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Abstract—This paper presents a deep learning approach to
aid dead-reckoning (DR) navigation using a limited sensor suite.
A Recurrent Neural Network (RNN) was developed to predict
the relative horizontal velocities of an Autonomous Underwater
Vehicle (AUV) using data from an IMU, pressure sensor, and
control inputs. The RNN network is trained using experimental
data, where a doppler velocity logger (DVL) provided ground
truth velocities. The predictions of the relative velocities were
implemented in a dead-reckoning algorithm to approximate
north and east positions. The studies in this paper were twofold
I) Experimental data from a Long-Range AUV was investigated.
Datasets from a series of surveys in Monterey Bay, California
(U.S) were used to train and test the RNN network. II) The second
study explore datasets generated by a simulated autonomous un-
derwater glider. Environmental variables e.g ocean currents were
implemented in the simulation to reflect real ocean conditions.
The proposed neural network approach to DR navigation was
compared to the on-board navigation system and ground truth
simulated positions.

Index Terms—Underwater Navigation, Deep learning, Dead-
reckoning, Autonomous Underwater Vehicles (AUV)

I. INTRODUCTION

A UTONOMOUS UNDERWATER VEHICLES (AUVS)
have in the last decades become important tools
in ocean research. Untethered from umbilical

cables, these vehicles are suitable for a high variety of
applications including bathymetric mapping, water sampling
and environmental monitoring. A notorious challenge for
AUVs is to navigate and georeference acquired sensor data
during operations as GPS signals can’t propagate trough
water. Conventional solutions to this issue involve adding
acoustic navigational or/and positioning instruments to the
AUV payload. Due to the good propagation of sound in water,
doppler velocity loggers and acoustic baseline systems are
considered the backbone in AUV navigation and underwater
positioning [10], [25]. However, these traditional sensors
are often expensive and consumes large amounts of power.
In AUV fleets, the cost of adding acoustic instruments is
compounded with the number of vehicles. In this paper
we consider a limited sensor suite consisting of an IMU

sensor and a pressure transducer, where acoustic instruments
are partially available to collect experimental training data.
Collected DVL velocity measurements from only a few
missions are used as a reference in supervised neural network
training. The aim for the trained network is to complement
DR navigation when the DVL sensor is inaccessible, for
example in AUV fleets with budget limitations.

The absence of acoustic navigational and positioning
instruments has traditionally been compensated by model-
based observers like Extended Kalman Filters (EKFs). These
are derived from AUV dynamics to form an estimation model
[8], [9], [21], [22]. Unfortunately, model-based observers
rely on parameters that are difficult to obtain in practice.
The dynamics of an AUV is derived based on intricate
hydrodynamic models. Experiments must be carried out in a
towing-tank facility or using expensive CFD (Computational
Fluid Dynamics) software to obtain hydrodynamic damping
coefficients [28], [3]. If the external geometry of the AUV
changes, i.e. when making small modifications to payload
sections, the coefficients need to be updated.

To avoid deriving complex AUV models and conducting
time consuming towing-tank or CFD experiments, this
paper presents a data-driven approach to dead-reckoning
navigation. Using experimental data from AUV missions
and simulations, a neural network is trained to learn and
generalize relative AUV motions. Data-driven neural network
regression abolishes the need for knowledge of a dynamic
model, and avoids modelling and estimation errors related to
classical state observers [4], [5]. A recurrent neural network
(RNN) is developed to relax time-delayed effects in the AUV
dynamics which occurs due to vehicle inertia, under actuation
and added mass effects [1], [6]. With an input layer composed
of standard sensory measurements (pressure sensor, inertial
measurement unit) and control actions, the RNN network
aims to predict relative surge ur and sway vr velocities.
These are further implemented in a dead-reckoning algorithm
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to approximate North and East positions during operations.

