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Abstract: In this work, we theoretically study the optical properties of a graphene nanoribbon with
a quantum dot (QD) on it. The system consists of a graphene nanoribbon with dimensions of
400 × 3100 (nm2) and a quantum dot with a nanoscale radius. The quantum dot is symmetrically
located at the center of the graphene nanoribbon to simplify the mathematical model. To calculate the
optical properties (susceptibility) of the system, a broadband electromagnetic wave (0.5–2.5 µm) is
applied to the structure to model dipole-dipole interaction. Considering the input field and calculating
the total induced polarization, the optical susceptibility of the system is calculated. The applied
electromagnetic field excites the surface plasmon on the graphene nanoribbon and the excitons of
QDs. The induced dipoles in the graphene nanoribbon and the QD will interact with each other. We
show that the parameters of both materials strongly influence dipole-dipole interaction. In particular,
the effect of QDs (location on graphene and radius) on the optical properties of the considered system
was studied. The obtained results can be used to introduce periodic optical structures in nanoscale
by inserting QDs in a periodic array on graphene nanoribbon. Additionally, applications such as
reflectors, couplers, and wavelength filters can be designed. Considering the presented theoretical
framework, we can describe all the optoelectronic and optomechanical applications of complex
nanoscale graphene and QD systems.

Keywords: total susceptibility; graphene nanoribbon; quantum dot; surface plasmon; bipolar interaction

1. Introduction

The interaction of light with nanostructures has unique properties that can be used in
discrete optical devices in or integrated at the nanometer scale [1]. The number of hybrid
systems using nanostructures is very large, and thus this area is of great interest for both
research and industry [2]. In this paper, we study the basic theory of surface plasmons in a
system comprising a graphene nanoribbon with a QD placed on it using modeling based on
the interaction of that polarization with the exciton created in the semiconductor quantum
dot. The principle of this study is the interaction between the exciton in the semiconductor
quantum dot and the polarization of the surface plasmons formed at the metal-insulator
boundary [3]. Extensive fields of applications can be addressed by controlling the effects of
these interactions at the nanometer scale [4].

Surface plasmons are created by applying electromagnetic waves to the surface of
a graphene nanoribbon. The induced plasmons on the graphene nanoribbon excite the
exciton in the quantum dot, displacing the electron distribution in the QDs; thus induc-
ing a dipole in the quantum dot. Therefore, the electric field generates dipoles in the
graphene nanoribbon and quantum dot. The electric field created by the quantum dot on
the graphene nanoribbon is due to the polarization of the QD induced by the surface plas-
mons on the graphene. The numerical simulations show that a periodic optical structure is
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obtained by placing quantum dots on a graphene nanoribbon in a periodic array. This idea
could lead to several interesting applications in classical and quantum optical integrated
circuits [5,6]. The massive oscillations of electrons cause surface plasmon polarization in
graphene nanoribbons in the conduction band due to the dielectric difference between the
graphene and the surroundings media. Plasmonics have been studied extensively due to
their applications in optical sensors [7,8], optical switches [9], nano tracks [10], and quan-
tum information processing [11,12]. Noble metals are the best materials in existence for
studying surface plasmon polaritons [13]. However, noble metals are difficult to adjust, and
exhibit high ohmic losses, limiting their application in optical processing devices [14,15].
Graphene plasmons are an attractive and suitable alternative to noble metal plasmons, be-
cause they show plasmon transport over a relatively long distance. In addition, the surface
plasmons in graphene have the advantage of being regulated by electrostatic gates [5,9].
Compared to noble metals, graphene has extraordinary optical, electrical, and mechan-
ical properties that originate in part from its zero-mass charge carriers [16]. Graphene
is also known as supporting photonic material in emerging optoelectronic applications.
Thus, graphene has received much attention in plasmonic research, both theoretically and
experimentally [17–19].

Recently, experimental research has expanded to the fabrication and study of QD–
graphene nanostructures [5,20]. These structures could make a significant contribution to
the formation of plasmonic waveguides. Different types of graphene-based waveguides,
such as strip structures [21,22], cheek and groove waveguides [23,24], graphene–metal
structures [25], and multilayer graphene [26–28], have been studied and exploited.

