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this study, we developed a novel neural network ensemble, SE-SDAE, based on 

stacked denoising autoencoders (SDAEs) which identify different levels of cognitive 

load by electroencephalography (EEG) signals. To improve the generalization 

capability of the ensemble framework, a stacking-based approach is adopted to fuse 

the abstracted EEG features from activations of deep-structured hidden layers. In 

particular, we also combine multiple K-nearest neighbor and naive Bayesian 

classifiers with SDAEs to generate a heterogeneous classification committee to 

enhance ensemble's diversity. Finally, we validate the proposed SE-SDAE by 

comparing its performance with mainstream pattern classifiers for cognitive load 

evaluation to show its effectiveness. 
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1. Introduction 

Human-machine (HM) systems widely exist in complex control environments 

for accomplishing predefined cognitive tasks (Habib et al., 2017). The HM systems 

have a capability to stabilize machine performance by incorporating actions of 

operator's supervision and decision-making (Yin et al., 2015) (Yin & Zhang, 2017). 

Different from machine agents who possess reliable functionalities, operators' 

performance can be instable or degraded because of intention distraction, mental 

fatigue and mental overload (Rusnock & Borghetti, 2018) (Parasuraman & Jiang, 

2012). Such issues are major factors that cause many serious accidents originated by 

human operators. Numerous completed studies have shown that cognitive load is 

inversely related to the performance and operation quality of an operator in HM 

system (Lewis, 2019). The concept of the cognitive load is closely linked to cognition 

frameworks, operator emotions, and mental demand (Lewis, 2019). The distribution 

of the cognitive load is critical to maintain main performance under various HM task 

environment (Jaquess et al., 2018). 

The cognitive load is vulnerable to many factors under safety critical 

human-machine interaction environment. There is currently no well-established 

definition of cognitive load (Young et al., 2015). In literature, the cognitive load can 

be considered as the amount of operator's mental resources taken up by operation 

requirements (Wilson & Eggemeier, 2020). When task demands increase and exceed 

general working capacity of operators, it causes excessive level of cognitive load and 

results in inability of information analysis and decision making of the operators 

(Fallahi et al., 2016) (Wilson, 2005). On the other hand, low cognitive load may cause 

the operators to become inefficient and inattention on current tasks (Ryu & Myung, 

2005). To this end, an accurate and effective model is required to be designed for 

evaluating the cognitive load aiming at stabilizing the human performance within a 

proper range. It is particularly important for reducing risk and increasing operational 

safety of HM systems. 

 

1.1 Related works of methods for cognitive load assessment 



There are three main ways to assess cognitive load, i.e., subjective measures, 

task performance, and neurophysiological signals (Rutherford, 1987). Subjective 

measures are also known as subjective rating scales, of which the two most widely 

practical methods are Subjective Workload Assessment Technique (SWAT) and 

National Aeronautics and Space Administration-Task Load Index (NASA-TLX) 

(Fallahi et al., 2016). However, subjective measures lack objectivity and are limited 

by the low time resolution for data collection (Yin & Zhang, 2017). On the other hand, 

task performance measures are not suitable for implementing in those task 

environments where the performance parameters are implicit and cannot be directly 

collected (Hicks & Wierwille, 1979). Different from the two classical methods, the 

neurophysiological signals, such as electroencephalography (EEG), electrocardiogram 

(ECG), functional near infrared spectroscopy, and event-related potential (Di Stasi et 

al., 2013), are easy to be continuously acquired and processed in an online fashion. 

Among them, the EEG signals have high sensitivity, strong objectivity and easy 

implementation of task conditions and cognitive load. The EEG was also closely 

linked to levels of alertness and fatigue of operators (Makeig & Inlow, 1993) (Makeig 

& Jung, 1995) who were engaged in the task environments for nuclear power plants 

and transportation driving systems (Choi et al., 2018) (Borghini et al., 2014). 

In this work, we employ the EEG signal as a unique indicator for assessing 

cognitive load. It should be noted that extensively reported works have applied pattern 

recognition methods to analyze the EEG signals. The machine learning based pattern 

classifiers can improve efficiency on modeling mappings between the EEG signals 

and human cognitive states. Among these works, (Wang et al., 2012) designed an 

EEG-based workload classifier with correct recognition rate of 80% via a hierarchical 

Bayesian model. Support Vector Machine (SVM) was used by (Ke et al., 2015) and 

they built a cross-task cognitive load identification model for n-back tasks. By 

incorporating the EEG features of power spectrum within 3–15 Hz frequency band, 

(Dornhege et al., 2007) identified mental tasks under different difficulties by using 

Linear Discriminant Analysis (LDA). In the work of (Vuckovic et al., 2002) found 

that the learning vector quantization neural network achieved the best classification 

performance among three different neural network frameworks for workload 



classification. All these papers validated effectiveness of statistical learning and neural 

network based approaches on the issue of the cognitive load recognition. 

