric of an asymptotically flat solution with the
metric determined by the cosmic matter far away).

Asymptotic Minkowski spacetimes thus pose a challenge with regard to the inter-
pretation of the origin of inertia in general relativity. This rather intricate difficulty was
already recognized by Einstein as early as 1917 [29], stating “From what has now been said
it will be seen that I have not succeeded in formulating boundary conditions for spatial
infinity. Nevertheless, there is still a possible way out, without resigning. For if it were
possible to regard the universe as a continuum which is finite (closed) with respect to its spatial
dimensions, we should have no need at all of any such boundary conditions.” The argument
of incorporating Mach’s principle into general relativity through imposing restrictions
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on the topology of spacetime seems to have been maintained by Einstein also in his later
expositions of general relativity [30], and was expanded on in [20], Chapter 5, and in [21].

It is, nevertheless, quite clear that somehow the local inertial frames are partially
determined through the imposed boundary conditions at infinity in asymptotically flat
spacetimes; therefore, it might be natural at first to assume that this influence of the bound-
ary conditions can be traced directly to the unique properties of the globally empty and
nondynamical Minkowski spacetime, for which there is a well-defined absolute state of non-
rotation. One might further infer that this nondynamical property, unaffected by the matter
content of spacetime, rather seamlessly will be transferred to the asymptotic Minkowski
spacetimes, as boundary conditions “at infinity”. In other words, one might draw the
conclusion that ZAMOs located “at infinity” and “at rest” in asymptotic Minkowski space-
times correspondingly define an absolute standard of non-rotation, even globally, relative
to which the orbital angular velocity of all other ZAMOs in the spacetime is measured.

However, we note here that even if a spacetime asymptotically approaches Minkowski
spacetime, nowhere is it exactly flat and, in a global analysis of rotational motion, this ren-
ders the above line of reasoning questionable. Indeed, in contrast to the conclusion drawn
above, our analysis presented below indicates that only differences in angular velocities
between ZAMOs have physical significance. This implies that we are completely free to
choose any convenient numerical reference value for the angular velocity of a ZAMO at
an arbitrarily chosen radius. Only angular velocities relative to this arbitrary reference
value are physically meaningful. As a consequence, the absolute numerical value of the
angular velocity of ZAMOs located at infinity is irrelevant, and the notion of an absolutely
non-rotating asymptotic Lorentz frame is devoid of any meaning.

Undoubtedly, in most circumstances the most practical choice for the reference value
in asymptotically flat spacetimes will be that of vanishing rotation as one approaches
infinity, but fundamentally this only means that rotation of ZAMOs is measured relative to
a conveniently chosen zero point infinitely far away (as will be clarified below). Similarly,
the importance of accounting for relative rotation implicitly appears in connection with the
first law of thermodynamics applied to Kerr–anti-de Sitter spacetimes [31,32]. In Boyer–
Lindquist-type coordinates for these spacetimes, ZAMOs rotate with an angular velocity
equal to the angular velocity of the black hole at the horizon, but they also turn out to rotate
with a non-zero angular velocity at asymptotic infinity, in contrast to the asymptotically
flat case. In order for the first law of black hole thermodynamics to be satisfied in this case,
one must use the angular velocity of the black hole measured relative to a frame that is
“non-rotating” at infinity, i.e., it is the relative rotation between infinity and the black hole
that enters the first law. Leaving quantum effects aside, however, the concepts of relative
and absolute rotation can be discussed within general relativity independently of the laws
of black hole thermodynamics, which will be the topic of interest in this work.

2. Inertial Frame Dragging in Brill’s and Cohen’s Slowly Rotating Shell Model

Our purpose now is to derive an expression for the angular velocity of ZAMOs in
Brill’s and Cohen’s rotating shell model [18], but where our choice of reference point for
the angular velocity is completely arbitrary and not necessarily equal to the asymptotic
boundary condition chosen at the outset in Brill’s and Cohen’s original work.

