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ABSTRACT

The Graph Query Language (GraphQL) is a powerful language for
APIs manipulation in web services. It has been recently introduced
as an alternative solution for addressing the limitations of RESTful
APIs. This paper introduces an automated solution for GraphQL
APIs testing. We present a full framework for automated APIs
testing, from the schema extraction to test case generation. Our
approach is based on evolutionary search. Test cases are evolved
to intelligently explore the solution space while maximizing code
coverage criteria. The proposed framework is implemented and
integrated in the open-source EVOMASTER tool. Experiments on
two open-source GraphQL APIs show statistically significant im-
provement of the evolutionary approach compared to the baseline
random search.
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1 INTRODUCTION

Web services are very common in industry, especially in enterprise
applications using microservice architectures [21]. They are also
becoming more common with the appearing of smart city tech-
nologies, where microservices are largely exploited in industrial
internet-of-things settings [14, 15]. The investigation of automat-
ing techniques for generating test cases for web service APIs has
become a research topic of importance for practitioners [6].

Due to the high number of possible configurations for the test
cases, evolutionary techniques have been successfully used to ad-
dress different software testing problems [3, 17]. Common exam-
ples are EvoSuite for unit test generation for Java programs [16],
Sapienz for mobile testing [20] and EvOMASTER for REST API test-
ing [5, 8, 13].
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The Graph Query Language (GraphQL) is a powerful language
of web-based data access, created in 2012 and open sourced by
Facebook in 2015 [2]. It addresses some of the RESTful API limi-
tations, like the possibility of specifying what to fetch on a graph
of interconnected data with a single query [18, 22]. Different com-
panies have started to provide web APIs using GraphQL!, like for
example Facebook, GitHub, Atlassian, and Coursera. GraphQL is a
query language and server-side runtime for application program-
ming interfaces (APIs) [2]. Given a set of data represented with a
graph of connected nodes, GraphQL enables to query such graph,
specifying for each node which fields and connections to retrieve
(and so recursively on each retrieved connected node).

To the best of our knowledge, only two recent approaches exist
which explore the automated testing for GraphQL APIs, dealing
with “deviation testing’’ [23] and “‘property-based testing” [19].
But none of them can analyze the source/byte-code of the applica-
tion to generate better test cases.

At a high level, GraphQL APIs can be considered as Remote Pro-
cedure Call (RPC) services. Furthermore, there can be dependencies
among operations (e.g., to test the retrieval of some data, a previous
API call should have been made to create such data first). And so
on.

In order to mitigate the combinatorial explosion in the test case
generation, this paper presents a full framework based on evolu-
tionary algorithms for automating GraphQL APIs testing, from the
schema extraction to the generation of the test cases in executable
test suite files (e.g., using JUnit).

The proposed framework has been implemented as an extension
to the open-source EVOMASTER tool, and exploits search-based code
heuristics. It is freely available online, released as open-source. The
main contributions of this research work are as follows:

(1) We develop a preprocessing strategy which first extracts the
schema from the GraphQL API, and then defines chromo-
some representations for the test cases. We create different
types of genes which enable the complete data representa-
tion of the GraphQL schema.

(2) We propose an evolutionary-based search which intelligently
explores the test case space in GraphQL APIs. The genetic
operators are used to explore the test case space while maxi-
mizing metrics such as code coverage.

(3) To validate the applicability of our presented framework, an
empirical study has been carried out on two open-source
GraphQL APIs. The results show a clear improvement of
using the evolutionary algorithm compared with the random
search baseline. Code coverage is improved up to +55.53%.

Uhttps://graphql.org/users/
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2 RELATED WORK

Automated testing of GraphQL APIs is a topic that has been practi-
cally neglected in the research literature. To the best of our knowl-
edge, so far only two approaches have been investigated regarding
the automated testing of GraphQL APIs [19, 23].