A. Related Work

Several articles have addressed artificial neural network
state estimation for marine crafts. In Zhang et al. [4] a
Short-Term Long-Term-Memory (LSTM) recurrent neural
network is proposed to estimate the relative position of an
AUV. The LSTM network used data from a pressure sensor,
an inertial measurement unit (IMU), and an acoustic doppler
velocity logger (DVL) to predict the horizontal north and east
positions. Training and validation data were collected from
a series of surface trajectories while logging GPS locations,
which were projected as ground truth measurements. A
similar study with the same AUV is presented in Mu et
al. [5], where a bi-directional LSTM network was used. A
neural network approach to dead-reckoning navigation of
dynamically positioned ships is presented in Skulestad et
al. [6]. Control actions and commands from vessel thrusters
combined with heading measurements was used as input
data in a RNN network to aid navigation during GNSS
outages. Experiments were conducted in a vessel simulator
with time-varying environmental disturbances such as wind
forces, sea waves and ocean currents. In Chen et al. [13]
a neural network is presented to assist navigation during
DVL malfunction. A nonlinear autoregressive network with
exogenous SINS (Strapdown Inertial Navigation System)
inputs was used. The network was tested and validated on
a ship with a DVL mounted on the vessel hull to provide
training and validation data.

The remaining parts of this paper are detailing the following
segments - Section II and III addresses the concept of
dead-reckoning navigation and the neural network velocity
observer respectively. Section IV presents the AUV platforms
and datasets used to train and test the neural networks. The
results are detailed in section V and the conclusion and
recommendations for further work are presented in VI.

II. DEAD-RECKONING NAVIGATION

In the absence of GNSS (Global Navigation Satellite Sys-
tems) systems, AUVs enters a dead-reckoning mode while
under water. The DR algorithm predicts the position of the
AUV based on estimates at the previous time-step. With a
reference of the heading and attitude combined with relative
velocity measurements, the position is determined by numer-
ical integration. To compute the relative position of the AUV,
the measured/estimated relative velocities must be rotated with
respect to the inertial reference frame of the vehicle. Following
[1] the inertial frame of underwater vehicles is defined by
North-East-Down (NED) local tangent plane coordinates. The
NED velocities χ̇ = [Ṅ , Ė, Ḋ]T of an AUV are derived by
an rotation matrix from the body frame {b} to the inertial
frame {n} [1]. An AUV influenced by ocean currents υc

will have a relative velocity υr. Assuming that the ocean
currents are irrotational they are derived following [1] as
υr = [ur, vr, wr]T = [u− uc, v − vc, w−wc]

T . Accordingly,

the relationship between the relative body-fixed and inertial
velocities are given as

χ̇ = Rn
b (Θ) · υr (1)

Where Θ = [φ, θ, ψ]T is the attitude and heading of the AUV
provided by an inertial measurement unit (IMU). Equation 1
can be written in expanded form as


Ṅ

Ė

Ḋ

 =



ur · c(ψ)c(θ) + vr · [c(ψ)s(θ)s(φ)− s(ψ)c(φ)]
+wr · [s(ψ)s(φ) + c(ψ)c(φ)s(θ))]

ur · s(ψ)c(θ) + vr · [c(ψ)c(φ) + s(φ)s(θ)s(ψ)]

−ur · s(θ) + vr · c(θ)s(φ) + wr · c(θ)c(φ)


(2)

where c() = cos() and s() = sin().
For AUVs that typically operate with a zero angle of attack the
attitude can be neglected in eq. 2. However, for other vehicles
like underwater gliders which can perform spiraling motions
with non-zero attitude [φ, θ]T 6= 0, it persist. After rotating the
relative velocities according to the inertial frame of the vehicle,
numerical integration is performed to obtain the position.
Given the previous predicted position χt = [Nt, Et, Dt]

T the
DR algorithm is derived following [6]

χ(t+ 1) = χ(t) +Rn
b (Θ) · υr(t+ 1) ·∆t (3)

Where ∆t is the time step between the predictions.

Fig. 1. DR navigation Illustration

III. NEURAL NETWORK AIDED DEAD-RECKONING
NAVIGATION

A. Sensor Inputs

On-board sensors like IMUs and pressure transducers con-
tains valuable in-situ information about an AUV. These are
used as input variables in the RNN network to predict relative
horizontal velocities [ur, vr]T . The development of MEMS
(Micro-Electrical-Mechanical-Systems) based IMUs have led



to more affordable inertial measurements. They consist of
three-axis gyroscopes and accelerometers, typically confined
in a silicon chip. The gyroscope, which give measurements of
the angular rates ωbIMU = [pb, qb, rb]

T and the accelerometer
which provide measurements of the rate-change of velocities
υ̇bIMU = [u̇b, v̇b, ẇb]

T can be modelled as

ωb
IMU = ωb

gyro + bbgyro

υ̇b
IMU = υ̇b

acc + bbacc
(4)