 

1.2 Motivation of the present study 

Acquired EEG signals usually accompanied with various types of muscular noise 

that was caused by body movements, blinks, and respirations from users of brain 

computer interfacing devices under a HM system. Therefore, it is very crucial to 

extract noise-free EEG features by proper filters. However, useful frequency band for 

indicating cognitive load variation may be overlapped with those bands of noise. 

Another assessable approach is to extract critical information of the EEG by 

reconstructing signals at feature level. Under such framework, a Denoising 

AutoEncoder (DAE) which is a special type of Auto-Encoder (AE) with feedforward 

neural network structure is particularly suitable for feature filtering. It has a capability 

to learn higher-level feature abstractions from statistics of the EEG data with 

superimposed noise (Ting, 2015). The stability of a DAE can be further improved by 

adding different types of artificial noise into the training set when it has been 

implemented as a cognitive load classifier (Wang et al., 2016). 

In the literature, the DAE is most widely used in the field of image processing. In 

the works of (Görgel & Simsek, 2019) and (Lan et al., 2019) applied an improved 

model of DAE to cope with face recognition and hyperspectral image classification 

problems. In the works of (D. Lee et al., 2018) and (Fang et al., 2018) exploit DAE's 

noise reduction capability for image filtering. A DAE based data-driven model has 

been also applied for fault diagnosis in processing or mechanical control systems. For 

instance, (Meng et al., 2018) designed an enhancement DAE based on the fault 

diagnosis of rolling bearing. In the works of (Fu et al., 2019), (Xu et al., 2018) and 

(Yu, 2019) designed modified DAE models for fault detection issues. In addition, 

DAEs with hierarchical network structure have shown outstanding performance in a 

variety of machine learning tasks in EEG data processing (Lee et al., 2020). 

Although the pattern recognition methods can achieve acceptable cognitive load 

recognition accuracy, classical shallow machine learning methods have a difficulty in 



mining hidden information associated with operator's cognitive state variables. 

Therefore, we attempt to implement Stacked Denoising AutoEncoder (SDAE) to build 

a deep-learning based workload classifier. Unlike neural network framework with 

single hidden layer, a deep learning model possesses hierarchical feature abstraction 

structure (Zhou, 2016). Such model increases number of hidden layers in feedforward 

path. By feeding noisy input data, a layer-wise training scheme was performed with 

the functionality for unsupervised feature denoising (Wang et al., 2016). 

In recent years, SDAE is widely used in face recognition (Zhang et al., 2016) and 

industrial fault detection problem (Wang et al., 2016), many of which have been 

developed and commercialized successfully. In this study, we employed SDAE as a 

backbone to develop an accurate cognitive load estimator. In particular, ensemble 

learning principle has been adopted to reduce uncertainty in EEG features among 

multiple subjects. To improve the generalization capability and avoid potential 

overfitting, a stacking-based ensemble learning framework is utilized to fuse 

abstracted EEG features from activations of deep-structured hidden layers. For those 

wake learners, we combine multiple K-nearest neighbor and naive Bayesian 

classifiers with DAEs to generate a heterogeneous classification committee to 

improve ensemble's diversity. In the end, we compare the proposed Stacking-based 

Ensemble of SDAE (SE-SDAE) with several classical cognitive load estimators to 

validate its effectiveness. 

The rest of the paper is organized as follows. In Section 2, the EEG database 

used for evaluation the performance of the workload classifier has been described. 

The detailed methodology of the SE-SDAE is given in Section 3. Section 4 shows the 

results of the performance of the cognitive load classification. The discussion and 

conclusion has been summarized in Section 5. 

 

2. Experimental data 

The data used in this experiment has been collected on Automation-enhanced 

Cabin Air Management System (Auto-CAMS) in previous studies (Zhang et al., 2015). 