In their investigation of inertial frame dragging, Brill and Cohen considered an in-
finitely thin shell rotating sufficiently slowly that, to first order in the shell’s angular
velocity ωs, the shell might be considered spherically symmetric in shape [33]. The result-
ing spacetime might then be treated as a small perturbation of the spherically symmetric
Schwarzschild spacetime. In isotropic coordinates, the line element for the spacetime
outside and inside the shell could then be written as

ds2 = V2dt2 − ψ4(dr2 + r2(dϑ2 + sin2 ϑ(dφ−Ω(r)dt)2)) , (1)
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where

V(r) =
{

(r− rS)/(r + rS) for r > R
V0 for r < R

, (2)

and

ψ(r) =
{

1 + rS/r for r > R
ψ0 for r < R

. (3)

Here, Ω(r) is the angular velocity of ZAMOs, R denotes the radius of the shell, rS
denotes the shell’s Schwarzschild radius, and V0 ≡ (R− rS)/(R + rS) and ψ0 ≡ 1 + rS/R
are constants that make the components of the metric tensor continuous across the shell.
Clearly, spacetime in the interior of the shell is then manifestly flat Minkowski spacetime,
expressed in conveniently scaled coordinates.

If, as Brill and Cohen did in their original work, we now impose the asymptotic
boundary condition lim

r→∞
Ω(r) = 0 at the outset, then the line element above approaches

that of Minkowski spacetime in standard “non-rotating” spherical coordinates. However,
in so doing, one might, in the final result, end up with the wrong impression that the
inertial frames at infinity somehow, without any choice of freedom, single out a global
standard of non-rotation. For this reason, we shall not impose any boundary conditions on
Ω(r) at this stage in the derivation, but instead keep this degree of freedom temporarily
until the boundary condition is naturally to be determined at a later stage.

We may now use Einstein’s equations, in combination with the line element given
above, in order to find the explicit expression for Ω(r). A detailed step-by-step rederivation
of Brill’s and Cohen’s original result, with the restriction lim

r→∞
Ω(r) = 0 at the outset, has

already been given in [27]. The derivation for the more general case, with no such restriction
on Ω(r) at the outset, is essentially identical to the one presented in [27]. Hence, we shall
not repeat the derivation in full detail here, but only give an outline of that derivation,
while we keep track of where the modifications to Einstein’s equations, Gαβ = 8πGTαβ,
occur, once underway.

For the present purpose, Einstein’s equations are most easily solved by using Cartan
formalism [34]. In this context, a useful set of orthonormal basis one-forms are given by

ω0 = Vdt, ω1 = ψ2dr, ω2 = rψ2dϑ, ω3 = rψ2 sin ϑ(dφ−Ωdt) . (4)

From Cartan’s structural equations, we then find that, for the non-zero components of
the Einstein tensor,

G00 =
4rS

r2ψ5 δ(r− R) , (5)

G22 = G33 =
rS

2rψV
G00 , (6)

G03 = − sin ϑ

2r3ψ8

(
r4ψ6Ω′

V

)′
. (7)

Here, δ(r) is the Dirac delta function, and V and ψ are given in Equations (2) and (3),
respectively. For the diagonal components of the stress–energy tensor Tµν, Einstein’s field
equations now immediately yield

ρ ≡ T00 =
G00

8π
=

rSr3

2π(r + rS)
5 δ(r− R) , (8)

T33 = T22 =
G22

8π
=

rS
2(r− rS)

ρ . (9)

Here, ρ denotes the mass density of the shell in the rest frame of an element of the shell.
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To proceed, we next consider the Einstein equation containing the nondiagonal compo-
nents, G03 = 8πGT03. Because spacetime is empty both in the interior (r < R) and exterior
(r > R) of the shell, we have T03 = 0, and this equation reduces to(

r4ψ6Ω′

V

)′
= 0 r 6= R . (10)