Where bbgyro and bbacc are sensor biases [33]. Combined with a
three-axis compass, a Kalman Filter derived from a kinematic
model impart the euler angles Θ = [φ, θ, ψ]T . A key com-
ponent in AUVs is the pressure transducer. The relationship
between pressure and depth are assumed to be constant, thus
the vertical position of the AUV can be approximated by the
pressure measurements. Given a measured hydrostatic pressure
∆p, water density ρ and gravitation g, the vertical position z
and relative heave velocity wr is derived as

z = ρg∆p =⇒ wr = R−1
bn (Θ) · ż (5)

Where z is assumed to be inertial {n} and the relative heave
velocity wr is represented in the body-fixed frame {b}

B. AUV Control Actuators

To enforce the neural network state observer, control actions
from the AUV actuators are used together with the sensor
data. In this paper two AUVs with different actuator config-
urations are investigated. Conventional underactuated AUVs
are normally equipped with an aft thurster and external control
surfaces. The thruster is the propulsion system which generates
a hydrodynamic force τ to induce surge transnational motions,
while control surfaces consist of external airfoils that alter
attitude and heading depending on their deflection angles.
The control surfaces typically consist of a rudder and dive
planes denoted δR and δD respectively. Control actions are
determined from feedback controllers which in these studies
are decoupled into vertical and horizontal manoeuvres. For
thruster based AUVs, speed controllers are used to maintain
a desired velocity and reject ocean current disturbances. In
addition to the conventional AUV actuators, a variable buoy-
ancy system and internal moving masses are introduced by the
AUVs investigated in this paper. The simulated autonomous
underwater glider uses buoyancy displacement to alter vertical
motions, while a set of fixed wings generates hydrodynamic
lift forces to induce forward motions. As gliders operates
at low-speeds, control surfaces are ineffective due to low
dynamic pressure. Control moments from internal moving
masses are used to change the attitude and heading of the
vehicle.

C. RNN Architecture

The RNN architecture is formed with feedback loops in
the hidden layers of the network, providing internal memory
to capture AUV dynamics with time-delays. To improve the
estimation of the relative horizontal surge and sway velocities

[ur, vr]T , two independent neural networks are used for each
velocity vector. This is convenient as surge and sway dynamics
are often non-interacting or slightly interacting [1], [4]. Using
input variables that holds low dependence to the predicted
output variables reduces the generalization of the network and
may lead to the notorious issue of overfitting [20], [15].

Fig. 2. Neural network illustration

RNN networks are generalized feedforward neural networks,
but differs as recurring context layers are included in the
hidden layers as illustrated in figure 2. The hidden nodes
h(t) summarize the inputs x and weights wxh from the
previous layer combined with the recurring layer h(t − i).
The hidden neurons h(t) and output neurons y(t) is derived
mathematically as

h(t) = σh(
∑

wxh · x+
∑

whh · h(t− i) + bn)

y(t) = lin(
∑

why · h(t) + by)

(6)

Trough sequential learning based on AUV datasets, the RNN
network learns to predict the relative horizontal velocities.
Activation functions σh in the hidden layers are the key to
learning the nonlinearity between the selected inputs and pre-
dicted outputs. The network is trained based on the renowned
concept of backpropogation introduced in [24] to tune the
weights and biases. The goal of neural network training is
to optimize the network parameters so that the error function
E is minimized

E =
1

2

∑
i

(υ̂r(i)− υr(i))2 (7)

Where υ̂r(i)− υr(i) is the difference between the actual and
predicted relative velocities.

D. Navigational training data

In this work, experimental DVL data and simulated ve-
locities are used as a reference for the supervised neural



network training. Alternative approaches may involve using
acoustic positioning systems which are not prone to cumulative
integration errors [10], thus providing more accurate ground
truth measurements. However, a disadvantage with these ap-
proaches is that the DVL/acoustic modem must be replaced
with ”dummy” sensor to avoid changing the hydrodynamic
properties and net weight of the AUV. Ideally, we want to have
a reference of the AUV velocities/positions without changing
the geometry and weight. A potential solution is to use visual
based (machine vision) pose estimation relative to an assisting
AUV/ROV. Machine vision has proven to be successful in
autonomous docking operations for AUVs [29], [30] and may
possibly be extended to tracking applications.

IV. AUV PLATFORMS & DATASETS

To train and validate the neural network approach to DR
navigation, AUV datasets are needed. In this paper two AUV
platforms are investigated. The first dataset originates from
sea-trials of the Tethys Long-Range AUV (LRAUV), while
the second dataset is from a MATLAB simulation of an
underwater glider.