Vargas et al. [23] proposed a technique called “Deviation Test-
ing”. It consists of three steps. In the first step, an already existing
test case is taken as input. This test constitutes a base to seed and
compare the newly generated tests. The second step is the test
case variation, where variations of the initial seeded test case are
generated using deviation rules (where a deviation consists of a
small modification). Four types of deviation rules are defined: 1)
field deviation consists of adding and deleting the selection of fields
in the original query; 2) not null deviation consists of replacing a
declared non null argument with null; 3) type deviation consists
of changing an argument type by another type; 4) empty fields
deviation consists of deleting all fields and sub fields of the original
query. The third step is the test case execution where the input test
and its variations are executed. The last step consists of comparing
the results between the input test and its variation (e.g., wrong
inputs should lead to a response containing an error message).

Karlsson et al. [19] proposed a black-box property based testing
method. The method consists of the following steps. First, all spec-
ifications of the types and their relations are extracted from the
schema. Data is randomly generated according to the schema, with
customized “‘data generators” provided by the user. In addition,
the authors suggest two strategies to use as automated oracles: the
first one aims to check the returned HTTP status codes, and the
second one verifies that the resulting data returned conforms to
the given schema.

In this research work, we present a new algorithm for automated
testing of GraphQL APIs based on EVOMASTER merits (the ability to
do advance operations such as testability transformations [12] and
SQL interaction analysis [11]). Our novel solution does not require
any pre-existing test case (like in [23]), nor it requires the user to
write customized input generators (like in [19]). In addition, we
provide a complete testing pipeline, and an intelligent genetic-based
exploration for the possible test case configurations.

3 GRAPHQL TEST CASE GENERATION

This section presents the proposed framework for automated test
case generation of GraphQL APIs, built on top of the EVOMASTER
tool. The proposed framework targets white-box testing. The white-
box testing is performed when the information related to the schema
is provided and have access to the source code of the GraphQL APL

The process starts by extracting the schema from the GraphQL
APL The chromosome template is then constructed from the schema.
Test cases are represented by a sequence of HTTP requests, instan-
tiated from the chromosome template. The test cases are evolved
using MIO [7] enhanced with adaptive hypermutation [24], where
each test case will contain genes representing how to build the
GraphQL queries based on the given schema. The evolutionary
search is performed by applying two mutation operators to evolve
the test cases (one to change the queries/mutations in each HTTP
call, and the other to add/remove HTTP calls in a test case). This
enables to efficiently explore the solution space, with the aim of
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maximizing code coverage. From the final evolved solution, a self-
contained test suite file (e.g., in JUnit format) is generated as an
output of the search.

In the following, we describe the main components of the pro-

posed framework in more details:
1. Problem Representation In order to fetch the whole schema
from a GraphQL API, an introspective query is used. Given an en-
try point to the GraphQL API (e.g., typically a /graphql HTTP
endpoint), GraphQL enables a standard way to fetch a schema de-
scription of the API itself. The schema specifies all the information
about the available operation types, such as queries, mutations and
all available data types on each of them. As a result, the GraphQL
schema is returned in JSON format.

This latter is then parsed in our EVOMASTER extension and used
to create a set of action templates, one for each query and mutation
operation. Each action will contain information on the fields related
to input arguments (if any is present) and return values.

A chromosome template is defined for each action, which is
composed of non-mutable information (e.g., field’s names) and a
set of mutable genes. In this context, each gene characterizes either
an argument or a return value in the GraphQL query/mutation.
For objects as return values, a query/mutation must specify which
fields should be returned (at least one must be selected), and so on
recursively if any of the selected fields are objects as well.

To represent the fact that a field is always optional for queries,
a return gene is modeled by an object gene where all its fields
are optional. However, we had to extend the mutation operator
in EvOMASTER with a post-processing phase, to guarantee that at
least one field gene is selected during the search. In other words,
if after a mutation of a gene, which represents a returned object
value in the GraphQL query/mutation, all fields are de-selected,
then the post-processing will force the selection of one of them
(and so on recursively if the selected field is an object itself). On
the other hand, if a return value is a primitive type, then there is
no need to create any gene for it, as there is no selection to make.

