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A B S T R A C T   

Acoustic metamaterials allow for creating selective pass- and stop-bands on the frequency spectrum. We 
demonstrate the possibility of designing acoustic metamaterials as core-shell 2D-phononic media with an 
extremely simple morphology, the frequency spectrum of which contains many real-time tunable bandgaps. The 
connected shells of such metamaterials form a grid with square cells filled with nuclei partitionable into two 
subsystems. Both subsystems are characterized by their frequency spectra, and it is the coupling between them 
that generates the bandgaps. If the structural elements of the metamaterial are built based on magneto-
elastomers, then bandgaps can be easily controlled by an external magnetic field that changes the elastic moduli 
of shells/cores. We have shown the possibility of manipulating single bandgaps in different parts of the spectrum, 
and simultaneous control of all bandgaps up to their complete disappearance. This manipulation can be carried 
out, specifically, with no change in the maximum achievable frequency in the metamaterial. The results obtained 
can be used for selective filtering of damaging wave components, active control of seismic or blast waves, sonar 
systems, ultrasound imaging, impact-resistant structures, and noise cancelation protocols. The physical concepts 
developed are extendable to 3D-structures in a similar fashion so can benefit a wider community.   

1. Introduction 

Acoustic metamaterials possess synthetically designed micro- 
structures rendering possible manifestation of properties absent in nat-
ural materials [1–5]. The created artificial structures can implement 
non-traditional physical effects that have been achieved in the physics of 
electromagnetic and phononic metamaterials, for example, the negative 
refractive index of the medium [6,7], acoustic cloaking [8,9] or acoustic 
superlensing [10,11].The most prominent of these is the possibility of 
creation of pass- and stop-bands in the frequency spectrum by tuning 
system parameters [2,12,13]. Stop-bands or bandgaps, in the context of 
acoustic metamaterials, are defined as frequency intervals over which 
the excitation of phononic waves in the designed metamaterial is 
impossible. There are two distinguishable mechanisms responsible for 
the formation of bandgaps [14]. The first is related to the Bragg 

scattering of acoustic waves in the so-called phononic crystals [15–19]. 
In this case, wave interference forms a high-frequency bandgap, the 
characteristic wavelengths of which are determined by the period of the 
created ordered structure. Thus, the first mechanism is not suitable for 
suppressing low-frequency waves [20–22]. The second mechanism is 
associated with embedding an ordered structure of local resonators in an 
elastic medium [23–27]. The bandgaps are then formed as a result of the 
antiphase motion of the resonators relative to impact of the external 
elastic medium surrounding them [28–32]. The bandgap is determined 
by the resonant frequencies of the resonators, a phenomenon which 
makes such media suitable for suppressing low-frequency waves 
[33–36]. Numerous applications are based on this property of “reso-
nant” metamaterials: vibration suppression [37–42], stress wave 
amplitude reduction [25,43], and seismic isolation [44–47] to name a 
few. 
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In turn, the successful solution of the problems of practical use 
involving acoustic metamaterials requires the development of methods 
for generating a controlled spectrum of propagating acoustic waves [17, 
48–52]. The conventional designs of metamaterials rely on ‘passive’ 
systems of predefined geometry, topology, and mass and stiffness dis-
tributions achieving the goal of the creation of bandgaps [53,54]. Active 
systems that form a controlled set of bandgaps by actively changing the 
parameters of these systems have wider applications and create greater 
opportunities in the creation of multifunctional acoustic devices through 
lifting the ‘passiveness’ restriction. 

Solutions to the problem above are found in different ways including 
using directional-dependent stiffness elements (anisotropic meta-
materials) [1,12,55], multivibrator systems with the so-called mas-
s-in-mass structures (in which the central nucleus is covered by several 
nested shells similar to a Matryoshka doll [13,56]), labyrinthine 
[57–59], chiral [60–61], or fractal/pseudo-fractal microstructures [55, 
62,63]. There are several mechanisms which may assume the re-
sponsibility for the transition between passive and active metamaterials 
[51,64,65]. These include active alteration of stiffness or inertial ele-
ments in the medium or at the location of nodes, among others [9, 
66–68]. 

The real-time solution to the problem of controlling the set of 
bandgaps in resonant metamaterials faces the following physical 
complexity. The boundaries of the bandgaps, as noted above, are 
determined by the resonant frequencies of the resonators/nodes of the 
lattice. Therefore, a change in the parameters of the medium in which an 
ordered system of nodes is immersed does not significantly change the 
frequency ranges of these gaps. Changing the parameters of the reso-
nators will simply shift the boundaries of the bandgaps, which excludes 
the possibility of changing the number of bandgaps up to their complete 
disappearance. 

In this paper, we present the physical principles based on which, in 
structures that are quite simple in topology, the possibilities of con-
trolling the formation of bandgaps can be significantly expanded. In 
these structures, there is no clear division of composite elements into a 
system of resonators and their external environment. The characteristics 
of the acoustic properties of the material are controlled by an external 
magnetic field that changes the stiffness of elements in the entire 
acoustic system, created on the basis of magnetorheological elastomers. 

Magnetorheological elastomers (MREs) are smart composite mate-
rials whose mechanical and rheological properties are changed by an 
external magnetic field [69–72]. A typical MRE is a result of the 
dispersion of micro-sized magnetic particles in a non-magnetic polymer 
matrix such as natural rubber, silicone rubber, polyurethane, or several 
thermoplastics [73–76]. In an alternative external magnetic field, the 
interaction between magnetic particles rapidly (in a time range counting 
up to several milliseconds [77]) and reversibly [78,79] changes the 
elastic modulus and damping properties of the MRE tracking the vari-
ations of the magnetic field’s strength. The ability to control an MRE’s 
properties almost in real time [80] is used in numerous engineering 
applications, such as vibration dampers [81,82], vibration isolators 
[85–87] vibration control and mitigation [83–85], actuators and sensors 
[86–88], engine mounts for a car [89], adaptive stiffness devices [72,90] 
and soft continuum robots [91,92]. 