Thus, we find

Ω′± =
K±V
r4ψ6 . (11)

In this expression, K− and K+ are constants of integration in the two regions r < R
and r > R, respectively. For r < R, we have ψ = ψ0 and V = V0. Hence, we obtain

Ω− = −K−V0

3r3ψ6
0
+ ΩB , (12)

where ΩB is another constant of integration yet to be determined. In the shell’s interior,
spacetime is assumed to be flat. We therefore require a regular solution as r → 0, from which
it follows that K− = 0 and Ω− = ΩB . For r > R, we may integrate Equation (11), to give

Ω+(r)−Ω+
(
rQ
)
= K+

∫ r

rQ

r− rS

r5ψ(r)7 dr = −K+

3

 1

r3ψ(r)6 −
1

r3
Qψ
(
rQ
)6

 . (13)

Here, rQ is an arbitrarily chosen reference radius. It is important to note here that
Einstein’s equation determines only the difference, Ω+(r)−Ω+

(
rQ
)
, in angular velocity

between ZAMOs located at two different radii. Moreover, this difference is completely
independent of the numerical value of Ω+

(
rQ
)
. Thus, we are free to choose any convenient

reference value ΩQ ≡ Ω+
(
rQ
)

at the reference point rQ. In essence, the choice of the
reference point and reference value for the angular velocity here is analogous to the arbitrary
choice of a reference point for potential energy in classical mechanics, or to the arbitrary
choice of a specific inertial frame for measuring velocities. In practice, this always allows us
to conveniently define a new angular velocity function, Ωrel(r) ≡ Ω+(r)−ΩQ, which then
describes the local rotation of inertial frames relative to the arbitrarily chosen local rotation
ΩQ of inertial frames located at the arbitrarily chosen reference radius rQ. Equivalently, one
may instead simply declare the angular velocity ΩQ of the ZAMOs located at the radius
rQ to be zero. The angular velocity Ω+(r) then describes the rotation rate of the ZAMOs
relative to the arbitrarily chosen zero rotation rate of the ZAMOs located at rQ. Finally,
this analysis makes it clear that the angular velocities of ZAMOs located at asymptotic
infinity play no particular role in determining a reference value for the angular velocity in
this spacetime.

The constant K+ may now be determined by requiring the metric to be continuous
across the shell, Ω−(R) = ΩB = Ω+(R), giving

K+ = −
3
(
ΩB −ΩQ

)
1

r3ψ(r)6 − 1
r3

Qψ(rQ)
6

. (14)

Thus, the angular velocity in the two regions can be expressed as

Ω(r) =


ΩQ +

 1
r3ψ(r)6

− 1

r3
Qψ(rQ)

6

(ΩB−ΩQ)

1
R3ψ6

0
− 1

r3
Qψ(rQ)

6
for r > R

ΩB for r < R

. (15)
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Combining this expression with Equation (7), the nondiagonal component of the
Einstein tensor can be written as

G03 =
3
(
ΩB −ΩQ

)(
Rψ2

0
)3 sin υ

1−
(

rQ(R+rS)
2

R(rQ+rS)
2

)3 δ(r− R) . (16)

Our next task is to determine the constant ΩB entering the expression above. This
we may accomplish by once again integrating Einstein’s equation, G03 = 8πGT03, but this
time over a region crossing the shell radius R. Accordingly, we must first consider the
stress–energy tensor of the shell. From the requirement that the momentum densities Ti0

must vanish in the rest frames of the matter comprising the shell, Brill and Cohen [18]
deduced that this stress–energy tensor should have the form

Tµν = ρuµuν +
3

∑
i,j=1

tijvµ

(i)v
ν
j , (17)

where, as before, ρ denotes the mass density in the rest frame of the shell, uµ are the
components of the four-velocity of a given element of the shell, and vµ

(i) are the components
of the three spatial orthonormal vectors spanning the hypersurface orthogonal to uµ. We
shall here also assume that this form of the stress–energy tensor is adequate to first order in
angular velocities.