Auto-CAMS is a simulated software system that fulfills the needs of complex HM 



missions by providing an air quality control task in an aircraft cabin. The EEG signals 

of the experimental participants were collected by the Nihon Kohden biomedical 

signal processor and displayed in real0time by Neurofax software. The data 

acquisition experiments are briefly described as follows. It should be noted that the 

details of the Auto-CAMS software are omitted and can be found in (Yin & Zhang, 

2017). 

 

2.1 Experimental participants and setup 

Eight on-campus postgraduate students (male, aged 21-24 years) participated in 

the experiment as volunteers. The experiments were carried out in accordance with 

the guidelines issued by the Ethical Committee of East China University of Science 

and Technology (ECUST). All participants gave written informed consent in 

accordance with the Declaration of Helsinki. Each participant completed Auto-CAMS 

operation training prior to the experiment and was anonymized consecutively with a 

label from S1 to S8. 

The Auto-CAMS platform controls air quality through four subsystems: oxygen 

concentration, carbon dioxide concentration, pressure and temperature. Participant's 

task is to manually adjust the parameters of the failed subsystem and stabilize it 

within the target range. The system can change the complexity of the task by 

manipulating the Number Of Failed Subsystems (NOFS) to meet different cognitive 

load requirements. A greater NOFS value corresponds to a higher task complexity and 

cognitive load level. 

Participants are required to conduct two experimental sessions separately for two 

different days, each of which is divided into eight phases and lasts for 100 minutes. 

The first and eighth stages correspond to the condition of NOFS=0 and last for 5 

minutes. The remaining six stages last for 15 minutes and correspond to the 

conditions of NOFS = 1, 3, 4, 4, 3, 1, respectively. The stages of the NOFS=0 

condition do not require participants to operate and they can be used to verify whether 

the cognitive load level is restored or not after accomplishing an experimental session. 

Note that the condition of NOFS=2 is omitted to prevent a situation in which 



excessive experimental time leads to exhaustion of participants and affection of their 

cognitive load levels. This multi-day scheme with cycle task complexity 

comprehensively capture the cognitive state information and facilitate a fair 

comparison of the classifier performance on the EEG data. 

 

2.2 Neurophysiological data preprocessing 

Eleven electrodes on the scalp of the participants are used to collect the EEG 

data and placed at the positions of F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, O1 and O2 that 

are specified by the 10-20 international system. Each phase of the experiment 

generates a dataset, which contains 450,000 data points corresponding to 11 channels 

with a sampling frequency of 500 Hz. Since each participant conducted two sessions 

of eight-phase experiments, the total number of datasets is 16. 

For each raw EEG dataset, we first eliminate the high frequency muscle noise 

using the 4th order Butterworth IIR filter (with low-pass cutoff frequency of 40 Hz). 

In the second step, we use Independent Component Analysis (ICA) to separate the 

EEG data into Independent Components (ICs). Then, we determine the IC 

corresponding to the maximum er  value as the ocular artifact source and set all its 

values to zeros, where we define the er  as the ratio between the power of the delta 

band (1–4 Hz) and the summation of all frequential bands (1–40 Hz). To achieve 

sufficient temporal resolution, the EEG data is segmented with each of two seconds. 

Two seconds of the filtered EEG data are illustrated in Fig. 1.  
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Fig. 1. Filtered EEG signals in a segment on 11 channels under the sampling frequency of 500 Hz. 
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Fig. 2. Flow chart for data preprocessing 

 

Then, the Fast Fourier Transform (FFT) with a frequency resolution of 0.5 Hz is 

used to calculate the PSD features of each segment. The PSD features were extracted 

within four frequency bands of each channel, i.e., theta (4–8 Hz), alpha (8–13 Hz), 

beta (14–30 Hz) and gamma (30–40 Hz). We obtained a total of 44 frequency domain 

features for the single-channel condition. Additional 16 features can be derived by 

calculating the power differences between the left and right hemispheres of the scalp, 

i.e., F4-F3, P4-P3, C4-C3, and O2-O1. Finally, with the time-domain features of mean, 

variance, zero crossing rate, Shannon entropy, spectral entropy, kurtosis and skewness 



calculated by 11 channels, a total of 137 features were obtained for each EEG 

segment. All the above EEG data preprocessing steps are shown in Fig. 2. 

Note that the EEG features of the second, fourth, fifth and seventh phases of each 

experimental session are selected for training and testing the proposed cognitive load 

classifier. The EEG feature sets of the four phases of a session and a subject are 

merged to form a feature matrix of 1800×137, wherein the 900 data points 

corresponding to the second and seventh phases are determined as low cognitive-load 

level and the remaining data points are determined as high cognitive-load level. 