This paper applies electromagnetic theory and the effects of bipolar fields to model
dipole–dipole interaction in a graphene–QD system. Using the presented model, the
absorption coefficient and surface plasmons of graphene nanoribbon are calculated. The
second part of this paper presents an analytical and computational approach for computing
the plasmon frequency of graphene. Additionally, the effect of graphene surface plasmons
and QDs on the optical properties of the system is investigated. The third section introduces
a periodic optical structure with quantum dots on graphene nanoribbon. The proposed
combination can be used in classical and quantum optical and mechanical applications.

2. Theoretical Formulation
2.1. Plasma Frequency and Surface Plasmons Polarization of Graphene

Recently, graphene, a one-atom-thick material composed of carbon atoms arranged in
a hexagonal lattice, was introduced as a flat (metal-like) plasmonic material. This matter (as
an infinitesimally thin, nonlocal two-sided surface) is characterized by a magneto-optically
complex conductivity tensor. Under these conditions, the elements of this matrix become
independent of microscopic, semi-classical, and quantum mechanical considerations. The
combined conductivity of graphene in the absence of magnetic bias is as follows [19].

σg = σintra + σinter = i
e2KBT

π}2(ω + i2Γ)
×
(

µc

KBT
+ 2 ln(e

−µc
KBT + 1)

)
+ i

e2

4π} ln
(

2|µc| − }(ω + i2Γ)
2|µc|+ }(ω + i2Γ)

)
(1)

where ω, Γ, µc, KB and T are the radian frequency, the charged particle scattering rate repre-
senting the loss mechanism, the chemical potential of the graphene, the Boltzmann constant
equal to KB = 8.617× 10−5ev.K−1, and temperature equal to three hundred degrees Kelvin
(T = 300 K), respectively. In general, the scattering rate is a function of frequency, tem-
perature, field amplitude, and landau level index. The chemical potential with respect to
the density of charged carriers can be controlled by chemical doping or by applying a dc
bias voltage. Considering the Maxwell equation ∇× H = J + iωε0E =

(
σg,v + iωε0

)
E, an

equivalent complex permittivity for the graphene layer is given as follows:

εg = 1− i
(

σg

ωdε0

)
=

(
σ∗imag

ωdε0
+ 1

)
− i
(

σ∗real
ωdε0

)
(2)
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Please note that d is the thickness of the graphene layer. Now the dispersion relation for
the proposed structure is derived. In this study, the thickness of the graphene nanoribbon
(d) is minimal, and in the numerical simulation step, it is d→0. For the given value of d,
the volume conductivity can be defined as described in [9,19]. Based on the free-electron
theory and Drude model, the permittivity and conductivity of graphene nanoribbon are
frequency-dependent. The most critical parameter in this model is the plasma frequency.
At plasma frequency, the real part of the permittivity should be equal to zero. Therefore,
the plasmon frequency is a critical factor used in device design. We show that the plasmon
frequency changes when modifying the chemical potential of graphene [2,6]. This feature
of graphene increases its importance in nanoscale device design, especially for plasmonic
devices. To perform the analysis, it is necessary to compute the relationship between the
plasmon frequency and the chemical potential of graphene. Thus, the real part of Equation
(2) is equal to zero; then, it is possible to obtain the plasmon frequency in terms of chemical
potential. Therefore, first, we draw the real part of the permittivity of graphene for different
chemical potentials versus frequency. Then, we calculate the frequencies of zero real part of
permittivity (according to Figure 1). These are the plasmon frequencies of the graphene
nanoribbon proportional to each chemical potential.

Figure 1. The real part of permittivity versus energy level with the chemical potentials of graphene
(chemical potential is increased from 0.1 to 1 eV from left to right).

Table 1 shows the change in the chemical potential of graphene nanoribbon versus
energy. Table 1 is extracted considering Figure 1 (numerical values for plasmon energy) as
follows. Figure 1 shows the diagram of the real part of the graphene dielectric coefficient in
terms of frequency. We changed the chemical potential of graphene from 0.1 to 0.9 eV and
then the real part of the dielectric coefficient is demonstrated in Figure 1. The points where
these curves intersect the frequency axis are the frequencies that correspond to the zero
value of the real part of the permittivity. Thus, these frequencies represent the graphene
plasmon frequency for different chemical potentials. We read the frequency of these points
and placed them in Table 1.

