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Recently, the development of learning-based algorithms has shown a crucial role

to extract features of vital importance frommulti-spectral photoacoustic imaging.

In particular, advances in spectral photoacoustic unmixing algorithms can identify

tissuebiomarkerswithout a priori information. This has the potential to enhance the

diagnosis and treatment of a large number of diseases. Here, we investigated the

latest progress within spectral photoacoustic unmixing approaches. We evaluated

the sensitivity of different unsupervised Blind Source Separation (BSS) techniques

such as Principal Component Analysis (PCA), Independent Component Analysis

(ICA), and Non-negative Matrix Factorization (NNMF) to distinguish absorbers from

spectral photoacoustic imaging. Besides, the performance of a recently developed

superpixel photoacoustic unmixing (SPAX) framework has been also examined in

detail. Near-infrared spectroscopy (NIRS) has been used to validate the

performance of the different unmixing algorithms. Although the NNMF has

shown superior unmixing performance than PCA and ICA in terms of

correlation and processing time, this is still prone to unmixing misinterpretation

due to spectral coloring artifact. Thus, the SPAX framework, which also

compensates for the spectral coloring effect, has shown improved sensitivity

and specificity of the unmixed components. In addition, the SPAX also reveals

themost and less prominent tissue components fromsPAI at a volumetric scale in a

data-driven way. Phantom experimental measurements and in vivo studies have

been conducted to benchmark the performance of the BSS algorithms and the

SPAX framework.
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1 Introduction

In recent years, there has been special attention on

developing new learning-based signal processing approaches

as it plays a crucial role in medical image analysis and its

interpretation. In addition to the enhanced visualization of the

images, one of the main aims of these advanced signal-processing

approaches is to identify specific signal markers that can

distinguish physiological and pathological conditions.

Commonly, expert radiologists are required for analyzing and

interpreting biomedical images. Although this is a standard

operating procedure, in most cases the approach is tedious,

user-dependent, and can be biased. To this end, the

development and implementation of an automated feature

extraction algorithm will have an added value as this can be

used also as a surrogate marker to improve the diagnosis and

interpretation (Ali et al., 2008; Chowdhary and Acharjya, 2020).

Photoacoustic is an emerging biomedical imaging modality

that has the potential to noninvasively extract molecular tissue

composition at a volumetric scale (Cassidy and Radda, 2005).

The approach is real-time and over the last decade, it has been

used in many preclinical applications such as tissue

inflammatory monitoring (Jo et al., 2017; Jo et al., 2018; Xie

et al., 2020), vascular remodeling (Hu and Wang, 2010; Arabul

et al., 2019; Sangha and Goergen, 2020; Iskander-Rizk et al.,

2021), cancer oxygen saturation changes (Li et al., 2008; Stoffels

et al., 2015; Bayer et al., 2017; Li et al., 2018; Lawrence et al.,

2019), and biodistribution of exogenous contrast agents (Yang

et al., 2019; Lavaud et al., 2020; Liu et al., 2020). Although the

photoacoustic imaging technology is well established in

preclinical research, the clinical aspect of the technology is

comparatively limited as it has regulatory concerns and requires

local ethical approvals to conduct clinical research studies. This

scenario could change soon as most of these technology

providers are looking into the translational aspect of this

technology and applying for Food and Drug Administration

(FDA) approval. Recently, FDA has granted premarket

approval to one of the industrial providers of breast cancer

photoacoustic imaging technology, which helps physicians to

differentiate between benign and malignant lesions (Kuniyil

Ajith Singh et al., 2020). This clearly demonstrates the

expanding potential of photoacoustic technology for clinical

applications. However, to facilitate this translation, a significant

improvement to the hardware and image analysis algorithms is

necessary. Specifically, multi-spectral photoacoustic imaging

(sPAI) mode enables the detection of molecular components

of vital importance. In sPAI the tissues are illuminated with

pulsed laser light at different wavelengths within the visible or

near-infrared (NIR) spectral range (Kim et al., 2015; Allen and

Beard, 2016; Das et al., 2021; Park et al., 2022). The light

absorbed by the tissue chromophores induces a

thermoelastic expansion which consequently generates

pressure waves that are recorded just as conventional

ultrasound signals. Thus, the contrast of PA imaging is due

to light-absorbing molecules that can be either endogenous to

tissue, (e.g., hemoglobin, melanin, water, and lipid) or

administered exogenous agents. Therefore, the photoacoustic

image represents the spatial distribution of the initial pressure

generated by the optical contrast of a variety of tissue

chromophores (Wang, 2017). The light absorption is

dependent on the wavelength, consequently, different

wavelengths of optical excitation are absorbed differently by

the distinct tissue components. Thus, the generated sPAI data

include per pixel the spectral fingerprints of multiple absorbers

present within the tissue (Deán-Ben and Razansky, 2014).