Finally, 16 EEG feature sets are prepared for further analysis. 

 

3. Methodology 

In this section, we first introduce the algorithms used for building the weak 

learners in the ensemble model and then describe the details of the proposed 

SE-SDAE approach. 

 

3.1 Methods used for building weak learners of the classifier committee 

3.1.1 Stacked Denoising AutoEncoder 

The reconstruction of the data in DAE is achieved through its basic component 

Autoencoder (AE). The architecture of the AE is a shallow neural network with single 

hidden layer and is known as a three-layer multi-layer perceptron. By training the 

equivalent transformation of the input and target output, the hidden layer could 

represent the input features in a different abstraction space. In this study, the 

dimensionality of the hidden layer of the AE is smaller than the dimensionality of the 

EEG features. The reduced dimensionality expression of input can be obtained 

through an DAE model. The transformation between each two layers in AE is a linear 

transformation combined with a mapping of nonlinear activation function. The output 

of the activation in the hidden layer can be computed as follows, 
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In the equation, DR∈x  is defined as the input EEG feature or feature abstraction fed 

to the AE and d

h R∈x  is the vector of activation values in the hidden layer. The bias 

vector and weight matrix correspond to dR∈θ  and d DR ×∈W , respectively. The 

terms D  and d  represent the dimensionalities of the input features and hidden 

feature abstractions. 

Then, the hidden layer to the output layer mapping can be defined by the 

function expressed as, 
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In the equation, the term D

o R∈x  is the output of the AE and it denotes the 

reconstruction of the input EEG feature. Here, the tied weights are employed with 

T D dR ×∈W' = W . The loss of the input and output is represented by the square error 

cost function, 

2
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The Back Propagation (BP) algorithm can be utilized to minimize the above cost 

function and determines the trained values of W , θ , and θ
' . The BP algorithm 

could update the weights of the AE by calculating the partial derivative of the error 

function with respect to the parameters in each neuron until the preset precision or 

maximum number of iterations is reached. By defining the optimized parameters as 

W
* , *

θ , and θ
'* , the trained parameter set of the AE can be represented by the 

following equations with N  denoting the number of training data points. 
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In order to improve the ability of the AE to reduce the noise in multidimensional 

features, we randomly set the input ( )ix  to zero based on a uniform distribution to 



cause some interference before performing the training stage. This procedure can be 

denoted as follows, 

( )( ) ( ) ( )

0 0~ ,i i ipx x x                         (5) 

where the uniform probability density distribution of elicit ( )ix  for 1, 2,...,i D=  is 

defined by p . 

 

 

Fig. 3. Architecture of the SDAE used for EEG modeling. 

 

By implementation of Eqn. (5) for the input features of the AE, a DAE network 

is derived. The essential functionality of DAE is to extract the noise-free, 

low-dimensional embeddings of the input data. Moreover, multiple DAEs could be 

connected together to build a SDAE. That is, after training a DAE, the output of the 



hidden layer is used as input to train another DAE network. The outputs of the 

high-level DAE could abstract compact feature representations of the original inputs. 

Based on such stacked, hierarchical architecture, the output of the nth hidden layer of a 

SDAE can be expressed as, 

( ),( ) ( ) (2) (1) (0) (1) (2) ( )... ( ( ) )... .h n n nf f f x= + + +x W W W θ θ θ          (6) 

Finally, a top layer containing two nodes is added to form a network that can 

indicate binary cognitive load levels. To facilitate supervised machine learning using 

BP algorithm, the output of the SDAE used as a weak classifier can be defined as, 

( ) ( ),( ) (0) .h nf s= + =y Vx v x                     (7) 

In the equation, the value of [1 0]T=y  and [0 1]T=y  represent the low and high 

cognitive load levels, respectively. Given ,( )
nd

h n R∈x , the term 
2 nd

R
×∈V  is defined 

as the output weight matrix and 2R∈v  is the bias vector. The architecture of a 

SDAE is shown in Fig. 3. 

 

3.1.2 K-nearest Neighbors weak learner 

The K-nearest Neighbors (KNN) classifier first finds k training samples that are 

closest to the testing sample. Then it predicts the category of the testing samples 

based on their information of class labels of these neighbor instances. The testing 

sample shown in Fig. 4 is classified into the category ω3 according to its neighbor 

instances, where k = 7.  
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Fig. 4. Schematic of K-nearest Neighbors algorithm. 