The presented paper is organized into the following sections. 
Following this terse introduction, in Section 2 the basic physical con-
cepts of the problem solved are discussed. In Section 3 the governing 
equations are derived, and the numerical model and the procedure of 
construction of the dispersion equation are presented. In Section 4 the 
equations are solved, and the results obtained are analyzed. Section 5 
presents conclusions. 

2. Basic concepts and formulation of the problem 

We should note that the physical principle leading to the formation 
of bandgaps in ordered lattices is rather transparent. One of the con-

clusions of the mathematical treatment of systems like the one analyzed 
in the following may be expounded as such: the system of bandgaps in a 
medium composed of n-type multivibrators (where the nucleus is sur-
rounded by nshells of different masses and layers with different elastic 
constants in between the masses) depends only on the listed character-
istics of the internal structure of the nodes and is not contingent upon the 
characteristics of the substratum i.e. the medium in which the created 
lattice of nodes is embedded. Moreover, the set of bandgaps {Δω2

(i)}, i =
1, 2, 3, …n, does not depend on the type of symmetry of the created 
‘crystal’ lattice. 

In the sequel, we demonstrate the ground for the aforementioned 
statement using the example of a simple vibrator consisting of a nucleus, 
a shell (n = 1), and the internal elastic medium between them with the 
effective stiffness κi, i.e. a single resonator. The one-dimensional dy-
namics of this node under the action of an external force that depends 
only on time, f(t) = f0eiωt, changes drastically in the case when the pe-
riodic force acting on the shell depends on the coordinates, xe, of the 
shell itself: f(t) = − Kxe(t). In the first case, the solution of the system of 
equations of motion i.e., 

Mẍe = κi(xi − xe) + f0eiωt, mẍi = κi(xe − xi), (1)  

for the displacements of the shell, xe = xeoeiωt, and the core, xi = xioeiωt, 
exists in the continuous frequency spectrum: 

xeo =
fo

M
ω2

0 − ω2

ω2
(

ω2 − ω2
f

), xio =
fo

M
ω2

0

ω2
(

ω2 − ω2
f

), (2)  

where ω2
0 = κi/m is the frequency of oscillations of the internal nucleus 

in the supposed case when the shell is rigidly fixed (moveless), ω2
f = κi/

m̂ is the eigen frequency of the isolated node, and the parameter 
m̂ = Mm/(M+m) is the reduced mass of the node (ω2

f > ω2
0). 

It is physically clear, that the oscillations of the core at low fre-
quencies, ω2 < ω2

0, are in phase with the oscillations of the shell, i.e. 

ξ =
xeo

xio
= 1 − ω2

/

ω2
0 > 0, (3)  

when the effective stiffness, κ∗i , of the internal medium of the node de-
creases. To excite high-frequency oscillations, ω2 > ω2

0, the value of κ∗i 
must be higher than the stiffness κi, κ∗i > κi, which is realized with 
antiphase displacements of the core and shell, ξ < 0 (see Eq. (3)). We 
note that in the case under consideration, for each equivalent stiffness, 
K*(ω), of the external environment, 

K∗(ω) = −
f0

xe0
= M

ω2
(

ω2
f − ω2

)

ω2
0 − ω2 , (4)  

only one type of oscillation (either in-phase or in-antiphase) can be 
excited. 

The situation changes drastically in the case of dependence of the 
external force on the coordinates of the shell, f(t) = − Kxe(t). Such 
dependence enhances the coupling between the shell vibration modes in 
the field of the elastic external environment and in the elastic internal 
medium of the node. This increased coupling induces an effect that is a 
classical analogue of quantum level splitting. In the situation under 
consideration, the splitting is due to a combination of the two oscillation 
modes above in both in-phase and anti-phase regimes. Accordingly, for 
each stiffness value, K, oscillations at two different frequencies are 
excited with the formation of a bandgap between the two corresponding 
branches ω2 = ω2

upper/lower(K). The bandgap boundaries are easy to 
determine based on Eq. (4). In the frequency range of: 

ω2
0 < ω2 < ω2

f (5)  

the equivalent stiffness, K*, is negative, K*(ω) < 0. Since the real value of 
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the stiffness of the external environment,K, is positive, then oscillations 
in such a frequency range are impossible. The result obtained from 
relation (4) is consistent with the exact solution of the problem for two 
oscillation branches, ω2 = ω2

lower(K) and ω2 = ω2
upper(K) as: 

ω2
upper =

1
2

(

ω2
f +Ω2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

ω2
f + Ω2

)2
− 4Ω2ω2

0

√ )

≥ ω2
f (6)  

ω2
lower =

1
2

(

ω2
f +Ω2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

ω2
f + Ω2

)2
− 4Ω2ω2

0

√ )

≤ ω2
0, (7)  

where Ω2 = K/M. 
Relations (5)–(7) are obtained for an isolated node. If these nodes 

form a lattice in an external elastic medium, then the value of K in the 
equations of motion for an imaginary isolated node depends on the 
motion of the nodes of its immediate environment, i.e. from the excited 
wavelength. Thus, acoustic waves cannot propagate in the phononic 
metamaterials within the bandgap of Eq. (5), which is formed by only 
the structure of the isolated node. 