Despite the high spatial resolution of sPAI, a pixel usually

corresponds tomore than one chromophore present in the tissue.

Thus, the spectrum per pixel is a linear combination of the

spectral responses of all the absorbers. However, to characterize

the tissue composition from sPAI, the spectral profile of each

individual chromophore must be efficiently distinguished. Thus,

advanced spectral unmixing methods are required to solve this

problem (Manwar et al., 2020).

To date, the most commonly used spectral unmixing

methods are based on differential or linear fitting algorithms

(Keshava, 2003). But generally, these algorithms require user

interaction to provide the expected source spectral curves as an

input to unmix the signals. For translational research with

patients, these types of supervised spectral unmixing can be

challenging, as the spectral signature of the tissues differs with

respect to the disease conditions. Thus, the reliability of these

spectral fitting methods depends on the a priori knowledge of the

spectral information including all potential components and the

quality of the data.

The automatic spectral unmixing algorithms that do not

require a priori spectral information and can effectively unmix

the data without user interaction are an ideal choice to overcome

all these limitations. Recently there have been a lot of efforts in

the implementation of deep learning (DL) architectures to solve

the unmixing problem in sPAI (Lee et al., 2017; Cai et al., 2018;

Gröhl et al., 2021; Yang et al., 2021). Although DL approaches

can lead to ultra-high accurate results, the data set constructed to

train the network determines the generalization ability and

robustness of the learning model. As a result, since sPAI is an

innovative technology, there are currently insufficient data sets

for deep neural network training. Consequently, common

remedies to this problem include using simulated data for

proof-of-concept verification (Allman et al., 2018; Gröhl et al.,

2019), conducting transfer learning with “real” experimental data

(Jnawali et al., 2019), or techniques of data augmentation

(Rodrigues et al., 2021). To generate these PA in silico data,

numerical simulations of the forward light diffusion (“light-IN”)

and backward US propagation (“sound-OUT”) processes are

required. Hence, the current limitation of these approaches is

that they are application-specific and challenging to generalize

for “unseen” cases.
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On the other hand, unsupervised feature learning methods

have resulted effective in learning representations without

training data sets. However, many existing feature-learning

algorithms are hard to use and require extensive

hyperparameter tuning (Durairaj et al., 2020). Blind source

separation (BSS) algorithms are a class of more sophisticated

approaches, requiring only one hyperparameter, as the number

of features to learn (Jutten and Karhunen, 2004; Benyamin et al.,

2020). These are based on modeling the data, making

assumptions about their distribution, and solving an

optimization problem. Although the BSS methods perform

well on image object recognition, and video/audio

classification (Smita et al., 2014), these are not optimized for

spectral photoacoustic unmixing. Specifically, the sPAI unmixing

is an ill-posed inverse problem where the a priori information

related to the spectral fingerprints of tissue components and their

spatial distribution are both unknown. Glatz et al. 2011 have

shown that BSS techniques such as Principal Component

Analysis (PCA) and Independent Component Analysis (ICA)

have great potential to solve the sPAI unmixing problem

efficiently, without prior knowledge of the constituent spectra

(Buehler et al., 2010).

Although these BSS approaches are promising to detect the

spectral components, the light fluence variation along the depth

could be a major challenge, because the absorption spectra of the

tissue components along the depth can be perceived as altered

and thus creating misinterpretations in the unmixing process.

Specifically, in sPAI the detected spectra are not unique per each

molecular component. This is because the acquired absorption

spectrum is influenced by the position of the moiety within the

tissue. Thus, the actual spectrum is altered due to the light fluence

Φ( �r, λ) attenuation, which is depth- and wavelength-dependent.