Table 1. Graphene plasmon energy in terms of chemical potential.

Chemical Potential (eV) Plasmon Energy (eV)

0.2 55.87
0.4 88.22
0.6 104.4
0.8 110
1 121
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Figure 2 illustrates chemical potential versus Fermi energy level. As is clear, because
of free carriers such as electrons, a plasma model is used to describe the physical behavior
of the graphene 2D matter, which is strongly dispersive.

Figure 2. Chemical potential versus input wave energy in graphene.

To calculate the induced polarization in graphene nanoribbon due to an externally
applied electric field, the harmonic oscillator model for electrons is used, and then the
harmonic differential equation is solved, and the displacement of electric charge is calcu-
lated. Then, the polarization of all of the electric charges is formulated in consideration of
the mentioned dipole model. Finally, the polarization of the nanoribbon can be written as
follows [14].

p̃g = −
ε0ω2

p(µc)

(ω2 + i2Γω)

→
E = −D(ω, µc)

→
E (3)

The whole structure under analysis is illustrated in Figure 3, which shows the polar-
ization induced on the surface of the graphene.

Figure 3. The structure under study with induced polarization.

The origin of the coordinate system is at the center of the nanoribbon. Additionally,
based on plasmon polarization theory, the center of each dipole on the surface is located at

Xi = − Lx
2 + (2i− 1)

λe f f
4 . In the equation, λe f f is defined as the effective wavelength on the
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graphene plate [14]. According to Figure 3, the polarization of the graphene nanoribbon

was calculated, and was found to be equal to
→
P = (−1)iax p̃g

x.

2.2. Interaction between the Graphene Nanoribbon and the Quantum Dot

Electromagnetic waves will have significant effects on the two materials in question.
In QDs, electromagnetic waves excite excitons, and in the graphene nanoribbon, electrons
will be transferred from the lower to the higher excitation level when the frequency of
the electromagnetic wave resonates with the QD. This causes a change in the electron
cloud, which no longer has a symmetric wave function, resulting in a bipolar momentum.
Furthermore, the field on the graphene plate excites the surface plasmon modes. The
electrons move in the opposite direction of the field and form a dipole moment that is
positive and stationery. Thus, the incident electric field (Ex = E0 cos(ωt)) induces a dipole
moment at the quantum dot and forms surface polarizations on the graphene plate as
well. It is a given that a dipole structure creates an electric field in its surroundings

(Edipole = 1
4πεbR3

(
3
→
R .
→
P

R2

→
R −

→
P
)
) [6,29], which is calculated separately from the main field.

Therefore, the dipole field generated by the graphene nanoribbon in the center of the
quantum dot can be calculated in three directions, as follows, which is obtained from the
surface plasmons.

Eint−g
x = D(ω)E0

4πεb

n=[ 2Lx
λ ]

∑
i=1

(−1)i

R3
i

[
3
(

xQD−xi
Ri

)2
− 1
]

Eint−g
y = 3D(ω)E0

4πεb
yQD

n=[ 2Lx
λ ]

∑
i=1

(−1)i

R5
i

(
xQD − xi

)
Eint−g

Z = 3D(ω)E0
4πεb

rQD

n=[ 2Lx
λ ]

∑
i=1

(−1)i

R5
i

(
xQD − xi

)
(4)

where Ri represents the distance between the axis of surface polarization and the center of

the quantum dot (|Ri| =
√((

xQD − xi
)2

+ yQD
2 + r2

QD

)
), and εb is the permittivity of the

medium surrounding the QD–graphene system.
Similarly, the dipole created in the quantum dot induces an electric field around itself.

Figure 4 shows the polarization induced in the quantum dot after the input wave is applied.
The distance from the dipole in the QD to the point on the graphene plate is represented by

R. |R| =
√((

xQD − xg
)2

+
(
yQD − yg

)2
+ r2

QD

)
.

Figure 4. The structure under study and the polarization of the quantum dot.
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Considering Columbus’s law and the incident applied electric field, the electric field

in the surrounding medium induced by the polarization in the QD (
→
P

QD
= p̃Q

x X̂) can be
obtained as follows.