We now proceed to find the components Tµν of the shell. Let each element of the shell
rotate with a given angular velocity dφ/dt = ωs in the isotropic coordinates. Using that
dr = dϑ = 0 for the element in the line element (1), the components of the four-velocity in
the coordinate basis are calculated as

ũ0 =
dt
dτ

=
1

V0

(
1− σ2

)−1/2
, (18)

ũ1 = ũ2 = 0 , (19)

ũ3 = ωsũ0 , (20)

where we have introduced the quantity

σ =
Rψ2

0 sin ϑ(ωs −ΩB)

V0
. (21)

From the relations (4) between the orthonormal basis and the coordinate basis, the com-
ponents of the four-velocity in the orthonormal basis are obtained as

u0 =
(

1− σ2
)−1/2

, (22)

u1 = u2 = 0 , (23)

u3 = σ
(

1− σ2
)−1/2

. (24)

By choosing the components of the three spatial vectors in the orthonormal basis as

vµ

(1) = (0, 1, 0, 0) , (25)
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vµ

(2) = (0, 0, 1, 0) , (26)

vµ

(3) = (σ, 0, 0, 1)
(

1− σ2
)−1/2

, (27)

we ensure that they have unit lengths and are orthogonal to each other, as well as being
orthogonal to the four-velocity. Using these expressions for uµ and vµ

(i) in Equation (17),
in combination with the results already obtained in (8) and (9), the components Tµν are,
to first order in ωs −ΩB, calculated to be

T00 = ρ , (28)

T22 =
ρrS

2(R− rS)
= t22, (29)

T33 = T22 = t33, (30)

T03 =
(

ρ + t33
)

σ =
ρσ(2R− rS)

2(R− rS)
. (31)

If we now integrate Einstein’s field equation, G03 = 8πT03, across the shell’s radius, R,
we obtain the equation

3
(
ΩB −ΩQ

)
R2 sin ϑ

2(R + rS)
2

[
1−

(
rQ(R+rS)

2

R(rQ+rS)
2

)3
] =

2rS sin ϑ(2R− rS)R2(ωs −ΩB)

(R + rS)
2(R− rS)

2 , (32)

which may be readily solved to give

ΩB =

ωs +
3(R− rS)

2

4rS(2R− rS)

[
1−

(
rQ(R+rS)

2

R(rQ+rS)
2

)3
] ΩQ

1 +
3(R− rS)

2

4rS(2R− rS)

[
1−

(
rQ(R+rS)

2

R(rQ+rS)
2

)3
] . (33)

We now substitute this result for ΩB in Equation (15), to obtain our final result for the
angular velocity of the inertial frames:

Ω(r) =



ΩQ +
g
(
r, rQ

)(
ωs −ΩQ

)
g
(

R, rQ
)(

1 +
3(R− rS)

2

4rS(2R− rS) h
(

R, rQ
)) for r > R

ΩQ +
ωs −ΩQ

1 +
3(R− rS)

2

4rS(2R− rS) h
(

R, rQ
) for r < R

, (34)

where

g
(
r, rQ

)
=

(
r

(r + rS)
2

)3

−
(

rQ(
rQ + rS

)2

)3

, (35)
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h
(

R, rQ
)
= 1−

(
rQ(R + rS)

2

R
(
rQ + rS

)2

)3

. (36)

We note here that Ω(r) depends only on the difference ωs−ΩQ, i.e., only on the angular
velocity of the shell relative to the arbitrary reference angular velocity of the inertial frames
located at rQ, and not on the numerical value of ωs alone. Accordingly, if the difference
ωs −ΩQ is kept fixed, any difference Ω(r2)−Ω(r1) in the angular velocity of the inertial
frames at different radii is independent of the arbitrary reference value ΩQ. This reflects
the fact that the numerical value of Ω(r) is insignificant; only relative angular velocities
have real physical significance. The difference in angular velocities of inertial frames may
of course vanish, as in the interior of the shell, in which case the concepts of relative and
absolute rotation become indistinguishable.