In particular, waves of infinite wavelength, λ (wave vector = 2π
λ = 0), 

correspond to oscillations of shells of nodes in antiphase with vibrations 
of nuclei in them without deformations of the external environment. 
Therefore, the upper limit of the bandgap coincides with ω2

f , since in Eq. 
(6) the value Ω2 should be considered equal to zero. Frequencies ω2 < ω2

0 
correspond to in-phase oscillations of the shell and nucleus. From 
qualitative considerations, it is clear that the maximum achievable 
oscillation frequency in this case corresponds to the minimum amplitude 
of shell oscillations: ω2→ω2

0 at xe0 → 0. Formally, the same result for the 
lower boundary of bandgap can be obtained by Eq. (7): ω2

lower = ω2
0 for 

Ω2 → ∞. 
When nodes are multivibrators of the n -type, the guaranteed 

bandgap boundaries are determined by the set of eigenfrequencies 
{ω2

f(i)} and {ω2
0(i)} as discussed in great detail in one of authors’ previous 

works [13] (where the values ω2
0(i), i = 1, 2, …n, are calculated with the 

outermost shell as motionless). 
Thus, the method of formation of bandgaps discussed above is ‘pas-

sive’ in the sense that it practically excludes the possibility of controlling 
the parameters of these gaps in real-time by changing the parameters of 
the medium in which the multivibrators are immersed. The only possible 
option is to change the elasticity of the spacers between the internal 

shells, which is not easy to implement technically. 
In this paper, we consider another possibility for creating an ‘active’ 

i.e. time-controlled series of bandgaps. In the proposed version, either 
the single (see Fig. 1(a)) or coupled dual strings of red masses and red 
springs (see Fig. 1(b)) form shells of the adjacent elastic square cells. 
These shells themselves possess vibrational eigenmodes, in contradis-
tinction to the rigid shells of the multivibrator systems mentioned above 
[13]. The internal content of the cells (‘green’/’blue’ masses and elastic 
medium represented by the system of green springs) is also character-
ized by its set of vibrational modes. The interaction of shells with in-
ternal ‘multivibrators’ may generate a system of bandgaps. At the same 
time, it becomes possible to change the elastic characteristics of both red 
shells and green multivibrators by an external magnetic field [93–98] 
and, accordingly, open/close individual frequency bands for passing or 
shift them up or down along the frequency scale. To implement such an 
idea, one can use magnetorheological elastomers (MRE) which are 
essentially composite materials capable of demonstrating significant 
changes in their physical properties under the influence of an external 
magnetic field - in particular, a significant increase in the moduli of 
elasticity of the material in sufficiently moderate magnetic fields of the 
order of 50~600 mT. As an example, in a magnetic field with an in-
duction of 500 mT, elastomers containing carbonyl iron particles 
showed an increase in the elastic modulus by a factor of 277 [93,94]. 

MREs are made by adding iron powder and/or other additives to a 
liquid polymer material. The characteristics of the MRE, as particulate 
composites, are determined by the type of filler [95–97], the size of the 
particles [95], the volume fraction of the particles and their arrange-
ment in the matrix [96,98]. In particular, the ordering of magnetic 
particles inside the polymer matrix at the stage of material curing makes 
it possible to obtain anisotropic samples [98]. The so-called bimodal 
MREs [95] consisting of both magnetic and non-magnetic particles 
demonstrate a greater increase in moduli of elasticity in a magnetic field 
of 320 mT than monomodal materials made only of magnetic particles. 
Since a magnetic field is a convenient control factor, the use of MREs in 
technology as a constituent or component in smart materials [99,100] is 
very promising. In the sequel, we expound the formulation of the 
problem, mechanisms of bandgaps formation in the MRE-based acoustic 
metamaterials, and principles of tuning with frequency-surfaces, ω2

i =

ω2
i (k), within a fixed frequency range 0 < ω2 < ω2

max. 

Fig. 1. Models of 2D multi-gaps acoustic systems comprised of adjacent elastic square cells of nucleus-shell type: (a) the shells are formed with single strings; (b) 
formation of the shells by dual coupled strings. 

V.N. Gorshkov et al.                                                                                                                                                                                                                            



International Journal of Mechanical Sciences 238 (2023) 107829

4

3. Model parameters and construction of the dispersion 
equation 

Let us briefly describe the method for obtaining the initial dispersion 
relation using the example of a two-dimensional lattice shown in Fig. 1 
(a). The unit cell of such a lattice contains seven (7) red nodes, eight (8) 
green nodes and one (1) blue node. The total number of nodes is thus 16, 
and the motion of each of them is characterized by displacements along 
the X- and Y-axes (along the horizontal and vertical directions). We 
denote the masses of these nodes in accordance with their color, as: mr, 
mg,and mb. Red springs are characterized by stiffness κr. The stiffness of 
vertical and horizontal green springs is equal to κ′

g, and the stiffness of 
inclined green springs, κ′′g , which is assumed inversely proportional to 
their length: κ′′g = κ′

g/
̅̅̅
2

√
. 

The general form of the desired dispersion equation is then as fol-
lows: 

Au = ω2u (8)  

where u signifies the displacement vector i.e. the transposed column 
vector of uT = (xT,yT), where, xT = (x1,x2,x3,…, x16), and yT = (y1,y2,y3, 
…, y16). The sets {xi},{yi} represent the displacements of the main lattice 
nodes (these nodes lying inside the square shown in Fig. 2 and numbered 
with yellow labels). Matrix A is a square matrix of dimensions 32 × 32 
and is composed of the coefficients of the equations of motion for these 
nodes. When constructing these equations, it will be necessary to take 
into account the displacements of nodes lying outside the square in 
Fig. 2 (numbered with white labels). 

Each of these auxiliary nodes is equivalent to a main node, and the 
displacements of equivalent nodes are related to the displacements of 
main nodes by Bloch’s theorem (also known as ‘Floquet-Bloch’s 

principle’ which asserts the fact that the change in the complex ampli-
tude of a wave across a unit cell in an infinite lattice is independent of its 
position). For example, a primary node with the index 4 has three 
equivalent nodes in the directions North, North-East, and East, respec-
tively, therefore: 

uN
4 = u4exp

(
ikya
)
, uNE

4 = u4exp
(
ikya+ ikxa

)
, uE

4 = u4exp(ikxa), (9)  

where a = 4d is the unit cell size (d is the minimum distance between 
nodes), and k = (kx,ky)is the wave vector of the plane acoustic wave. 