This phenomenon is also referred to as the “spectral coloring

effect”. Although the light fluence estimation via explicit model

has been widely investigated (Cox et al., 2006; Yuan et al., 2007;

Cox et al., 2009), for experimental data, this is complex due to

uncertainties in precisely evaluating the tissues’ optical

properties. Recently, Tzoumas et al. (2016) have proposed an

eigenspectra-based fluence correction approach to improve the

estimation of blood oxygen saturation (SO2) in deep tissue. They

modeled the fluence through the eigenspectra analysis which is

mainly used to compensate for SO2. In another study, Bulsink

et al., 2021) have proposed a dual-wavelength LED array-based

photoacoustic imaging including an ultrasound image-guided

fluence compensation approach to monitor oxygen saturation in

translational research settings.

In one of our previous works (Grasso et al., 2020), we

optimized a specialized class of BSS algorithm, the Non-

negative Matrix Factorization (NNMF) for the spectral

unmixing of sPAI. This method has great potential to

accurately extract the prominent tissue chromophores from

sPAI. However, the problem of automatically distinguishing

weak absorbers, such as lipids, from prominent tissue

chromophores like hemoglobin makes the unmixing

procedure more complex by leading to incomplete

identification of tissue constituents. Thus, recently we have

implemented a superpixel photoacoustic unmixing (SPAX)

framework that is capable to overcome the limitations of the

classical BSS approaches (Grasso et al., 2022). The SPAX

algorithm is a unique data processing procedure, that has the

potential to reveal weak and strong chromophores and it is also

extended to compensate for the spectral coloring artifact.

In this study, we have investigated the performance of

different blind source separation (BSS) algorithms, typically

used for automated unmixing in sPAI. Specifically, a

comparative analysis of Principal Component Analysis (PCA),

Independent Component Analysis (ICA), and Non-negative

Matrix Factorization (NNMF) has been conducted through an

experimental phantom study at different signal-to-noise ratio

(SNR) conditions. These are promising methods to automatically

distinguish prominent absorbers. On the other end, their

sensitivity for distinguishing less prominent absorbers and

components with similar spectra is still limited. Thus the

unmixing performance of the innovative SPAX framework has

been investigated in detail. The SPAX framework that allows

automated unmixing at a volumetric scale has been also

evaluated by performing an in vivo case study. The near-

infrared spectroscopy (NIRS) has been used to measure the

pure absorption spectra of the chromophores involved in the

study. Finally, a cross-correlation analysis has been performed to

benchmark the unmixing performance of the different unmixing

algorithms with NIRS.

2 Materials and methods

2.1 Blind source separation theory

Spectral photoacoustic imaging (sPAI) can be modeled as a

set of mixed observations M ∈ Rn×m, where n is the number of

pixels and m is the number of wavelengths. In a Linear Mixture

Model (LMM), the mixture matrix M can be formalized as

M � WS, where the underlying individual source spectra S

and the respective distribution maps W are mixed and

unknown. Thus, spectral unmixing is then a process of

estimating the distinctive spectral signatures from the sPAI

mixture. Although in simple cases it is possible to

approximate the absorption spectra S of the tissue

components from their theoretical optical properties and

assumptions made, this became complex during in vivo

studies (Li et al., 2018). Therefore, blind source separation

(BSS) is a category of algorithms that aims to separate the

mixed pixel spectra M into a collection of constituent spectra

S (called endmembers) and a set of fractional abundance mapsW

without providing a priori information about S (Comon and

Jutten, 2010).
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The matricesW ∈ Rn×k and S ∈ Rk×m contain the abundance

maps and the absorption spectra of k source components,

respectively. Generally, a maximum of k endmembers that can

be obtained with the BSS algorithms, has to be specified by the

user as the only hyperparameter. Since the unmixing problem is

ill-posed, the BSS algorithms are based on iterative optimization

procedures to retrieve both W and S. The different BSS

algorithms such as Principal Component Analysis (PCA),

Independent Component Analysis (ICA), and Non-negative

Matrix Factorization (NNMF) make different assumptions

regarding the linear combined source components, the cost

function, and the iterative rules, thus leading to different

unmixing results.

The following subsections initially provide the theoretical

background of the main BSS methods. Moreover, a summary of

the features of the different BSS approaches is reported in Table 1.

Finally, we discussed the characteristics of a newly developed

approach named superpixel photoacoustic unmixing (SPAX)

framework.