A. Tethys AUV

The Tethys Long-Range AUV [2], [14] was developed by
the Monterey Bay Research Institute (MBARI) as a research
AUV with long-range capabilities. It’s characterized as a
hybrid AUV as it shares similar control actuators to underwater
gliders. This allows it to operate both in undulating glider-like
trajectories and at fixed depths. Datasets from the constellation
of underwater vehicles at MBARI is available through their
public data repository [15].

Fig. 3. Tethys AUV, courtesy of MBARI

A series of missions in Monterey bay, California (U.S)
were used to train and validate the neural networks. In-situ
measurements from a Microstrain 3DM-GX5-24 IMU, Neil
Brown pressure sensor and the control actuators were used
as inputs to the neural network. Ground truth relative surge
and sway velocities [ur, vr]T were provided by a LinkQuest
600 KHz micro DVL. With periodic GPS fixes the overall
navigation accuracy for DVL-aided inertial DR is 3-4 % [2].
The navigational errors arise initially from sensor noise and
random walk errors from the inertial measurement sensor.
The parameters for the IMU and DVL sensors hosted on the
Tethys is presented in table I and II respectively. The maximum

operating altitude refer to bottom lock navigation, where the
AUV measures it’s velocities relative to the seafloor. When
out of range the DVL can measure the velocities relative to
the water (water lock). However, water is often considered
as a moving reference frame due to ocean currents, which
introduces estimation errors depending on the magnitude of
the ocean current vector [10].

TABLE I
MICROSTRAIN 3DM-GX5-25 IMU PARAMETERS

Error value
Accelorometer Bias Instability ± 0.04 mg

Gyroscope Bias Instability ± 8◦/h
Attitude Accuracy EFK - ± 0.25◦ RMS
Heading Accuracy EFK - ± 0.8◦ RMS

TABLE II
LINKQUEST 600 KHZ MICRO DVL PARAMETERS

Parameter Value
Max Altitude 110 meters
Min Altitude 0.3 meters

Accuracy 1 % ± 1 mm/s
Ping rate 5 Hz

A minor part of the training dataset is presented in figure 4.
Sensor noise has been filtered out with low-pass filters and
Gaussian smoothing. We can observe that the AUV performs
saw-tooth trajectories by using the dive plane control surface
and internal moving mass actuator. The heading is mostly
constant which indicates that the AUV is on a course keeping
path governed by a heading controller.

Fig. 4. Training data Tethys AUV



B. Underwater Glider

The second dataset is gathered from a MATLAB simulation
of the Seawing underwater glider [3], [11]. An underwater
glider is characterized as a slender body with fixed wings.
A variable buoyancy system (VBS) is used to manipulate the
volume that the vehicle is displacing to alter vertical motions
in the water column. Underwater gliders exploit hydrodynamic
properties using fixed wings to generate a forward motion. To
control the attitude and heading of the vehicle, an internal
moving mass system is used. This typically consists of a
battery-pack that can be translated and rotated inside the
vehicle housing. A mathematical model of the glider is derived
using the 6DOF vectorial marine craft dynamics presented in
Fossen [1]. State variables can be divided into two vectors
following SNAME notation [17] - The position in the inertial
frame {n} defined as η = [x, y, z, φ, θ, ψ]T and the relative
velocity in the body frame {b} νr = [ur, vr, wr, p, q, r]

T .
Accordingly, a 6DOF kinematic and maneuvering model of
an AUV is derived by

η̇ = Jθ(η)νr

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ

(8)

Where M = M rb + MA and C(ν) = Crb(ν) + CA(ν)
are the transnational and rotational rigid-body dynamics with
correlating added mass effects. Hydrodynamic forces and
moments are described in the damping matrix D(ν) and
the restoring forces are defined by g(η). τ is the vector
describing the control forces and moments which acts on the
vehicle.