The explicit appearance of the term ΩQ in (34) can be understood as follows. If the
angular velocity of the shell approaches the reference value, i.e., ωs → ΩQ, the angular
velocity Ω(r) of the ZAMOs approaches the constant reference value ΩQ, both in the
interior and exterior regions of the shell. This limit therefore describes a gradual transition
from a situation in which the ZAMOs in the exterior region rotate relative to each other to a
situation where all the ZAMOs eventually end up perfectly co-rotating with an angular
velocity ΩQ relative to the coordinate system everywhere throughout spacetime. The re-
sulting spacetime is accordingly that of Minkowski and Schwarzchild spacetime in the
interior and exterior of the shell, respectively, as described in a coordinate system rotating
relative to the collection of co-rotating ZAMOs. Thus, since the relative angular velocities
of the ZAMOs completely vanish in this limit, we evidently recover a spacetime with the
“apparent” property of absolute rotation everywhere analogous to that of global Minkowski
spacetime. We emphasize that the transition occurring here is completely independent of
any reference to non-rotating ZAMOs at infinity or non-rotating asymptotic Lorentz frame.

To gain some further insight, consider now, for simplicity, the case ωs = ΩQ in the
interior region r < R of the shell. Then again Ω(r) = ΩQ, and the line element in (1)
simplifies to that of

ds2 =
(

1− r′2 sin2 ϑ Ω′Q
2
)

dt′2 − dr′2 − r′2dϑ2 − r′2 sin2 ϑ dφ2 + 2r′2 sin2 ϑ Ω′Q dt′2dφ2 , (37)

where we have introduced the conveniently rescaled coordinates r′ = ψ2
0 r, t′ = V0 t,

and Ω′Q = dφ/dt′ = ΩQ/V0. We recognize the line element above as that of Minkowski
spacetime described in a spherical coordinate system rotating with constant angular velocity
−Ω′Q relative to a standard inertial reference frame in which the ZAMOs do not rotate.
Unless Ω′Q = 0, it is clear that inertial effects will appear in the interior of the shell in
this rotating coordinate system. More generally, when ωs 6= ΩQ, these inertial effects will
increase if ωs > ΩQ, due to the second term in Equation (34) for r < R, which accounts for
additional rotational effects caused by increased rotation of the shell relative to ZAMOs
located at the reference radius rQ, implying also an increased rotation rate of the shell
relative to the coordinate system. Alternatively, keeping the parameters ωs and ΩQ fixed,
this second term also implies that these inertial effects depend upon the choice of the
reference point rQ. For instance, as rQ → ∞ the function h

(
R, rQ

)
→ 1, yielding a rotation

rate greater than ΩQ. On the other hand, for rQ → R, h
(

R, rQ
)
→ 0, such that the second

term vanishes, and hence the rotation rate approaches ΩQ. This dependence on rQ may
at first seem suspect, but is effectively caused by changes in the relative rotation between
ZAMOs in the exterior region of the shell, which impact the rotation rate in the interior.

Figure 1 illustrates two examples of the angular velocity Ω(r) in (34) for fixed parame-
ter values ΩQ = −0.3 ωs and rQ = 5 rS, and for two different choices, R = 3 rS and R = rS,
for the shell radius.
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Figure 1. Plots of the angular velocity Ω(r) of ZAMOs, as given by the expression in Equation (34),
with ΩQ = −0.3 ωs and rQ = 5 rS. Note that Ω(r) is normalized by ωs. The solid curve shows the
result for a shell radius R = 3 rS. The black dashed curve shows the result for a shell radius equal
to its Schwarzschild radius, R = rS. This corresponds to the situation of “perfect inertial dragging”,
where the inertial frames in the interior of the shell rotate with the same angular velocity as the shell,
independently of the angular velocity of the inertial frames located “at infinity”. The red dashed
curve marks the chosen value for ΩQ (normalized by ωs).