2.1.1 Singular value decomposition and principal
component analysis

The singular value decomposition (SVD) and principal

component analysis (PCA) are related methods that rely on

the hypothesis that the source components S are uncorrelated

and orthogonal (Roweis, 1998; Tipping and Bishop, 1999; Ahn

et al., 2007). These approaches compute the

orthogonal transformation that decorrelates the variables

and keeps the ones with the largest variance. Thus, SVD

splits the mixed data matrix M ∈ Rn×m into a product of

three matrices:

M � UΣVT (1)

where Σ ∈ Rn×m is a diagonal matrix containing the eigenvalues,

and U ∈ Rn×n, V ∈ Rm×m are orthogonal matrices containing the

respective eigenvectors.

Principal component analysis (PCA) identifies orthogonal

vectors for dimension reduction by performing an eigen-

decomposition of the covariance matrix of the observed data

M. Therefore, the PCA could be performed by using the SVD and

vice versa (Oblefias et al., 2004). Finally, the principal

components (PCs) are the columns of the V matrix and the

projection of the original data M onto the PCs directions are:

Y � VTM (2)

The first PC (which corresponds to the eigenvectors)

represents the subspace in which the variance of the data is

the largest. Therefore, the variance (which corresponds to the

eigenvalues) is related to the respective prominence of the

principal component. Often the SVD/PCA method is used as

a priori step of other blind approaches, which consequently use

the achieved components as a starting point of the optimization

process.

2.1.2 Independent component analysis
Independent component analysis (ICA) is another BSS

method that assumes that the observed data are a

TABLE 1 BSS algorithms’ technical specifications.

Hypothesis Data pre-
processing

Model Optimization
algorithm

Cost function Hyperparameter Ref

PCA Source components
are statistically
uncorrelated

- M � UΣVT Eigenvalue
decomposition

min
W,S

1
2‖ M −WS ‖2F k: number of features

to learn
Tipping and Bishop,
(1999)

Zpca � ΣVT Lanczos
bidiagonalization

Alternating least
squares

ICA Source components
are statistically
independent

Centering M̂≈ WS FastICA min
W

g(WTM̂) + r k: number of features
to learn

(Bell and Sejnowski,
1995; Hyvärinen, 1999;
Zhang et al., 2012;
Rutledge and
Jouan-Rimbaud
Bouveresse, 2013)

~M � M − E[M] Infomax g(·) � log (cosh(·))
Whitening JADE r: reconstruction cost

M̂ � Z ~M,E[ZZT] � 1 RICA

NNMF Source components
are a low-rank
approximation of
the mixture matrix

- M ≈ WS Alternating non-
negative least
squares

min
W,S

1
2‖ M −WS ‖2F k: number of features

to learn
(Lee and Seung, 2001;
Santosh Kumar et al.,
2016)

Multiplicative
update

W, S≥ 0
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superimposition of a number of stochastically independent

components (Hyvärinen, 2013). This is based on the

hypothesis that the source components are maximally

independent and non-Gaussian. The non-Gaussianity of the

source data is the crucial assumption that makes this method

more effective than PCA (uncorrelated and Gaussian). Following

the Central Limit Theorem, the sum of independent variables

tends toward a normal distribution (Kwak and Kim, 2017).

Therefore, with the non-Gaussianity assumption, the

independence hypothesis of the unmixed components is

stricter and consequently more robust than uncorrelatedness.

Usually, the ICA algorithm requires a pre-processing step of

mixed data centering and whitening to reduce the correlation of

the observed data. During the centering step the mean is

subtracted from all the mixed signals. Then the whitening

includes two main steps: a decorrelation (covariance is zero)

and scaling (unit variance) of the centered mixed signals. After

the centering and whitening, the mixed data M̂ � ZM have zero

mean and variance one, where Z can be found by PCA,

normalizing the PCs to unit variance. The observed whitened

mixed data matrix M̂ is then modeled following the linear

mixture model (LMM):

M̂≈ WS (3)

Here, the reconstruction independent component analysis

(RICA) method has been used to minimize the cost function

and estimate the source components S ∈ Rk×m and the unmixed

abundance maps W ∈ Rn×k. This adds a “reconstruction

regularization cost” to the cost function with respect to the

standard Aapo Hyvarinen ICA method that uses the fast fixed-

point optimization approach (Hyvärinen, 1999). Thus, RICA (Le

et al., 2011) ensures more accurate convergence and more robust

results even in the case of incomplete and unwhitened data.