Considering the small-amplitude harmonic vibration of node n i.e. its 
small oscillations around the equilibrium position, un = un0exp(iωt), the 
equation of its motion, mnün = f n takes the following form: 

− un0ω2 =
∑8

i=1
ei

(
ki

mn

)

(ei.(ui0 − un0)) (10) 

The summation in (10) is carried out in eight directions from the 
central, n-th, node to the lattice nodes surrounding it. The vectors {ei} 
are unit vectors oriented along these directions, ui0-the amplitudes of 
oscillations of the nodes, which are in general complex, and κi the 
stiffness coefficients of the corresponding springs. The dependence of 
the matrix Ai.e. its entries (formed from the coefficients of sixteen 
equations of the form (10)) on the dimensionless wave vector, ̂k = 2πa/λ 
in Eq. (10) is a consequence of applying Bloch’s theorem to deviations at 
equivalent lattice nodes. 

There are several options for the numerical procedure leading to the 
computation of the entries in matrix A. Due to space constraints, how-
ever, we shall not describe the technical details of the algorithm we have 
devised and implemented here and will focus merely on the physical 
analysis of the results obtained. 

Fig. 2. The system of main and auxiliary (equivalent) lattice nodes used to construct the dispersion equation. The equations of motion are compiled for the main 
nodes lying inside the square bounding the primitive cell. The red and green segments indicate ‘springs’, which represent the interactions between the nodes that are 
taken into account when constructing these equations. 
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Dispersion surfaces have the form ω2 = ω2
m(k̂), m = 1, 2, 3, …, 32, 

which are considered over the first Brillouin zone, i.e.: 

− π ≤ k̂x ≤ π, − π ≤ k̂y ≤ π (11) 

If we take into account the symmetry of dispersion surfaces ω2 =

ω2
m(k̂), then it suffices to study their morphology over the irreducible 

Brillouin zone i.e. the region 0 ≤ k̂x,y ≤ π. 
Concerning the parameters of the system under consideration, in a 

similar fashion to dimensional analysis we assume the mass of the red 
nodes,mr, to be unity. In this case, we have four independent parameters: 

mg,mb,ω2
rr = κr/mr = κr ,ω2

gg = κg
/

mg (12) 

The parameters in the sequel give the remaining quantities necessary 
for constructing the matrix A: 

ω2
gr = κg

/
mr = mg ω2

gg, and ω2
gb = κg

/
mb = mg ω2

gg

/
mb (13) 

The dispersion equation for the two-dimensional system shown in 
Fig. 1(b) is analogically built on the basis of the equations of motion for 
25 main nodes framed by 24 auxiliary/equivalent nodes. The set of 50 
dispersion surfaces {ω2

m(k̂)}, presents the solution of the equation of 
motion, where the dimensionless wavevector k̂ equals 10πd/λ. 

4. Results and discussion 

In Section 2, we considered the mechanism for the formation of 
bandgaps in a system of multivibrators forming an ordered lattice 
structure in an external elastic medium (a multi-resonator phononic 
metamaterial). Bandgaps arise in the frequency ranges over which the 
frequency of natural oscillations, ω2

n , of isolated multivibrators, (nbeing 
the number of the mode of natural oscillations ordered in the descending 
order), is equal to the frequency of acoustic waves, propagating in the 
external environment: ω2

n = ω2
n(k). If there is a connection between the 

effects of external and internal forces on the multi-vibrator shells, an 
analogue of the quantum effect of level repulsion is realized in the 
classical system, which leads to a break in the dependence ω2 = ω2(k) 
with the formation of bandgaps (see [2] for a detailed discussion). In any 
case, each natural frequency of the isolated multivibrator, ω2

n , generates 
a dispersion surface with a frequency ω2

n = ω2
n(k= 0) at the center of the 

Brillouin zone. In the sequel, we will also compare the set of frequencies 
of an isolated unit cell, {ω2

n}, n = 1, 2, 3…, N, with the set of frequencies 
at the center of the Brillouin zone, {ω2

m(k = 0)}, m = 1, 2, 3…, M, of an 
integral acoustic system composed of an infinite number of these cells, 
which interact with each other. Note that in the general case N > M. So, 
for the elementary cell shown in Fig. 1(a), N = 50 (25 constituent masses 
each possessing two degrees-of-freedom). In an integral system (Fig. 2), 
nonetheless, the number of independent degrees-of-freedom is reduced 
to M = 32. 

The acoustic systems considered in this paper are composed of 
multivibrators with many degrees-of- freedom where green cores are 
enclosed in red shells. In this case, the concept of an elastic environment 
in which single multivibrators are immersed is irrelevant, since their 
‘environment’ or ‘ambience’ is formed by adjacent multivibrators of the 
same structure. The direct interaction of neighboring ‘green nuclei’ by 
means of flexible ‘red shells’ separating them leads to the fact that in the 
general case the sets of frequencies {ω2

n}, and {ω2
m(k= 0)} contain the 

restricted number of elements close in value. A measure of the interac-
tion between green nuclei and red shells can be demonstrated quite 
easily. It is to this end that we calculate the sets {ω2

n}, and {ω2
m(k= 0)}

for different values of the quantity ω2
rr with other parameters fixed and 

analyze the changes in Δω2
n(ω2

rr) and Δω2
m(k= 0;ω2

rr) for different fre-
quency ranges. Based on the magnitudes of these changes, it is possible 
to draw conclusions about the degree of correlation between the 

dynamics of elastic green cores and the rigidity of red shells both within 
the elements of an isolated cell and in collective processes characteristic 
of the integral medium. 