As can be seen, when the shell radius is larger than the Schwarzschild radius, the iner-
tial frames are only partially dragged around with the shell’s rotation. As the shell radius
approaches its Schwarzschild radius, however, the inertial frames in the interior of the
shell rotate with the same angular velocity ωs as the shell, independently of the angular
velocity of the inertial frames located “at asymptotic infinity”. This is the phenomenon of
“perfect inertial dragging”, first discovered by Brill and Cohen [18]. Yet, in Brill and Cohen’s
original calculation of Ω(r), the inertial frames located “at infinity” were non-rotating.
In contrast, with our choice above for the reference value ΩQ, the inertial frames located
“at infinity” in our case rotate with a negative angular velocity: in other words, they are not
at rest.

To further compare our result to the original result of Brill and Cohen, it is instructive
to consider the case for which rQ → ∞, as shown in Figure 2.

Then, the ZAMOs located at asymptotic infinity rotate with the angular velocity ΩQ.
The original result of Brill and Cohen is now recovered by making the convenient, but very
special choice ΩQ = 0, for which Equation (34) simplifies to

Ω(r) =



(
r(R + rS)

2

R(r + rS)
2

)3

ωs

1 +
3(R− rS)

2

4rS(2R− rS)

for r > R

ωs

1 +
3(R− rS)

2

4rS(2R− rS)

for r < R

. (38)
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Figure 2. Same parameter values as in Figure 1, except that here rQ → ∞.

Note that Equation (34) can be obtained from Equation (38) by transforming to a
coordinate system

(
t̃, r̃, ϑ̃, ϕ̃

)
, rotating relative to the first one with an angular velocity

ω = Ω
(
rQ
)
− Ω̃

(
rQ
)
:

t̃ = t, r̃ = r, ϑ̃ = ϑ, ϕ̃ = ϕ−
(

Ω
(
rQ
)
− Ω̃Q

)
t , (39)

where Ω̃Q ≡ Ω̃
(
rQ
)

is the arbitrarily chosen reference value for the angular velocity of the
ZAMOs located at the reference radius rQ in the rotating coordinate system. The angular
velocity of the rotating shell in the rotating coordinate system is then ω̃s = ωs + Ω̃Q −
Ω
(
rQ
)
. Noting that Ω

(
rQ
)

is also a function of ωs, we may invert this relation to obtain ωs
as a function of ω̃s. A straightforward substitution for ωs in terms of ω̃s in Equation (38)
then yields Equation (34).

Finally, as a rather vivid illustration of the arbitrariness of the numerical value of Ω(r),
we may now consider the case, shown in Figure 3, for which there is perfect dragging,
(R = rS), the angular velocity of the shell vanishes, ωs = 0, and we keep rQ → ∞ as above
(but let ΩQ be arbitrary).

Now, both the shell and the inertial frames in the interior of the shell are non-rotating,
but the ZAMOs located at asymptotic infinity rotate with the angular velocity ΩQ. In this
picture, it appears as if the massive shell and space in its interior are at rest, while it is the
rest of the universe exterior to the shell that rotates around it.
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Figure 3. Plots of the angular velocity Ω(r) of ZAMOs, as given by the expression in Equation (34),
with vanishing angular velocity for the shell, ωs = 0, and rQ → ∞, as in Figure 2. Note that here,
Ω(r) is normalized by ΩQ.

3. Rotation in Kerr Spacetime

In the previous section, we discussed the rotation of ZAMOs in Brill and Cohen’s
approximate spacetime model of a slowly rotating thin shell. In this section, we briefly con-
sider the angular velocity of ZAMOs in Kerr spacetime representing an exact axistationary
and asymptotically flat solution to Einstein’s field equations.