To fully represent what is available from the GraphQL speci-
fication, the following kinds of gene types from EVOMASTER are
re-used and adapted:

(1) String: It contains string variables which are defined by an
array of characters. A minimum length of the string is zero
which represents the empty string. Each string gene cannot
exceed a predefined maximum number of characters.

(2) Enum: This gene represents the enumeration type, where

a set of possible values is defined, and only one value is ac-

tivated at a given time. The elements in the set can be in

different formats (e.g., enumerations of numbers or enumer-
ations of strings).

Float/Integer/Boolean: genes representing variables with

simple data types. Boolean genes represent variables with

true or false values. Integer and float genes represent integer
and real-value variables, respectively.

(4) Array: This gene represents a sequence of genes with the
same type. This gene has variable length, where elements
can be added and removed throughout the search. In order
to mitigate creating too large test cases, for instance with
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millions of genes, the size of an array gene should not exceed
a given threshold.

Object: This gene defines an object with a specific set of
internal fields. Differently from the array gene, where the
elements should be with the same type, an object gene may
contain elements with different types. To do so, this gene is
represented by a map, where each key in the map is deter-
mined by the field name in each element in the object.
Optional: a gene containing another gene, whose presence
in the phenotype is controlled by a boolean value. This is
needed for example to represent nullable types in arguments
and selection of fields in returned objects.

CycleObject: This special gene is used as a placeholder to
avoid infinite cycles, when selecting object fields that are ob-
jects themselves, which could be references back to the start-
ing queried object. Once a test case is sampled, its gene tree-
structure is scanned, and all CycleObject genes are forced to
be excluded from the phenotype.
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After defining the possible type of genes supported by the pro-
posed framework, we consider the solution space, where each solu-
tion is a set of test cases. A test case is composed of one or more
HTTP requests. In order to represent an HTTP request, we typi-
cally need to deal with its components: HTTP verb, path and query
parameters, body payloads (if any) and headers.

A GraphQL requests can be sent via HTTP GET (used only for

queries) or HTTP POST methods with a JSON body (used for queries
and mutations). For simplicity, we only use the verb POST for
both queries and mutations. A GraphQL server uses a single URL
endpoint (typically /graphql), where the HTTP requests with the
GraphQL queries/mutations will be sent. In the context of test case
generation for a GraphQL API, the main decisions to make are
on how to create JSON body payloads to send. The genotype will
contain genes (from the set defined above) to represent and evolve
such JSON objects.
2. Search Operators and Fitness Function Once a chromosome
representation is defined based on the GraphQL schema, test cases
are evolved and evaluated in the same way as done for RESTful
APIs in EVOMASTER, including testability transformations [12] and
SQL database handling [11]. Internally, the MIO algorithm is imple-
mented in a generic way, independently of the addressed problem
(e.g., REST and GraphQL APIs), and it is only a matter of defining
an appropriate phenotype mapping function (e.g., how to create
a valid HTTP request for a GraphQL API based on the evolved
chromosome genotype).

When evaluating the fitness of an evolved test, we consider
testing targets related to code coverage.

4 EMPIRICAL STUDY
4.1 Experimental Setup

In this section, several experiments have been carried out to answer
the following research question:

RQ: How effective is MIO at maximizing code coverage compared
to random search for GraphQL APIs?

We use two case of studies (i.e., graphql-ncs and graphql-scs)
which are based on artificial RESTfull APIs from the existing EMB
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Figure 1: Covered targets throughout the search

Table 1: Results for 100k HTTP call budget

SUT Metrics MIO Random Alz p-value  Relative

graphql-ncs  #Targets 553.7 383.3 1.00 <0.001 +44.44%
%Lines 75.2% 48.3% 1.00 <0.001 +55.53%
graphql-scs  #Targets 639.4 569.9  0.98 <0.001 +12.21%
%Lines 61.1% 55.9% 0.96 <0.001 +9.36%

corpus [1]. For this study, we adapted them into GraphQL APIs,
and added them to EMB [1]. graphql-ncs and graphql-scs are based
on code that was designed for studying unit testing approaches on
solving numerical [9] and string [4] problems.