2.1.3 Non-negative matrix factorization
Like ICA, non-negative matrix factorization (NNMF) is a

BSS method that performs a factorization of mixed observations

M ≈ WS, but here a positively constrained cost function has been

added (Berry et al., 2007). These positivity constraintsW≥ 0 and

S≥ 0 provides an advantage in applications where data are non-

negative, as in sPAI, thus leading to better interpretability of the

results. Hence, the optimization problem can be formulated as

follows:

[W, S] � min
W≥ 0, S≥ 0

1
2
‖ M −WS‖2F (4)

Lee and Seung (2001) have proposed the Multiplicative

Update Rules to solve this optimization problem. Since no

elements are negative, the LMM can be intuitively interpreted

as a process of generating the original data by linear

combinations (parts-based) of the prominent components

(subtraction operations are not involved). This is known as a

parts-based linear representation for non-negative data. Besides,

literature studies have shown that imposing the positivity

condition enhances the convergence of the optimization

algorithm used for the unmixing problem (Lipovetsky, 2009;

Hervé, 2010).

In addition, the NNMF approach is considered a special

version of PCA including the non-negativity constraint and

without orthogonality of factors (Sotiras et al., 2015).

Although both approaches are similar, there is a fundamental

difference between them. While the goal of PCA is to reduce the

correlated observed variables, factor analysis aims to explain the

correlation between the variables underlining the latent factors

causing the observations. Furthermore, considering another

comparison, NNMF and ICA are two closely related unmixing

approaches. The main difference is that NNMF over ICA can

recover the sources without requiring knowledge about the mean

and variance of the sources.

Table 1 shows a comparison of the different BSS algorithms

including the details of the mixture model and assumptions as

well as the cost function model and optimization iterative

algorithms adopted by the BSS approaches to unmix the

source spectra S and the respective abundance maps W

from sPAI.

2.1.4 Superpixel Photoacoustic Unmixing
Framework

The BSS methods mainly enable the detection of

prominent molecular targets, which may not lead to

complete tissue characterization. In addition, blind

approaches incorporate uncertainty in their performance,

which depends on the choice of the hyperparameter

(number of endmembers to separate). Moreover, these are

also affected by spectral coloring.

Figure 1 schematically summarizes the main procedures

implemented within the Superpixel Photoacoustic Unmixing

(SPAX) framework. Specifically, the SPAX framework uses

multi-spectral photoacoustic images co-registered with high-

resolution ultrasound images (US-sPAI) as input to

automatically identify the tissue spectral components obtained

as output. First, the SPAX framework models the light fluence

distribution to compensate for the spectral coloring, thus

preventing spectral unmixing misinterpretations. The

compensation approach utilizes Ultrasound image

segmentation and spectral Monte Carlo simulations based on

a predefined library of optical properties. Within the SPAX

framework, this spectral decoloring approach is crucial to

mitigate the inhomogeneities caused by the non-uniform light

fluence distribution along the depth. Specifically, the approach

implements an automated segmentation of the ultrasound image

to identify the skinline, which is used as a watershed to

distinguish the tissue structures and the background. Besides,

for complex tissue structures, the user can refine the US

segmentation by selecting some regions of interest for active

contours, thus resulting in a semi-automated approach. Then,
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each segmented cluster is labeled with spectral optical properties

gathered from literature in a predefined library. Therefore, this

represents the numerical domain used for spectral light fluence

simulations implemented in MCXLAB (Yan and Fang, 2020).

Finally, the obtained fluence maps at multiple wavelengths are

used to correct the acquired sPAI (Grasso et al., 2022).

After the sPAI correction, the rank hyper-parameter can be

automatically tuned by performing the SVD pre-analysis of the

mixture. The core of the SPAX framework is based on non-

negative superpixel unmixing, which enables the automated

detection of tissue chromophores with improved sensitivity

and specificity. To solve the ill-conditioned problem, positivity

constraints and multiplicative update rule have been used to

improve the convergence of the blind iterative method. Besides, a

novel superpixel subsampling approach has been implemented to

differentiate the less prominent molecular components, from the

prominent absorbers. Finally, imaging optimization methods are

applied to improve the visualization of the distribution maps of

the detected spectral components. Therefore, the SPAX offers

several advantages over the simple blind unmixing approaches.

Details of the algorithm and the validation studies are described

elsewhere (Grasso et al., 2022).