 

The closeness is evaluated by using the Euclidean distance between each two 

samples as follows, 
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In the equation, (1) (2) ( )( , ,..., )n=X x x x  represents the training dataset with n instances 

defined. The k data points that are closest to the testing sample can be obtained by 

sorting the ( ) ( )( , )i jd X X  from low to high. The target class labels that defines 

cognitive load levels can be used to estimate the class of the testing sample by 

majority voting. The choice of k value is critical to the generalization capability of the 

model. To determine the optimal k, we compute the training error separately with 

different k adopted and find the parameter corresponding to the minimum error. 

 

3.1.3 Naive Bayesian classifier 

The principle of Naive Bayesian classifier adopted is the Bayesian theorem in 

probability theory. Its role is to describe the relationship between two conditional 

probabilities as shown as follows, 
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( | ) .

( )

P A B P B
P B A =

P A

 
                     (9) 

In the equation, the term ( | )P B A  indicates the probability of event B when event A 

has occurred while ( | )P A B  denotes an opposite case. Naive Bayesian model 

assumes that all the EEG features are independent of each other. By defining the 

features and cognitive load levels as 1 2{ , ,..., }D= x x xx  and 1 2{ , }y y=y , the class 

conditional probability density can be described as follows, 
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In the equation, D  denotes the EEG feature dimensionality and n  is the cognitive 

load level. 



Based on Eqn. (9), the conditional probability of each class can be arranged as 

follows, 
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In the equation, ( ) np  y  and ( | )np  y x   are the prior probability and posterior 

probability of class ny . The difference between them is that the prior probability does 

not need to consider factors of current observations from instances while the 

calculation of the posterior probability predicts an event based on the effect of the 

training instances. 

 

 

Fig. 5. Architecture of the SE-SDAE based on EEG modeling for the cognitive load recognition. 

 

According to Eqn. (11), we can get the probability that a sample belongs to 

cognitive load level ny , 
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For a sample to be tested, we calculate the posterior probability corresponding to the 

different classification labels of cognitive load. The label with the largest posterior 

probability is the predicted category of the testing sample of multidimensional EEG 

features. 

 

3.2 Stacking-based ensemble of SDAE 

The primitive methodologies of ensemble learning can be summarized into three 

basic categories, i.e., bagging, boosting and stacking. Bagging and boosting employ 

parallel and serial calculation methods for training the classifier committee, 

respectively. On the other hand, the core idea of stacking is to implement k-fold 

cross-validation technique to learn different member classifiers. The merit of 

cross-certification is to effectively avoid over-fitting problem caused by limited size 

of training samples. In this study, we applied five-fold cross validation to build our 

SE-SDAE model for cognitive load recognition. 

The architecture of the proposed SE-SDAE is illustrated in Fig. 5. The training 

of the SE-SDAE model mainly includes the following steps: 

In the first step, the training set { , }tr trA = X Y  is divided into J, non-overlapped 

subsets with equal size according to the temporal order of samples. Select one of them 

as a validating subset, the rest are used to learning the SDAE model. The subsets of 

the EEG features are denoted as (1) (2) ( ){ , ,..., }JA A A . The value of J is predetermined 

as five. 

Then, the five-fold cross validation is carried out. In total 1J −  subsets are used 

to train SDAE, the output can be computed as, 
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Based on the learned model ( )jfɶ , cognitive load levels of the validating subset j and 

the testing set are separately predicted as, 
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In the equation, ( )tr jX  and 
teX  are the feature vectors of the validating subset j and 

the testing set, respectively. The terms ( )j

sZ  and ( )j

sG are their predicted values of the 

cognitive load. Since the value of J is set to five, the above steps are repeated five 

iterations in total. That is, a set of the predicted values on the validating sets and the 

testing set are derived as 
(1) (2) ( ){ , ,..., }J

s s sZ Z Z  and 
(1) (2) ( j){ , ,..., }s s sG G G , respectively. 

Finally, the predicted values ( )j

sZ  are concatenated to generate a new feature matrix 

'
A . At the same time, the mean of the five-dimensional predicted values of the testing 

EEG feature set is used to build another feature matrix 
'

B . 