The proposed framework is integrated in EVOMASTER, where
a comparison between MIO and the baseline random search algo-
rithm is carried out. We set 100k HTTP calls as search budget in
our proposed framework. To take into account the randomness of
the algorithm, each experiment was repeated 30 times [10]. We se-
lected covered testing targets (#Targets) and line coverage (%Lines),
as metrics for the comparisons. The testing target (#Targets) is
the default coverage criterion in EVOMASTER. It comprises and ag-
gregates different metrics, such as code coverage and status code
coverage. Furthermore, we report (%Lines) which represents the
line coverage.

4.2 Experiment Results

To compare MIO with Random, Table 1 reports their average #Tar-
gets, %Lines and an analysis of the pairwise comparisons using
Mann-Whitney-Wilcoxon U-tests (p-value) and Vargha-Delaney
effect sizes (Alz), for each of the case studies.

Results show clearly better results for MIO compared to Random,
with a high effect size (i.e., Az > 0.98) and a low p-value (ie.,
p < 0.001), with the consistently best achievement in average
#Target. Regarding the relative improvement for #Target, MIO
achieves the most on graphql-ncs (i.e., +44.44%).

In Figure 1, we report plot-lines for demonstrating the perfor-
mances of the two techniques for the two case of studies in detail,
i.e., the number of covered targets throughout the search. MIO out-
performs Random by a clear large margin throughout the search.

We also report average line coverage by MIO in Table 1. For both
graphgql-ncs and graphql-scs, a large improvement of MIO compared
to Random search is observed. For instance, for graphgl-ncs, MIO
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enables of covering 75.2% of lines, compared to the 48.3% of Random
search.

Both graphgl-ncs and graphgql-scs contain many constrains based
on numerical and string comparisons. Search-based techniques
based on heuristics like the branch distance are highly effective on
this kind of constraints. Getting significantly better results com-
pared to random search is then not surprising.

ROQ: In terms of line coverage, MIO demonstrates a consistent and
significant improvements (up to 55.53%) compared with random
search, on these numeric/string case studies. This shows the
effectiveness of MIO for maximizing code coverage.

5 THREATS TO VALIDITY

Threats to internal validity come from the fact that our experi-
ments are derived from a software tool. Errors in such a tool could
negatively affect the validity of our empirical results. Although
our EVOMASTER extension was carefully tested, we cannot provide
any guarantee of it not having software faults. However, as it is
open-source, anyone can review its source code.

Another potential issue is that the implemented solution in this
research work is based on random generation. This happens in par-
ticular for population initialization of the evolutionary algorithm,
where different test cases may be generated. To deal with this issue,
each experiment was repeated 30 times [10], with different random
seeds, and the appropriate statistical tests were used to analyze the
results.

Threats to external validity are due to the fact that only two
GraphQL APIs used in our empirical analysis. The generalization
of such results to other APIs is not possible at this stage. More APIs
should be investigated in the future. However, as this is the first
work for white-box automated test case generation of GraphQL
APIs, already achieving good coverage on two GraphQL APIs pro-
vide a promising first step.

6 CONCLUSION

This paper introduced a new approach for automated testing for
GraphQL APIs. It is a full complete solution, starting from the
schema extraction and ending by automatically generating test
cases outputted in JUnit format. In order to intelligently explore the
test case space, evolutionary computation techniques are used. In
addition, two mutation operators (internal and structure mutation)
are defined, where the goal is to maximize code coverage.

To validate the applicability of the proposed framework, it is
integrated in the EVOMASTER open-source tool. Our empirical anal-
ysis was carried out on two GraphQL APIs. The results show the
clear improvement of using the evolutionary computation com-
pared with the random search baseline. Our extension to support
GraphQL APIs is now integrated in EVOMASTER. EVOMASTER is
released as open-source, available at www.evomaster.org.

As future perspective, we plan to explore more case studies in
order to generalize the effectiveness of the proposed framework. Of
particular importance it will be to apply our techniques in industrial
settings, to see and evaluate how practitioners would use tools like
EvOMASTER on their APIs.
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