2.2 Ultrasound and photoacoustic image
acquisition

High-resolution Ultrasound (US) and spectral Photoacoustic

imaging (sPAI) have been acquired by using the platform Vevo

LAZR-X (FUJIFILM VisualSonics, Inc., Toronto, ON, Canada).

The imaging setup includes a high-frequency US system, an

optical parametric oscillator (OPO) integrated Nd:YAG

nanosecond pulsed laser, and the animal imaging platform.

The system is equipped with a linear US transducer array

(MX250) that consists of 256 elements at a nominal center

frequency of 21MHz and bandwidth of 15 − 30MHz. Light
from the laser is delivered to the tissue through optical fibers,

mounted on either side of the transducer. To obtain the

homogenous light illumination, the sample to be imaged is

placed on the converging area of the two light beams. The

spectral photoacoustic images have been acquired by tuning

the laser wavelengths within the range of 680 − 970 nm with

20 nm step size. During the volumetric US-PA acquisitions, a

stepper motor is used for the linear translation of the US

transducer and optical fibers along the sample. The linear

stepper motor moves in steps of a minimum of 0.1mm while

capturing 2-D parallel images, for a maximum 3D range distance

of 64mm. The Vevo whole-body imaging setup (FUJIFILM

VisualSonics, Inc., Toronto, ON, Canada) has been used

during in vivo experiments with the animal in its prone

position. Figure 2A shows the schematic of the ultrasound-

photoacoustic imaging acquisition setup. The configuration in

epi-illumination, the ECGmonitoring, and the respiratory gating

were kept minimally unchanged during in vivo experiments. The

delay multiply and sum beamforming algorithm has been used

for photoacoustic image reconstruction (Matrone et al., 2015).

The scanning time for the acquisition of sPAI in 2D and 3D

ranges between 1–10 min. The exact acquisition time depends on

the number of wavelengths as well as motor step size and the

consequent number of slices for volumetric data. The processing

of the spectral 2D and 3D data is performed offline, after the

acquisition. As an advanced data analysis, SPAX algorithm is

performed offline and the computational time ranges between

1–12 min, depending on the size of the input sPAI data and the

computer specifications.

2.3 Near-infrared spectroscopy

Figure 2B depicts the schematic of a portable near-infrared

spectroscopic (NIRS) probe that has been used to validate the

spectral absorption curves of the chromophores involved in

the study. To this end, a customized NIRS probe was designed

at the Optical lab in OsloMet (Oslo Metropolitan University,

Norway) (Hassan et al., 2021a; Hassan et al., 2021b). Unlike

commercially available solutions, this NIRS probe is designed

to target two regions of interest at two different depths.

Specifically, the OsloMet’s probe uses a broadband LED

light source (650–1,050 nm) and works with two depth

ranges (2–2.25 mm and 3–3.5 mm respectively). In

addition, the optical probe’s light sources ensure the safety

of the operations, in compliance with the NIR safety

guidelines (IEC, 2015). This NIRS probe uses a source-

detector pair that generates a banana-shaped optical path

FIGURE 1
Schematic flowchart of the SPAX framework including the main procedures from input to output.
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that narrows at the source and detector’s locations and

broadens as it penetrates deeper into the tissue (Feng et al.,

1995). The depth of a photon before detection is proportional

to the square root of the source-detector separation (Weiss

et al., 1989). Hence, optical depth is generally 1/2 to 1/3 of the

source-detector distance (Papazoglou et al., 2006). The spectra

from the optical probe are then collected by a spectrometer

(Avaspec 2048x14, Avantes BV, Netherlands). An integration

time of 4 s, was selected to make sure that enough photons are

collected by the detector. In this experiment, a distance of

6 mm between the source and detector was used to get a focal

depth of 2–2.5 mm and the wavelength range has been fixed to

680–970 nm as the one used for sPAI. Finally, the obtained

spectra from NIRS have been used as a reference to be

compared with the automatically unmixed signatures

from sPAI.

To obtain the spectral curves for the correlation analysis, the

NIRS measurements have been performed on the dyes used for

the vessel-mimicking phantoms. Blue, green oil colors (Winsor

and Newton, London, United Kingdom), and India Ink (Higgins

Ink, Leeds, MA, United States) were used, and the colors have

been overspread on white paper. These have been placed at the

optimal distance from the NIRS probe during the measurements

using a transparent gel pad as a spacer. This guarantees the

optimal position of the sample at the focal zone of the NIRS

probe design. Figure 3 depicts the absorption spectra of the dyes

measured via the OsloMet NIRS probe. While the Blue Oil Color

absorption spectrum shows the highest absorption at 680 nm and

has a quasi-exponential decrease afterward, the Green Oil Color

shows wider absorption until around 800–830 nm before

decreasing at higher wavelengths. Finally, India Ink shows a

broad absorption spectrum within the 680–900 nm region and a

gradual absorption decrease toward 900 nm.