Eint−QD
x = 3p̃QD

4πεbR3

((
xQD−xg

R

)2
− 1

3

)
Eint−QD

y = 3p̃QD

4πεbR5

(
xQD − xg

)(
yQD − yg

)
Eint−QD

z =
3p̃QDrQD
4πεbR5

(
xQD − xg

) (5)

The electric field acting on the graphene nanoribbon is the sum of the applied fields
(Ex) and the consequent field resulting from quantum dot polarization (EQD

int ). Additionally,
the polarization occurring in the quantum dot originates from a set of two fields: the
first is the applied electric field (Ex), and the second is the effect of the polariton field of
the graphene surface plasmon (Eg

int). Thus, the total field is the sum of the induced and
incident fields.

Eg = Ex + EQD
int

EQD =
(Ex+Eg

int)
εbd

(6)

Here, εbd = 2εb+εd
3εb

, and εd is the permittivity of the quantum dot.
According to the boundary conditions (xg = xQD, yg = yQD), the tangential electric

fields between these two quantum materials must be equal to each other; therefore, the
amount of polarization induced in the quantum dot can be calculated as follows.

EQD
t = Eg

t → EQD
x = Eg

x ⇒ 1
εbd

(
1 + D(ω)

4πεb
Bx

)
E0 = E0 − p̃QD

4πεbr3
QD

p̃QD = 4πεbr3
QD

(
εm − D(ω)

4πεbεbd
Bx

)
E0, εm = 1− 1

εbd

(7)

Here, we should introduce the constant B. This constant is equivalent to the po-
larization effect of the graphene surface plasmons on the polarization of the quantum
dot, which is referred to as the interaction constant, and which is equivalent to (Bx =
n=[ 2Lx

λ ]

∑
i=1

(−1)i

R3
i

[
3
(

xQ−xi
Ri

)2
− 1
]

). According to the amount of polarization obtained in the

quantum dot, the total field induced on the graphene nanoribbon can also be obtained.
Meanwhile, the susceptibility of the system is obtained on the basis of the polarization of
the graphene. The following relation expresses the susceptibility of the structure.

p̃g
x = ε0χeEg

x → χe =

(
−D(ω)

ε0

)(
E0

Eg
x

)
(8)

Considering the presented theoretical model, the interaction between the QD and the
graphene nanoribbon is modeled. To better understand the formulas and physics of the
model, we simulated the results of these calculations numerically, and present the results
in the following section.

3. Results

We theoretically studied the interaction of the QD and the graphene nanoribbon in
the previous section. To demonstrate this quantitatively, we use numerical calculation.
For the evaluation of the system and the numerical study, the input electromagnetic field
amplitude was 1 (V/m). The graphene nanoribbon had a thickness of 1 nm and an area of
3100 × 400 nm2. Additionally, the QD had a different radius of around 100 nm. Interaction
between these materials in the presence of an input electric field excites the surface plasmon
waves on the graphene nanoribbon. The geometry of the graphene nanoribbon and the
frequency and amplitude of the input electromagnetic field are basic factors in the strength
of the surface plasmon waves.
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Therefore, the susceptibility of the structure (xg = Lx
2 , yg = 0) considering Equation (8)

is frequency dependent, as shown in Figure 5.

Figure 5. The real (a) and imaginary (b) parts of susceptibility versus frequency for different values
of chemical potential.

Susceptibility has two parts, real and imaginary (Equation (8)), which express the
effective refractive index and absorption coefficient in the structure. Figure 5 considers
three different values for the chemical potential, a quantum dot with a radius of 100 nm,
and a dielectric constant of 12. Figure 5 shows that variation in the chemical potential has a
negligible effect on the imaginary part, while its effect on the real part is significant. It can
be seen that when varying the Fermi level or introducing electrons onto the surface of the
graphene, the refractive index of the structure changes and is adjusted.

Since the induced electric field on graphene by QD is position dependent, the optical
properties of the nanoribbon, such as susceptibility, will also be position dependent. This
phenomenon is illustrated in Figure 6. This is a three-dimensional curve that shows the
real and imaginary parts of susceptibility versus the length and width of the graphene.