Naturally, the control of pass- or stop-bands is possible only with a 
significant level of such mutual ‘nuclei-shell’ influence. As it will be 
denoted in the following sections, the results of the studies conducted 
show that a required level of correlations may be controllably achieved 
in selected areas of the frequency range for the acoustic system. Let us 
give a number of specific examples illustrating the statement above and 
demonstrating the physical principles of controlling bandgap gates. 

4.1. Controlling bandgap gates in the low-frequency range of the spectrum 

We shall not consider here the trivial case, in which all the stiffness 
coefficients of the acoustic system are changed by the same factor of η in 
an external magnetic field, and all bandgaps, if formed as such, will 
correspondingly shift along the frequency axis. Our goal is to control 
only the selected bandgaps without changing the rest of the gaps and to 
control the width of the overall frequency range. The rearrangement of 
the morphology of the set of dispersion surfaces in some frequency range 
is possible only in the case when it is in this range that the expressed 
coupling between vibrations of green cores and of red shells is realized. 
This requirement can be met by overlapping the characteristic fre-
quencies of these two acoustic subsystems. When obtaining the results 
presented in Fig. 3, the selected parameters realize such an overlap only 
in the lower part of the spectrum, since for insignificant differences in 
the stiffness of red and green springs (κr = ω2

rr = 1.1 − 2.3, κg = ω2
ggmg =

1), the mass of red nodes being five times the mass of green nodes. Thus, 
the spectrum of the subsystem of red shells is much narrower than that 
for green nuclei. This ratio can be easily estimated quantitatively. 

With the selected parameters, the maximum frequency of acoustic 
waves, ω2

gr;max, which can be achieved in a two-dimensional system 
composed of green masses and springs is equal to: 

ω2
gr;max = 2ω2

gg

(
2+

̅̅̅
2

√ )
≈ 34. (14) 

A similar frequency, ω2
red;max, in a square system constructed only out 

of red horizontal/vertical springs and masses is: 

ω2
red;max = 4ω2

rr (15)  

which lies in the range of 4.4 to 9.2. The estimates above explain why 
the changes in frequencies {ω2

n} and {ω2
m(k= 0)} with variations in the 

value of ω2
rr are observed (Fig. S3(a),(b)) at n ≥ 16 (or ω2

n
<
∼

8) - i.e. in the 
frequency range of acoustic waves that can be excited in a system 
composed only of red shells. 

The apparently weakened coupling between green cores and red 
shells in the high-frequency part of the spectrum should also be expected 
to be reflected in the dynamics of the morphology of many surfaces ω2 =

ω2
m(k) with an increase in the stiffness of the red springs – see Fig. 4. 

The initial bandgap structure is shown in Fig. 4 in two configura-
tions, (a’) and (a’’), built for different frequency ranges (upper and 
lower). Note that the dispersion surfaces are represented by their sec-
tions cut by a plane passing through the straight line kx = ky. For such 
cross-sections, the gaps between adjacent curves quite often correspond 
to the actual bandgaps. Sometimes, as will be seen in the following 
figures, the actual width of the zone may be narrower than the gap 
between adjacent curves. In general, the selected graphical method of 
presenting the results obtained is quite informative for displaying the 
dynamics of multi-surface, ω2 = ω2

m(k), acoustic systems. 
Configurations (b), (c), and (d) in Fig. 4 show an unusual effect. The 

dispersion surface ω2 = ω2
16(k) (marked with a green circle in Fig. 4, see 

configurations ((а′′) − (d))) remains practically unchanged with 
increasing ω2

rr, and the lower surfaces ω2
17(k) and ω2

18(k), which are 
covered by a dashed ellipse, rise through it (surface number 16 becomes 

V.N. Gorshkov et al.                                                                                                                                                                                                                            



International Journal of Mechanical Sciences 238 (2023) 107829

6

the 18th in a row) and gradually open the two lower bandgaps without 
changing the upper ones. Sharp changes in frequencies ω2

17(k= 0) and 
ω2

18(k= 0) are shown in the inset of Fig. 3(b) as pairs of green arrows. 
The shapes of the surfaces that open the passage of waves in the lower 
bandgap are shown in Fig. 3(c). 

The physical basis for various degrees of coupling between green 
cores and red shells is demonstrated by the data provided in Fig. 5, 
which present the eigenvectors of Eq. (10). The displacements of the 
masses are shown in different vibration modes and for different stiffness 
values of the red springs. Modes with m = 8 and 16 that are resistant to 
variations in the ω2

rr parameter (see configurations (a) and (b) in Fig. 5) 
are characterized by a high degree of core mass mobility compared to 

the passive behavior of red/boundary masses, since these red masses are 
not able to track high-frequency oscillations of lighter green masses. 
Coupling sharply rises with decreasing modal frequency. An increase in 
the parameter ω2

rr from 1.1 to 2.3 leads to an increase in the frequency of 
a pair of degenerate modes, ω2

17(k = 0) = ω2
18(k = 0), from 5.6 to 10.3 

(after such an increase, this pair takes positions 16 and 17 in the set 
{ω2

m(k = 0)}). The corresponding eigenvectors are characterized by 
intense horizontal oscillations of the red masses (see the upper and lower 
mass rows in configurations (c) and (d) of Fig. 5). Changing the fre-
quency of oscillations in these rows directly reflects the increase in 
stiffness of the red springs. Intensive coupling in the core-shell system 
(between horizontal oscillations in neighboring vertical columns of red/ 

Fig. 3. Dynamics of dispersion surface morphologies through increasing the shells stiffness (red springs); mg = 0.2, mb = 0.8, and ω2
gg = 5.0 (nis the number of 

frequency modes). (A) Sets of eigenfrequencies of the single unit cell: ω2
rr = 1.1, 1.7, and 2.3 (blue, green, and red circles, respectively). (B) The set of eigen-

frequencies of the entire acoustic system at k = 0 for the same parameters as in subpart A. (C) Release of the lower band gap formed at ω2
rr = 1.1, which is limited by 

dispersion surfaces marked in red ω2
17,a(k) and ω2

16,a(k) (also see Fig. 4(a’’)), by shifted up ω2
19,a(k), ω2

18,a(k), and ω2
17,a(k) dispersion surfaces at ω2

rr = 1.7. 
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green nodes) is less visually noticeable. Growth in the frequency of low- 
amplitude oscillations of the green nuclei is a result of increasing the 
effective stiffness of the green springs that connect these columns, which 
can be explained as follows. 