 

Table 1. Pseudo codes for learning a cognitive load classifier based on the SE-SDAE 

Algorithm: SE-SDAE 

Inputs: Training set, { , }tr trA = X Y  

 Testing set, { , }te teB = X Y  

 Learning algorithms excluding SDAE, 1 2, ,..., Tℓ ℓ ℓ  

 Number of SDAE's hidden layers, M  

 Dimensionality of the EEG features, D  

 Number of training data points, N  

 Number of base classifiers, T  

Output: Ensemble classifier, (1) (2) ( ) (1) (2) ( ) ( )

(1) (1) (1) ( )
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After the above computations are completed, we build T additional classifiers 

1 2, ,..., Tℓ ℓ ℓ  with heterogeneous structure excluding the SDAE as the base classifiers. 

During each iteration, the training, validating subsets and the testing set remain 

unchanged. Then, the T paired feature matrices generated by the heterogeneous base 

classifiers are connected in parallel with 
'A  and 

'B . The target cognitive load 

labels are added for supervised learning. The feature matrices 
'A  and 

'B  are 

considered as input features during training and testing of the whole SE-SDAE, 

respectively. The functionality of the two matrices is to indicate cognitive load levels 

for the secondary classifier. The pseudo codes of all the above steps is shown in Table 

1. 

Stacking essentially employed a multilayered structure that is similar to the 

neural network with each node replaced by a base learner or secondary classifier. The 

effectiveness of stacking mainly comes from feature abstraction from different 

training subsets based on cross validation. Different base classifiers express the 

representation of different features through a heterogeneity classification committee. 

Therefore, the novelty of the proposed SE-SDAE lies not only in the effect of 

multi-layer stacking but also the enhanced learning ability from different types of the 

training algorithms. It implies the SE-SDAE has a potential to achieve superior 

performance. However, with the increase of the number of layers in the member 

SDAE classifier, SE-SDAE faces a serious over-fitting risk. It is the reason that only 

two hidden layers has been adopted. 



 

4. Results  

In this study, eighty percent of the EEG data is used to build a training set with a 

size of 23040×137 and the rest is used for testing the classifier's performance 

5760×137. To identify the optimal structure of the SDAE, we first examine the 

number of hidden layers in Fig. 6. In the figure, SEN, SPE, NPV, PRE, FH, FL, and 

ACC denote the average sensitivity, specificity, negative predicting value, precision, 

F1-score of high class, F1-score of low class, and accuracy, respectively. For the 

SDAE classifier, the batch size and the learning rate are selected as 32 and 1, 

respectively. It is shown that the two hidden layers could achieve sufficient 

generalization capability. 
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Fig. 6. Classification performance of the SDAE with different number of hidden layers. 
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Fig. 7. Training performance of different hidden layer neurons in SDAE. The value of z denotes 

the number of hidden neurons in the second hidden layer. 

 

10 20 30 40 50 60 70 80 90 100 110 120 130
0.65

0.675

0.7

0.725

0.75

0.775

0.8

Number of neurons in the first hidden layers

T
e
s
ti
n
g
 A

C
C

 

 

z = 10

z = 20

 

Fig. 8. Testing performance of different hidden layer neurons in SDAE. The value of z denotes the 

number of hidden neurons in the second hidden layer. 

 



By varying the number of first hidden layer neurons of the SDAE, we have also 

investigated different training ACC and testing ACC to determine the optimal hidden 

neurons in the SE-SDAE. The corresponding results are shown in Figs. 7 and 8. The 

value of z  represents the number of second hidden layer neurons, where two 

different values have been examined. 

From the figure, it is shown that both the training and testing ACC improve 

along with the increase of the number of hidden neurons. However, when such value 

is greater than 40, the testing performance remains stable. The reason behind is that 

the potential overfitting of the deep neural network for coping with high dimensional 

EEG features. It is noted that the SDAE has the best training ACC when the number 

of neurons in the first hidden layer is selected at 120 with z  = 20. Therefore, we 

adopted the value as the optimal hyper-parameter of the SDAE network for the 

cognitive load classification. The training ACC and test ACC corresponding to this 

parameter are 0.9280 and 0.7783, respectively. 

 

Table 2. Detail classification performance of the cognitive load by the SE-SDAE and the classical 

SDAE. 