Figure 6. (a) Real and (b) imaginary parts of susceptibility for a chemical potential of 0.3.

It is notable that the susceptibility is position dependent. For simplicity, it is assumed
that the QD’s position changes on the central line of the graphene nanoribbon. Additionally,
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Figure 7 illustrates the effect of the radius of the QD on susceptibility. In graphene, the
amount of the Fermi layer is also important.

Figure 7. Effect of quantum radius on (a) real part and (b) imaginary part of the susceptibility
(rQD = 50, 100, 150, 200 (nm)) .

The simulated results show that the real and imaginary parts of the susceptibility
are localized, and narrow with decreasing QD radius. This is related to the polarization
induced by the QD on graphene nanoribbon. The real and imaginary parts have maximum
and minimum values, depending on the location of the QD.

Figure 8a,b show the effect of the permittivity of the quantum dot on susceptibility
by changing the material type. It can be observed that when quantum dots with a smaller
dielectric coefficient are used, the amplitude of the susceptibility peaks decreases. The
dielectric coefficient represents the degree of polarization of the material [2]. Materials
with a higher dielectric coefficient will have a higher degree of polarization, and eventually,
the field they induce will be larger [2]. It is worth mentioning that when changing the
permittivity of the graphene, the induced field and the susceptibility of the QD will change
in a manner similar to the previous case.

Figure 8. Effect of the permittivity of the quantum dot with radius 100 nm on (a) real and (b) imaginary
parts of susceptibility.
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The location of the quantum dot has an effect on the amount of field induced on
the graphene plate. Therefore, we move the quantum dot along the x- and y-axes, and
determine the way in which the susceptibility changes. The results are reported in
Figures 9 and 10. Figure 10 depicts the effect on susceptibility of moving the QD along
the y-axis.

Figure 9. The (a) real and (b) imaginary parts of susceptibility for two different modes of quantum
dot (rQD = 100 (nm), εb = 12).

Figure 10. The (a) real and (b) imaginary parts of susceptibility for different positions of QD
(εb = 12, rQD = 100 (nm)).

As shown in Figure 9, when the distance of the QD from the center of the graphene
(yQD = − Ly

4 , 0, Ly
4 , xQD = 0) nanoribbon increases, the susceptibility decreases. It should

be mentioned that the maximum peak is displaced from the center of the nanoribbon to the
center of the QD.

By changing the location of the quantum dot on the x-axis (the central length of the
nanoribbon) and in three different places (xQD = − Lx

4 , 0, Lx
4 , yQD = 0), the susceptibility

is calculated, as shown in Figure 10. Considering Figure 3 and the coordinate system, the
origin of the coordinate system was placed at the center of the quantum dot. The quantum
dot is moved along the x-axis (while in the y-direction, it remains in the center of the
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nanoribbon). As the quantum dot moves along the x-axis, the susceptibility of the system
shifts in the same direction.

There are three maximums for susceptibility, depending on the position of the QD.
As shown in Figure 10, the susceptibility only shifts in the direction of the location of

the quantum dot. This characteristic may serve as a tool for realizing periodic quantum
structures and facilities for studying the optical and electrical properties of different periodic
and aperiodic quantum nanophotonic structures.

4. Discussion

In this work, using numerical simulation, we showed that placing a QD on a graphene
nanoribbon is a way to manage the optical and electrical properties of these 2D materials.
The physics of the system involve dipole–dipole interactions between the QD and the
graphene nanoribbon. Inserting a QD on a graphene nanoribbon changes the electron
distribution on the graphene. Therefore, the optical and electrical properties change,
and can be controlled. In Figure 1, the dispersion property of graphene nanoribbon
is demonstrated. Since the graphene nanoribbon has a lot of free carriers, it is clear
that the optical and mechanical properties show dispersion behavior and are frequency
dependent. This property can be described by the harmonic oscillator model for electrons.
In Figure 2, the chemical potential frequency dependency is demonstrated. Based on the
above-mentioned description, the frequency dependency is acceptable.

In Figure 5, the effect of the chemical potential on susceptibility is presented, and it
is shown that with increasing chemical potential, the density of free electrons above the
Fermi level decreases and so the real part of the susceptibility increases too, and in this
case, the graphene nanoribbon operates as a semiconductor.