2.4 Experimental vessel-mimicking
phantoms

Phantom measurements were first performed to investigate

the sensitivity of the BSS unmixing algorithms at different signal-

to-noise ratio (SNR) conditions. Three vessel-mimicking

FIGURE 2
Schematic of the ultrasound-photoacoustic (US-PA) whole-body acquisition setup (A) that includes: a linear stepper motor (a), the ultrasound
transducer (b) with optical fibers on the sides (c) to illuminate the tissue chromophores (d), optical and acoustic compatible membrane (e) in a water
bath to maintain the sound coupling, ECG electrodes to monitor the physiological parameters in vivo (f), and the anesthesia system (g). Schematic of
the near-infrared spectroscopy (NIRS) optical probe setup (B) that also includes: a control system for the optical source, a spectrometer for the
detection, and a computer for the signals post-processing.

FIGURE 3
Absorption spectra of the dyes used within the vessel-
mimicking phantoms measured by the NIRS probe.
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phantoms have been fabricated with different optical properties.

A vessel-mimicking shape has been painted with green and blue

oil colors (Winsor and Newton, London, United Kingdom) on

white paper (see Figure 4A). After the paint has dried, this has

been embedded in each turbid agarose solution. The paper is

carefully retrieved from the agarose to sequentially reuse it in all

of the phantoms. All the phantoms have been designed to have a

reduced scattering coefficient of ~5 cm−1. Thus, the phantoms

were made with 1.5% (w/v) agar (Alfa Aesar, Heysham,

Lancaster) and 2% (w/v) Intralipid (20%, Sigma-Aldrich,

Canada). To challenge the unmixing algorithms, in two of the

phantoms, black India Ink (Higgins Ink, Leeds, MA,

United States) was added to the agar-Intralipid mixture before

solidification, to simulate background absorption. Specifically,

these resulted in a background absorption of 0.05% v/v and 0.1%

v/v respectively. Hence, this leads to three vessel-mimicking

phantoms that have no background absorption, medium

background absorption, and high background absorption

respectively.

Figures 4B–D show the PA image at a single wavelength

(700 nm) of the phantoms prepared with different

backgrounds. The images show the maximum intensity

projection (MIP) of the 3D single wavelength PA image,

from the top view of the phantom. After preparation, the

phantom is positioned orthogonally to the transducer coupled

with optical fibers, which are linearly translated along the

phantom during the sPAI acquisition. Therefore, the

phantoms’ sPAI have been acquired in 3D. In particular,

the absorbers on the paper are reached by homogenous

light fluence at almost the same depth (≈ 15mm).
Although the light reaching the absorbers would be slightly

attenuated, this remains a common factor in all the slices of

the 3D sPAI. Thus, this enables to investigate the unmixing

performance of the different unmixing algorithms without

being hampered by the fluence variation along the depth.

2.5 In vivo and ex vivo experiment

The in vivo experiments were conducted at FUJIFILM

Sonosite/VisualSonics facility in Amsterdam, Netherlands. All

the experiments involving animals were in full compliance with

the protocol (AVD2450020173644) evaluated and approved by the

Animal Use and Ethics Committee (CEUA) of Netherlands. These

were in accordance with FELASA guidelines and the National Law

for Laboratory Animal Experimentation (Law No.18.611). Three

female CD-1 mice models (Envigo, Horst, the Netherlands)

9 weeks old, were used to image the cervical-thoracic region.

During imaging acquisition, the mice were anesthetized with

isoflurane (2–3% by volume with 0.8l/min gas flow). The US

and sPAI acquisition was performed with the animal in its

prone position, with the transducer aligned perpendicularly to

image the region of interest. After in vivo acquisition, the adipose

tissue from the cervical-thoracic area was dissected post-mortem

and used for spectral measurements conducted via a portable NIR

spectrophotometer (see Section 2.3). We focused on this

anatomical area where the interscapular adipose tissue is present.