We pay particular attention to a pair of neighboring red and green 
masses marked by arrows in Fig. 5(c) and (d). When the value of κr in-
creases (recall that due to our choice of parameters κr = ω2

rr), the phase 
shift between relatively small oscillations of these masses is from 0 (see 
Fig. 5(c)) to π (see Fig. 5(d)). The transition from the in-phase mode of 
oscillations of these two masses to the anti-phase mode is repeated in 
configuration Fig. 5(e). With such a transition, the effective stiffness of 

the green springs connecting these masses increases, with a corre-
sponding increase in the oscillation frequency. Thus, the strengthening 
of coupling manifests itself in the growth of correlations between the 
effective characteristics of the elasticity of multi-node ‘shells’ and multi- 
node ‘cores’. 

4.2. Controlling bandgap gates in the high-frequency range of the 
spectrum 

It is desirable to have control over pass- and stop-bands for a wide 
range of frequencies i.e. not only low but also high-frequency compo-

Fig. 4. Cross-sections of dispersion surfaces by the plane (1–10) in the(kx,ky,ω2)-space; the dependencies ω2 = ω2(0 ≤ kx = ky ≤ π) are presented. mg = 0.2, mb = 0.8, 
and ω2

gg = 5.0. (a’) and (a’’) demonstrate these dependencies within upper (14 ≤ ω2 ≤ 26 -(a’)) and lower (0 ≤ ω2 ≤ 14 -(a’’)) frequency diapasons for ω2
rr = 1.1. 

Configurations (b), (c), and (d) show controlled release of the bandgaps by increasing the stiffness of shells (red springs): ω2
rr = 1.75, 2.0, and 2.3, respectively. 

Fig. 5. Graphical representation of eigenvectors that characterize the acoustic system shown in Figs. 3 and 4: mg = 0.2, mb = 0.8, and ω2
gg = 5.0. The initial positions 

of nodes coincide with centers of cyan circles, centers of displaced red circles represent amplitudes of their vibrations. For the small displacements to be more visible, 
the initial positions are enveloped by black circles. Configuration (a), (b), and (c): displacements of nodes for modes of n = 8, 16, and 17 at ω2

rr = 1.1 (ω2
8 = 17.795, 

ω2
16 = 8.093, ω2

17 = ω2
18 = 5.631). Configuration (d): ω2

rr = 2.3, displacements of nodes for the mode of n = 16 (ω2
16 = ω2

17 = 10.274, and ω2
18 = 8.093 - as the 

parameter ω2
rr increases, the pair of degenerate dispersion surfaces of n = 17 and 18 rises above the former dispersion surface of n = 16). Configuration (e) depicts the 

evolution of the phase-shift between oscillations of the pair of red-end green nodes, which are marked by arrows in configurations (c) and (d), when the stiffness 
ω2

rr increases. 
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nents of a given wave. To implement such control, it is necessary to 
choose system parameters such that, when varying the rigidity of the red 
shell, minimal changes in the morphology of dispersion surfaces in the 
low-frequency part of the spectrum with significant rearrangements of 
these surfaces in the high-frequency region is ensured. Based on the 
results of the previous section, consider a system with the following 
parameters: mg = 4.5, mb = 1.5, and ω2

gg = 1.2; the frequency ω2
rr is 

changed in the range of 1 to 4. In this case, the cell cores are formed by 
heavy nodes and rigid springs (κg = 5.4). The maximum achievable 
frequency in such a system is: 

ω2
gr;max = 2ω2

gg

(
2+

̅̅̅
2

√ )
≈ 8.2 (16) 

Similar frequency for a grid of red shells equals: 

ω2
red;max = 4ω2

rr ≈ 16 (17) 

Fig. 6 shows the expected result for the selected parameters. In 
contrast to the previous section, the eigenfrequencies of the system react 
very weakly to changes in the shell stiffness precisely at low frequencies. 

The analysis of the results obtained above shows the large amount of 
information extracted out of graphical representations of the system’s 
eigenvectors (solutions of Eq. (10)). As a rule, the low mobility of the 
masses of the red shell with a relatively active core indicates a weak 
core-shell bond, which leads to small variations in Δω2

n(ω2
rr) and 

Δω2
m(k= 0;ω2

rr) when changing the value of ω2
rr. In turn, the small var-

iations Δω2
m(k= 0;ω2

rr) slightly change the ‘portraits’ (graphical repre-
sentations) of the corresponding eigenvectors. However, even in the case 
of noticeable shifts in the frequency of a certain mode, its portrait re-
mains visually unchanged and easily recognizable among many similar 
portraits. Such an example is the configuration (a) of Fig. 7. It displays 
the eigenvector of mode ω2

16(k = 0;ω2
rr = 1). Changes in the parameter 

ω2
rr from 0.8 to 4.0 increase the eigenvalue ω2

16(k= 0) from 6.435 to 
12.181, but changes in the eigenvector portrait are visually impercep-
tible. Successive significant shifts in the 3D-space of the corresponding 
dispersion surface are presented in the curves pertaining to Fig. 8 which 
are marked with blue arrows. 