In Boyer–Lindquist coordinates (t, r, ϑ, ϕ), the angular velocity of ZAMOs due to
inertial dragging in the equatorial plane of Kerr spacetime is given by [1]:

Ω(r) =
2Ma

r3 + ra2 + 2Ma2 , (40)

where a = J/M, J is the angular momentum, and M is the mass characterizing the Kerr
geometry. In the asymptotic limit, r → ∞, Ω(r) vanishes. However, this does not imply
that ZAMOs located at asymptotic infinity define an absolute state of non-rotation. Indeed,
using the same transformations as in Equation (39), we may once again transform to a
coordinate system

(
t̃, r̃, ϑ̃, ϕ̃

)
rotating relative to the Boyer–Lindquist coordinates, to obtain

the angular velocity of the ZAMOs in the rotating system as

Ω̃(r) = Ω̃Q + Ω(r)−Ω
(
rQ
)

. (41)

The ZAMOs are now seen to rotate at asymptotic infinity with, in general, a non-zero
angular velocity Ω̃Q−Ω

(
rQ
)
, even though their angular momentum is zero. If, in addition,

we let the arbitrary reference radius rQ → ∞, then their rotation rate at infinity equals the
arbitrary reference value Ω̃Q.

This observation may at first appear completely trivial, as it follows directly from
a simple transformation to a rotating coordinate system. However, as was discussed
below Equations (34) and (38), this particular freedom of choice of coordinate system is
inherently linked to the observation that Einstein’s equations determine only differences in
angular velocities of ZAMOs, implying that only relative angular velocities are meaningful
concepts. The angular velocity (40) obtained in the Boyer–Lindquist coordinates appears
to be a consequence of imposing the asymptotic boundary condition lim

r→∞
Ω(r) = 0 at

the outset of the derivation [35], potentially leading to the misconception that the inertial
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frames at asymptotic infinity single out a global standard of non-rotation. The coordinate
independent boundary condition of asymptotic flatness is independent of the asymptotic
boundary condition imposed on the numerical value of the ZAMO angular velocity. This
indicates that rotation of ZAMOs located at different radii is best interpreted as a relative
concept in Kerr spacetime too.

4. Summary and Conclusions

The effect of inertial frame dragging on the rotation rate of ZAMOs has been analyzed
within the framework of the simple thin shell model seminally introduced by Brill and
Cohen. By relaxing the quite natural assumption of zero rotation infinitely far away from
the massive shell early on in the derivation, the obtained expression for the rotation rate,
Equation (34), makes it clear that Einstein’s equations only determine relative angular
velocities of ZAMOs. The particular value of the rotation rate of a ZAMO is physically
irrelevant unless one also specifies an arbitrarily chosen zero point in space, relative to
which this rotation rate is measured. Notably, this applies as well to the rotation rate of
ZAMOs located at asymptotic infinity.

Within the simple thin shell model, it was further clarified that the same expression for
the rotation rate can be obtained simply by a transformation from the coordinate system in
which the ZAMOs at asymptotic infinity are non-rotating, to a coordinate system rotating
relative to the first one. Utilizing this connection, we then argued that “global” rotation of
ZAMOs in Kerr spacetime should be interpreted as a relative concept, in the same sense as
for the thin shell model.

Thus, if there is still some hope that general relativity can be considered a complete
(classical) theory of gravitation capable of describing isolated gravitating systems without
requiring particular topologies or external causes such as “fixed stars” and absolutely non-
rotating Lorentz frames at infinity, then it seems that relative rotation in the sense presented
here not only is a valid concept, but perhaps even a necessary one in the interpretation of
some solutions to Einstein’s equations; more specifically, in the axistationary, asymptotically
flat spacetimes of general relativity.

The question of whether rotational motion can be interpreted as relative according to
general relativity was discussed in a relatively recent paper by Ø. Grøn [25]. The arguments
presented above provide some support for this possibility. It seems feasible that both the
absolute and relational viewpoints can be treated as complementary aspects within the
theory of general relativity [36,37].
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