In presence of ocean currents, the relative velocity
is defined by differentiating the body-fixed velocities to the
ocean current vector νr = ν − νc. In the Matlab simulation
we consider a two-dimensional irrotational ocean current
model. Given an absolute velocity Vc =

√
u2c + v2c we can

define the ocean currents in the body frame as

νb
c =

Vc · cos(βc − ψ)
Vc · sin(βc − ψ)

0

 , βc =
vc√

u2c + v2c
(9)

Many chose to simplify the ocean current model to be constant
in the body-fixed frame {b}, thus υ̇bc = 0 [18]. However, this
only yields during course keeping. A more realistic approach
is to assume that the ocean currents are time-varying with
respect to rotational motions of the glider. Consider a skew-
symmetric matrix S that satisfies S(x) · y = x × y and the
angular velocities in the body frame ωb, the ocean currents
can be derived as

ν̇b
c = −S(ωb) · υb

c (10)

In order to model ocean currents in the 6DOF manoeuvring
model, the rotational dynamics detailing Coriolis and cen-
tripetal forces must be derived using velocity-independent
parametrizations [1]. Given a center of gravity vector relative

to the center of origin rcg = [xcg, ycg, zcg]T the Coriolis and
centripetal matrix can be defined as

Crb(ν) =

[
m · S(ωb) −m · S(ωb) · S(rcg)

m · S(rcg) · S(ωb) −S(Ib · ωb)

]
(11)

Where Ib and m is the vehicle inertia and total mass respec-
tively. As demonstrated in eq.11 the rotational dynamics is
derived only using angular velocities ωb = [p, q, r]T , which
satisfies the following property [1]

M rbν +Crb(ν)ν = M rbνr +Crb(νr)νr (12)

Glider dynamics was simulated in Simulink for a 10-hour
interval. Time-varying control inputs and ocean currents were
present during the simulation to provide variance in the
training dataset. The simulated trajectories of the glider were
a combination of undulating wings-levelled motions and turn-
ing/spiral manoeuvres. To control the attitude and heading of
the glider, two decoupled PID controllers was implemented.
The measured state variables were logged and saved to
workspace during the simulation. Each training variable holds
81 000 samples, while the validation dataset resulted in 20
000 samples per variable. The test dataset is a combination
of wings-levelled manoeuvres and spiral trajectories which
differed from the trajectories used in the training data. Hence,
we can validate how well the network is generalized to
untrained glider motions.
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Fig. 5. Simulated glider training data



V. EXPERIMENTAL AND SIMULATION RESULTS

This paper presents a two-folded study which consists of
simulated and experimental datasets. Collected AUV data was
allocated into Matlab and further used to develop, train, and
test the neural networks. The predicted outputs was fed into
the dead-reckoning algorithm derived in eq. 3.
The Deep Learning Toolbox was used to design network
architectures and perform backpropogation training. A Scaled
Conjugate Gradient (SCG) algorithm was chosen as the train-
ing function to deal with the large AUV datasets effectively.
The SCG algorithm [24] abolish the need for line-searches
as presented in its predecessor [25] which reduces the com-
putational load. To improve the generalization of the neural
networks, early-stopping was introduced. Early-stopping di-
vides the AUV dataset into training and validation batches.
The training dataset is fed into the SCG algorithm to tune the
weights and biases, while the validation data is used to monitor
and detect if occurrences of overfitting is evident [32]. If the
network starts to overfit the dataset, the training is aborted,
hence the name early-stopping.

A. Case Study 1 - Tethys AUV

Experimental data from the Tethys AUV was investigated
in the initial study. Data from three individual surveys was
concatenated as a time-series vector and used as training
data. Datasets from another mission is used to test the neural
network on unseen data. The duration of the test trajectory is
approximately 3 hours long. The mission, illustrated in figure
6, was conducted in shallow waters were the on-board Link
Quest Micro DVL was able to get a bottom-lock, although
some samples were out of reach for the operating altitude of
the DVL sensor. Outliners in the DVL data was removed and
further filtered with Gaussian smoothing.

Fig. 6. Test trajectory in Monterey Bay, California

The test trajectories consist of undulating saw-tooth motions
with non-zero angle of attack α as showed in figure 8. Note
that periodic GPS fixes was not accounted for in the results
presented in figure 8 and 7. Two RNN networks was developed
to isolate relative surge and sway predictions. The following
table presents the training parameters used for the Tethys AUV.

TABLE III
ANN TRAINING PARAMETERS - TETHYS AUV

Backpropogation Optimizer Scaled Conjugate Gradient (SCG)
MSE Surge Network 0.0347
MSE Sway Network 0.00588

Early Stopping Data Division Randomly
Early Stopping index Training 70 %, Val. 15%, Test 15%

Hidden layers 3
Hidden neurons per layer 40

Regressors per context layer 5

The results are presented in figure 7 and 8. The blue dotted
line represents the predicted position based on estimated surge
and sway velocities from the RNN network. The orange line
is the estimated position based on measured DVL velocities.
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Fig. 7. Neural network aided navigation - Top view

A 3D view of the same trajectory is presented in figure 8
where depth measurements from the pressure sensor is used
for the vertical z-axis.