Configurations (b), (c), and (d) in Fig. 7 show mode portraits that 
remain practically frequency-pinned at the center of the Brillouin zone 
(see three blue circles on the ω2-axis in Fig. 8). Configuration (b) and its 

analogue rotated by π/2 represent a degenerate pair of the highest fre-
quency dispersion surfaces (ω2

14,15(k = 0)) - see Fig. 8(a)) from the 
marked trio of surfaces. Note that the high mobility of the shell elements 
should be understood as a ‘relative’ phenomenon i.e. the high mobility 
of these elements relative to each other. Therefore, the core-shell 
coupling in configuration (b) with pronounced in-phase shifts of red 
masses (see Fig. 7) is rather weak: the corresponding frequency at k =
0 increases from 8.064 only to 8.208. Configuration (c) in Fig. 7 corre-
sponds to the non-degenerate mode ω2

17(k= 0) = 6.240 in Fig. 8, which 
remains ‘frozen’ at this level as ω2

rr grows from 0.8 to 4. The most sen-
sitive to changes in ω2

rr is the degenerate pair ω2
18,19(k = 0), whose 

portrait is given by configuration (d) in Fig. 7: ω2
18,19(k = 0,ω2

rr = 0.8) =

4.773, and ω2
18,19(k = 0,ω2

rr = 4.0) = 5.036. 
Thus, the noticeable dynamics of dispersion surfaces in the upper 

part of the spectrum opens the bandgap gates in this frequency range, 
keeping these gates locked in the lower frequency range (see Fig. 8). 

4.3. Strong broadband core-shell сoupling 

In the previous sections, we showed the possibility of controlling 
some bandgaps from the general set of bandgap gates formed – either in 
the lower (see. Fig. 4) or in the upper (see Fig. 8) part of the spectrum of 
acoustic waves. Note that varying the stiffness of the red shell did not 
change the maximum oscillation frequency achievable in the system (see 
Figs. 3(b) and 6(b)). In this section, we shall show the possibility of 
controlling the total set of initially formed bandgaps, and, again, 
without changing the width of the general frequency range. The result 
obtained is based on the following approximate physical concepts. The 
first of these is to reduce differences in the feature/structure of the green 
cores and red shells. For this, we use below shells composed of two 
coupled strands of red masses and springs (see Fig. 1(b)). Between the 
red masses, as between the green masses, inclined springs are inserted to 
more realistically replicate a continuous elastic medium lying in be-
tween the masses. 

The second concept - the transformation to full transparency of all 
bandgaps should largely correspond to the transition of the morphology 
of the acoustic system from pronounced spatial structuring, which en-
sures the formation of bandgaps, to spatial quasi-homogeneity (it is 

Fig. 6. (A) Eigenfrequencies of a single unit cell, {ω2
n}, and (B) eigenfrequencies of the entire acoustic system, {ω2

m(k = 0)}, at ω2
rr = 0.8, 2.5, and 4.0 (blue, green, 

and red circles, respectively); mg = 4.5, mb = 1.5, and ω2
gg = 1.2. 
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Fig. 7. Graphical representations of some acoustic system eigenvectors: mg = 4.5, mb = 1.5, ω2
gg = 1.2, and ω2

rr = 1.0. Configuration (a) represents the structure of the 
eigenvector of the most frequency-changing mode (n = 16 in Fig. 8(a) and (b), and n = 14 in Fig. 8(c), (d), and (e) - the marked by blue arrow curves). Configurations 
(b), (c), and (d) are portraits of modes ‘frozen’ in the low-frequency range (marked with blue circles in Fig. 8). The relative changes in the indicated frequencies, 
ω2

m(k = 0), with the variation of the shell stiffness, ω2
rr , from 0.8 to 4 are equal to 80%, 1.8%, 0.0%, and 5.5%, respectively. 

Fig. 8. Cross-sections of the dispersion surfaces by the plane (1–10) in the (kx,ky,ω2)-space; the dependencies ω2 = ω2(0 ≤ kx = ky ≤ π) are presented; mg = 4.5, mb =

1.5, ω2
gg = 1.2. Configurations (a) - (e) show controlled release of the bandgaps at upper frequencies by increasing the stiffness of shells (red springs): ω2

rr = 0.8, 1.5,
2.0, 3.0, 4.0, respectively. 

Fig. 9. (A) Eigenfrequencies of a single unit cell, {ω2
n}. (B) Eigenfrequencies of the entire acoustic system, {ω2

m(k = 0)}; ω2
rr = 0.8, 1.2, and 1.6 (blue, green, and red 

circles, respectively); mg = 0.7, mb = 0.75, and ω2
gg = 2.5. 
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obvious that there are no bandgaps in the acoustic system of equivalent 
nodes/springs). 

The results obtained are displayed in Figs. 9 and 10. The system of 
equations of the form (4) is constructed for the coordinates of 25 inde-
pendent nodes (nine nodes of the core complement and 16 red masses 
that cover this core along its perimeter - see Fig. 1(b)). In accordance 
with the stated physical concepts, the masses are chosen with a small 
deviation from their average value. The stiffness of the green springs 
is κg = mgω2

gg = 1.75. Thus, with an increase in the parameter ω2
rr to a 

value of 1.6 (see Figs. 9 and 10), the acoustic system approaches the 
state of spatial homogeneity. 