Classification 

Metrics 

SDAE 
One-dimensional stacking of the 

SE-SDAE 

Two-dimensional stacking of the 

SE-SDAE 

Training Testing Training Testing Training Testing 

SEN 0.9169 0.7722 0.7753 0.8207 0.7742 0.8212 

SPE 0.9395 0.7851 0.7538 0.8023 0.7590 0.8069 

NPV 0.9156 0.7549 0.7815 0.8343 0.7776 0.8336 

PRE 0.9405 0.8009 0.7471 0.7867 0.7554 0.7931 

FH 0.9286 0.7863 0.7609 0.8033 0.7647 0.8069 

FL 0.9274 0.7697 0.7674 0.8180 0.7682 0.8201 

ACC 0.9280 0.7783 0.7642 0.8109 0.7664 0.8137 

Note: The optimal testing performance is marked in bold. 

 

Table 3. Performance comparison between the SE-SDAE and classical cognitive load classifiers.  

Cognitive classifiers Training accuracy Testing accuracy 

SDAE 0.9280 0.7783 

KNN 0.7916 0.7658 

Naive Bayes 0.6978 0.6977 

Logistic regression 0.7812 0.7828 



Cognitive classifiers Training accuracy Testing accuracy 

Extreme learning machine 0.8256 0.7724 

Discriminant analysis classifier 0.7694 0.7677 

One-dimensional stacking of the SE-SDAE 0.7642 0.8109 

Two-dimensional stacking of the SE-SDAE 0.7664 0.8137 

Note: The optimal testing performance is marked in bold. 

 

After we selected the SDAE as the base classifier, the KNN algorithm is used as 

the secondary classifier in based on the stacking scheme to training the SE-SDAE 

model (denoted as one-dimensional SE-SDAE). When comparing the model 

performance of the SE-SDAE with the classical SDAE, KNN, Naive Bayesian model, 

logistic regression, extreme learning machine, and discriminant analysis classifier, we 

found that the testing accuracy of the one-dimensional model of the SE-SDAE has 

increased. The corresponding results are listed in Table 2. 

To further improve the performance of the SE-SDAE, we have tried several 

different architectures of the stacking network. For instance, we have used SDAE as 

the secondary classifier and KNN as the base classifier. We also tried to use Naive 

Bayesian model as the base classifier and KNN as the second order classifier. But 

these attempts have produced a negative results. In the end, we designed a 

two-dimensional integration model with KNN as the secondary classifier was while 

the SDAE and Naive Bayesian classifiers are simultaneously used as the base learners. 

The last trained model achieved the desired results, as shown in Table 3. The potential 

reason that the two-dimensional model achieves a higher accuracy is the improvement 

of the diversity of the ensemble classification committee. 

 

Table 4. Performance comparison of different base classifiers in the SE-SDAE. 

Index of the 

SDAE model 

Training 

accuracy 

Testing 

accuracy 
Index of the NB 

Training 

accuracy 

Testing 

accuracy 

1 0.9192 0.7987 1 0.6988 0.6989 

2 0.9268 0.7945 2 0.7051 0.7050 

3 0.9283 0.7967 3 0.6974 0.6892 

4 0.9209 0.7988 4 0.6948 0.6929 

5 0.9218 0.7979 5 0.6905 0.6992 

 



Note that the ensemble model of the SE-SDAE requires to train its base classifier 

on five iterations because of the implementation of the cross validation technique. In 

order to observe the performance difference of the SE-SDAE and each member 

classifiers. We preserved the experimental precision of all five training iterations of 

the base classifiers for the naive Bayesian (NB) model and SDAE in Table 4. The 

performance improvement of the SE-SDAE can be found by comparing the results of 

Tables 2 and 3. It is noted that each base SDAE can achieve significantly higher 

performance than that of the NB classifier. It partially validates the effectiveness to 

employ the SDAE and the base learner. 

In the end, we list the performance of the proposed SE-SDAE classifier of each 

subject for binary cognitive load classification in Table 5. In general, the training 

accuracy is significantly higher than the testing accuracy. For specific subject, e.g., 

Subject #4, relatively low performance is observed. The results indicate individual 

difference may severely impair the generalization capability of the ensemble model. 

The testing classification accuracy on Subject #1, #2, #6, and #7 achieves satisfactory 

performance. The observation indicates the neurophysiological responses of these 

individuals are consistent with the variation of the task demand in the simulated 

human machine systems. The cortical activities can be well modeled based on the 

deep and ensemble learning approaches. 

 

Table 5. Performance of the SE-SDAE classifier on each subject. 