Fig. 8. Neural network aided navigation - 3D view



The error between the predicted and ground truth horizontal
positions was used to evaluate the performance of the proposed
neural network approach. The positioning error is derived as[

Nerror

Eerror

]
=

[
||Nest − N̂ ||
||Eest − Ê ||

]
(13)

Where N̂ and Ê are ground truth north and east positions
respectively.
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Fig. 9. Positioning Errors - Tethys AUV

The positioning error relates to an approximate displacement
of 2500 meters north and 1500 meter displacement in the east
direction.

B. Case Study 2 - Underwater Glider

A second case study was conducted with the simulated
autonomous underwater glider. Training and test datasets were
generated by the Simulink simulation of the glider dynamics.
A two-dimensional ocean current model was added in the
dynamics to create a simulated environment that reflects real
ocean conditions. Simulated ocean currents are assumed to be
constant, but time-varying during glider rotations.
Due to decoupled attitude and heading controllers from the
simulated trajectories, the interaction between the surge and
sway dynamics is assumed to be neglectable. Thus, two
isolated RNN networks was developed to predict the relative
surge and sway velocities.
Table IV presents the neural network training parameters for
the two RNN networks.

TABLE IV
ANN TRAINING PARAMETERS - GLIDER

Backpropogation Optimizer Scaled Conjugate Gradient (SCG)
MSE Surge Network 0.000212
MSE Sway Network 0.00000459

Early Stopping Data Division Randomly
Early Stopping index Training 70 %, Val. 15%, Test 15%

Hidden layers 3
Hidden neurons per layer 50

Regressors per context layer 5

The test trajectory presented in figure 10 consists of two spiral

motions and a wings-levelled movement. Three different ocean
current scenarios was simulated with increasing magnitude,
see figure 11. The plot illustrated in figure 10 shows the test
dataset in presence of low currents - uc = −0.05 m/s and
vc = −0.002 m/s.

Fig. 10. Estimated NED position vs ground truth

RNN velocity predictions is presented by the blue dotted
line in figure 10. The orange line represents ground truth
simulated NED positions. The glider trajectory was simulated
for 2.7 hours. The remaining simulations with increasing
ocean currents are presented in figure 11 where the north and
east positioning errors are compared by the three different
scenarios. Note that the x-axis relates to total samples with
a rate of 2 Hz. Accordingly, the real simulation time was 10
000 sec.

Fig. 11. Positioning error with increasing ocean currents

During the two first simulations with low and medium strong
currents, the positioning error is slightly increased. The sim-
ulation with strongest ocean currents induced a larger diver-



gence for the east positioning error, while a low increase in
the north error.

VI. CONCLUSIONS AND FURTHER WORK

A neural network approach to aid dead-reckoning
navigation for AUVs with a limited sensor suite was proposed
in this work. Experimental data from an IMU, a pressure
sensor and control actions were gathered from sea-trials
and simulations with correlating ground truth DVL and
simulated velocities. The objective for the trained RNN
networks is to complement AUV navigation in absence
of acoustic navigational instruments. Results from the
proposed method show promising potential considering
a limited sensor payload. Improvements can be made by
re-initializing the DR algorithm with GPS fixes when the
AUVs are surfacing. The positioning error for the underwater
glider grows slightly with increasing magnitude of ocean
current disturbances as illustrated in figure 11. Glider
positioning errors are significantly lower compared to DVL-
less traditional navigation algorithms used in commercial
gliders [31]. However, sensor noise and random walk errors
were not present in the simulated IMU measurements. Further
iterations of the simulated environment will focus on adding
more realistic scenarios by introducing sensor errors, GPS
fixes and vertical decomposition of the ocean currents.

Recommendations for further work include investigating
alternative methods to obtaining experimental data.
Vision based pose estimation is considered a promising
candidate which avoids replacing the DVL or acoustic
modem with a ”dummy” sensor. Input variable selection is
Another interesting subject is to extend the deep learning
approach to other underwater robots like remotely operated
vehicles (ROVs). Compared to under-actuated AUVs,
small/miniaturized ROVs are easy to deploy and does not
require large displacements to excite the ROV dynamics,
making the experimental procedures less time-consuming.
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