In Figure 6, the effect of the dimensions of the graphene nanoribbon on its optical
properties is studied and demonstrated.

In Figure 7, the effect of the radius of the QD on susceptibility is demonstrated, and
it is shown that when the radius is decreased, and the susceptibility is perturbed a little,
but this is only limited to QD’s area. It is clear that when the radius is low, the penetration
distance of the dipole effect decreases.

In Figure 8, the effect on the susceptibility of the system of the QD consisting of a
material type with higher permittivity is studied, and it is shown that with increasing
permittivity of the QD, there is an increase in the susceptibility of the system, too. It can
be concluded that with increasing permittivity of the QD, the induced polarization on
graphene nanoribbon increases, too, because the dipole moment of the QD is greater than
in cases with lower permittivity.

Figures 9 and 10 present the effect of the QD’s displacement on the susceptibility of
the system. It is shown that with the displacement of the QD along the axis of the graphene
nanoribbon, the susceptibility shifts in that direction. It is well known that the cause of
perturbation is the QD, and so we expect that when displacing the QD, the susceptibility
will be displaced with respect to the normal situation.

In order to validate the present work, it is necessary to provide a detailed explanation.
In paper [30], we demonstrated that if a molecule is placed on a graphene layer, the
mechanical, electrical, and optical properties change. In Figure 1, it can be seen that the
surface of the graphene layer changes. In Figure 2b, it can be seen that the density of
the states changes, and so the optical properties must also change. These results were
simulated by the Material studio. Then, these results were validated by experiment, and
the results are shown in Figure 4. Thus, it was proved that a molecule on the graphene
layer causes changes in electrical, optical, and mechanical properties, because the density
of states changes.

In [31], noncovalent functionalization of graphene with various species, including
biomolecules, polymers, quantum dots, and metals, was investigated for use in energy
materials, biosensing, and biomedical applications.
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In Figure 13, the force between graphene and species was calculated. This force is
due to dipole–dipole interaction. Thus, the existence of the force in Figure 13 validates
the proposed theoretical work modeling the interaction between QDs and graphene. In
Figure 14, it can be seen that the Raman spectra of the system change when a specimen is
placed on the graphene layer. This is another validation of our work. We modeled exactly
how this interaction is able to describe these effects.

In [32], the dipole–dipole interaction was used to describe the effect of Au nanoparti-
cles on graphene, and this provided another validation of our theoretical approach.

In [33], which is a review paper, experimental and theoretical methods for the func-
tionalization of the graphene layer were investigated, and the electrical properties of the
modified graphene were investigated. In this paper, it was shown that covalent and non-
covalent modification have different effects on the optical and electrical performance of
the system.

In [34], the effect of an organic molecule on the graphene layer was theoretically
investigated. It was shown that P-type graphene can be obtained by means of charge
transfer between graphene and an organic molecule. In this work, it was shown that the
density of states changes (Figure 4) after placement of an organic molecule on the graphene.
This paper provides another validation of our theoretical work in light of the reported
results describing the variation of the density of states.

5. Conclusions

In this work, we numerically studied the proposed structure, and the interaction
between graphene nanoribbon and a quantum dot was modeled as a dipole–dipole. An
analytical formulation for evaluating the optical and electrical properties of the graphene
nanoribbon and QDs was introduced. The results showed that the placement of quantum
dots on graphene nanoribbon causes the linear susceptibility of the complex structure
to change. Considering the physics of operation as well as mathematical modeling, we
were able to analyze and describe the interaction between graphene nanoribbons and QDs.
The results showed that the perturbation in optical susceptibility was due to the QD, and
with the displacement of QD location, the susceptibility shifted too. Additionally, it was
shown that the physical parameters of QDs, including geometrical and optical parameters,
strongly affect the susceptibility of the system. It was shown that when the QD’s radius
and permittivity were increased, the width and amplitude of the susceptibility increased.

This event showed that the periodic and aperiodic optical structures of the quantum
systems are practical. Using the type and number of QDs on the graphene nanoribbon, the
periodicity and contrast of the refractive index can be managed.
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