Index of the Subject SEN SPE NPV PRE FH FL ACC 

1 
Training 0.9937 0.9945 0.9938 0.9944 0.9941 0.9941 0.9941 

Testing 0.9311 0.9160 0.9290 0.9185 0.9248 0.9224 0.9236 

2 
Training 0.9965 0.9986 0.9965 0.9986 0.9976 0.9976 0.9976 

Testing 0.9505 0.9635 0.9501 0.9638 0.9571 0.9568 0.9569 

3 
Training 0.9814 0.9930 0.9813 0.9930 0.9872 0.9871 0.9872 

Testing 0.8624 0.8889 0.8539 0.8956 0.8787 0.8711 0.8750 

4 
Training 0.9790 0.9800 0.9794 0.9797 0.9793 0.9797 0.9795 

Testing 0.7493 0.7304 0.7283 0.7513 0.7503 0.7294 0.7403 

5 
Training 0.9923 0.9876 0.9924 0.9875 0.9899 0.9900 0.9899 

Testing 0.8636 0.8478 0.8667 0.8444 0.8539 0.8571 0.8556 

6 
Training 0.9894 0.9870 0.9897 0.9866 0.9880 0.9884 0.9882 

Testing 0.9010 0.9018 0.8886 0.9129 0.9069 0.8951 0.9014 

7 Training 0.9896 0.9958 0.9896 0.9958 0.9927 0.9927 0.9927 



Index of the Subject SEN SPE NPV PRE FH FL ACC 

Testing 0.9008 0.9135 0.8955 0.9180 0.9093 0.9044 0.9069 

8 
Training 0.9909 0.9896 0.9910 0.9896 0.9903 0.9903 0.9903 

Testing 0.8781 0.8719 0.8768 0.8733 0.8757 0.8743 0.8750 

 

According to the classification accuracy, the SE-SDAE can be effectively 

constructed, by using stacking principle on three types of classifiers with different 

learning structure, i.e., SDAE, NB and KNN models, to recognize variations of low 

and high cognitive levels indicated by multidimensional EEG features. The results 

comparison demonstrates that the SE-SDAE can further improve the testing accuracy 

against several classical shallow and deep workload estimators. At the level of the 

base classifiers, the two-dimensional fusion scheme integrating both SDAE and KNN 

achieved the best testing accuracy. 

For the computational cost, the SDAE requires the lowest training time while the 

SE-SDAE with two-dimensional scheme took the highest training time. The potential 

reason is that the ensemble model with stacking architecture need to optimize multiple 

base classifiers as well as the secondary fusion classifier. It is also known that the 

KNN is a non-parametric learning machine and requires examining all training 

instances to provide a predicted class. This procedure has also occupied more 

computational resource. 

We also compared the accuracy of the SE-SDAE with a single subject's data used 

for training and testing. It is found that the subject-specific performance of most 

classifiers is superior to the accuracy of the subject-specific case. The reason that the 

subject-specific model of cognitive load possess better accuracy may be the higher 

correlation between the EEG features and the control conditions of the same subject. 

On the other hand, Naive Bayesian model has the worst accuracy. It implies that 

Naive Bayesian classifier is not suitable for samples with non-independent EEG 

features. However, adding Naive Bayesian model to the classifier committee of the 

SE-SDAE based on the two-dimensional structure can improve the final classification 

accuracy. It can be seen that the two-dimensional structure itself has the ability to 

combine the different learning advantages of each model. 

 



5. Conclusions 

In this study, we present a new approach, SE-SDAE, to evaluate the human 

cognitive load based on the cortical EEG signals. The EEG has been carefully filtered 

and preprocessed to remove the muscular noise and find the neural responses under 

different conditions of the cognitive task. Both of the frequency and temporal features 

of the EEG data have been extracted. In the SE-SDAE framework, the stacking-based 

ensemble method has been employed to effectively model the mappings between the 

high-dimensional EEG features and the cognitive load levels. In particular, a 

heterogeneous classification committee including KNN and naive Bayesian classifiers 

has been introduced to improve the model generalization performance. The limitation 

of the present study may lies in two aspects. On one hand, the improvement in 

classification accuracy of the SE-SDAE is not significant compared to the SDAE. The 

essential of the stacking-based fusion scheme is the cross-validation, which avoids the 

over-fitting of data but decrease the size of training sample in each training iteration. 

In the future work, we will look for the ways to improve the shortcomings of the 

stacking fusion strategy in the SE-SDAE. 
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