Let us note that this choice of parameters strengthened the coupling 
between cores and shells. To confirm this statement, it suffices to 
compare the data included in Figs. 3(a), 6(a), and 9(a) with the data 
presented in Figs. 3(b), 6(b), and 9(b), respectively. In each pair of 
figures, attention should be paid to how the distribution of frequencies 
{ω2

n} obtained for different ω2
rr, changes when compared with the cor-

responding distribution in the set {ω2
m(k = 0)}. Since the green cores of 

the cells of the acoustic structure interact with each other through the 
mediation of red shells, the measure of difference in the distributions 
above is an indicator of the intensity of core-shell coupling over different 
frequency ranges with a variation in the elasticity of these shells. Visual 
assessment of the intensity of the coupling using the results of Fig. 9(a) 
and (b) suggests that this indicator significantly exceeds the same in-
dicator obtained from a comparative analysis of the data presented in 
Figs. 3 and 6, both in magnitude and width of the frequency range. 

The main result of such an increase in coupling is the complete 
disappearance of bandgaps (see Fig. 10) with a rather insignificant in-
crease in the rigidity of the red shells (by a factor of two). Naturally, in 
the reverse process (lowering this rigidity), the gates of bandgaps will 
operate. 

Analyzing the results obtained in Section 3, each time we could 
contemplate the entire acoustic system as a subsystem of green cores 
filling the cells of a square grid comprised of red masses and springs. The 
results of such a representation to perform approximate calculations 
quite satisfactorily predict the most general features of the dynamics of 
the entire system. However, the versatility of collective processes re-
mains beyond the reach of such qualitative conceptions. This assertion is 
demonstrated by the data presented in Fig. 11. 

In the acoustic system shown in Fig. 10, the mass of the central blue 
nodes was increased from 0.75 to 2. The eigenfrequency of the single 
vibrator, composed of the central blue mass and the outer shell of 8 
green masses, is about 5, as this can be easily evaluated. Therefore, the 
rearrangements in the frequency range ω2 ∼ 5–6 are physically clear 

when comparing the results shown in Figs. 11 and 10(a). However, 
morphological modifications in the interval 9 <

∼
ω2<

∼
10.5 associated with 

collective processes cannot be interpreted qualitatively. Nevertheless, 
the final result at ω2

rr = 1.6 remains unchanged - in Fig. 10(a) all visible 
bandgaps become opened. 

Fig. 10. Cross-sections of the frequency surfaces by the plane (1–10) in the (kx,ky,ω2)-space; the dependencies ω2 
= ω2(0 ≤ kx = ky ≤ π) are presented; mg = 0.7, mb =

0.75, and ω2
gg = 2.5. Configurations (a)-(d) show the controlled release of the band gaps by increasing the stiffness of shells (red springs): ω2

rr = 0.8, 1.0, 1.3, and 1.6. 

Fig. 11. Bandgaps and dependencies ω2 
= ω2(0 ≤ kx = ky ≤ π) in case of heavier 

blue masses: mb = 2. ω2
rr = 0.8, the rest of parameters are the same as in Fig. 10. 
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5. Conclusions 

This paper concerns smart acoustic metamaterials capable of 
manipulating bandgaps through utilization of a magnetic field. The 
theoretical aspects on the manipulation of wave propagation in acoustic 
metamaterials using active pass- and stop-band generating mechanisms 
have been analyzed in the present work. The proposed method is to use 
magnetoelastic materials to render variable elastic moduli in the sub-
stratum. In real time, a significant rearrangement of the morphology of 
the set of acoustic surfaces {ω2

m(k,ω2
rr)} can be implemented in core-shell 

phononic metamaterials, the structural elements of which are magne-
toelastomers. 

The physical concepts of controlled opening-closing of the bandgaps 
are as follows. When altering the stiffness of the shells by a variable 
magnetic field, acoustic surfaces, ω2 = ω2

m(k, ω2
rr), shift/transform to 

varying degrees in the 3D space (kx,ky,ω2) so that basic points/origins of 
those surfaces, {ω2

m(k = 0)}, ‘mix’ on the frequency axis, i.e. in the plane 
(ω2, ω2

rr), some of the trajectories, {ω2 = ω2
m(k = 0,ω2

rr)}, intersect. On 
the one hand, it is the level of coupling between the cores and shells that 
determines the ‘mobility’ of each mode, Δω2

m(k = 0;ω2
rr), when varying 

ω2
rr, which is essentially inhomogeneous in the mode number. On the 

other hand, it is this mixing that is responsible for opening/closing the 
gates of bandgaps/passage bands. 

The geometry and parameters of the acoustic systems can be chosen 
so that:  

• Noticeable variations in the elasticity of the shells by an external 
magnetic field practically do not change the maximum achievable 
wave frequency (see Figs. 3(b), 6(b), 9(b)), and the time-dependent 
processes of opening/closing gates of bandgaps occur in a 
controlled regime within a fixed frequency range being realized with 
a radical modification of just the morphology of the dispersion sur-
faces set {ω2

m(k,ω2
rr)}.  

• It is possible to create the most mobile modes, sensitive to changes in 
the shell stiffness, in the upper or lower region of the overall fre-
quency range, so that a change in the morphology of the set of 
dispersion surfaces will be implemented only over a limited fre-
quency range without a noticeable transformation outside it. 

The developed concepts are quite realizable in applied developments 
since the necessary changes in stiffness of the shells (by a factor of 2–5 in 
the considered variants, which are much less than the increases already 
achieved of about 300 times) require insignificant variations in the 
external magnetic field. The lag in changes in the stiffness of magneto-
elastomers, τlag, relative to variations of the magnetic field strength is 
quite small (τlag~ several milliseconds), which opens up the possibility 
of smoothly changing the system of bandgaps in real time intervals, τ, 
that are much longer than τlag: τ ≫ τlag. Since certain gaps are virtually 
untouched, the active control mechanism devised can be utilized in 
many applications for protection against damaging wave components, 
active control of seismic or blast wave propagation, ultrasound imaging 
protocols, and noise cancelation devices. 

The physical concepts developed can be applied to 3D-structures in a 
similar fashion. Furthermore, the study opens the door to the possibility 
of achieving optimized solutions per application in the space of alter-
natives given certain set of constraints. 
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