3 Results

3.1 Blind unmixing sensitivity and
specificity

The vessel-mimicking phantoms have been used to

evaluate the unmixing performances of PCA, ICA, and

FIGURE 4
Vessel-mimicking phantom shape (A) and the single wavelength photoacoustic images acquired at 700 nm for the three phantoms with
different levels of absorbing background. Specifically, without India Ink (B), with 0.05% v/v India Ink (C), and with 0.1% v/v India Ink (D) as background
absorption.
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NNMF, which have been applied to unmix the absorbers

included within the phantoms. Overall, the analysis has

been performed on the three phantoms, that have no

background absorption, 0.05% v/v, and 0.1% v/v India Ink

as background absorption. Thus, the phantoms without

background absorption and medium/high background

absorption result in sPAI with SNR values of 30dB, 15dB,

and 8dB, respectively. The only hyperparameter of these BSS

methods was the number of endmembers. This has

been manually selected to 2 in the absence of background

absorption and 3 in the other cases to unmix blue/green oil

colors and India ink. Figure 5 presents the source spectra

obtained as a result of the different BSS unmixing methods.

The detection sensitivity of the BSS methods depends not only

on the ability to unmix the molecular targets of interest from

the absorbing background but is also hampered by the SNR,

which indicates the quality of the images. Specifically, the

presence of bulk absorption at different concentrations

resembles possible real scenarios where it is more complex

to reveal the absorber targets of interest. The unmixing results

show that all three BSS methods managed to isolate the target

components (Blue and Green Oil Colors) and the background

(India Ink), when present. However, PCA and ICA algorithms

exhibited unwanted negative values in the spectra, which are

attributed to the non-constrained optimization process.

Besides, the BSS methods show unique solutions only up to

sign ambiguities. In particular, PCA and ICA are more prone

to error when the sources of interest have low variance. Thus,

often the iterative optimization procedure converges into

inverted unmixed components as compared to the expected

spectra.

On the other hand, the phantom studies showed that NNMF

could detect the vessel-tree branches colored in green and blue

with higher accuracy than PCA and ICA. High performance of

the NNMF method was obtained even in the case where the

background was highly absorbing (0.1% v/v India Ink) and the

SNR value was almost three times lower (8 dB). The NNMF

accurately unmixed the components and the detected spectra are

very close to the expected spectra measured by the NIR

spectrophotometer (see Figure 3). From the unmixing results,

all the phantoms qualitatively demonstrate the superiority of the

NNMF as a detection method in resolving the different absorbers

FIGURE 5
Unmixed spectra obtained from the vessel-mimicking phantoms with no background absorption (row (A)), medium background absorption
(row (B)), and high background absorption (row (C)). The unmixing has been performed by means of the BSS algorithms PCA, ICA, and NNMF.
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from sPAI. Furthermore, the non-negativity constraint was

found to maintain the most robust and accurate unmixing

performance in all experiments.

Finally, the unmixed source components from sPAI, by

applying the different BSS methods, have been compared

using the correlation with the curves measured via NIRS.

Table 2 reports the spectral correlation values obtained from

the different phantoms. Although in some instances PCA and

ICA show higher absolute correlation values than NNMF, often

this results in negative correlation values. The latter leads to the

identification of the components but with opposite signs. On the

contrary, the NNMF performance is superior and more robust in

all the vessel-mimicking phantoms conditions.

Besides, Table 3 reports the processing time of the BSS

algorithms used in the experimental phantoms. Here we have

performed the processing on a portable laptop with Intel(R)

Core(TM) i7-9750H CPU 2.60GHz and 16.0 GB of RAM.

Although the processing time depends on the dimensionality

reduction chosen by the user (number of endmembers), PCA has

shown the advantage of being faster than ICA when background

absorption is present. On the other hand NNMF, despite the

non-negativity constraint, seems computationally faster to

implement and leads to converging to more interpretable data.

Since the main focus of the experimental vessel-mimicking

phantoms was to test the BSS unmixing algorithms’

performance, especially their accuracy in detecting the

spectral signatures of the components, in this study, the

local fluence was assumed to be constant. This is a

reasonable assumption for the design of the vessel-

mimicking phantoms since the absorbers are all placed at

the same distance from the excitation light source.

3.2 Superpixel photoacoustic unmixing

Figure 6 shows the unmixing results obtained on the vessel-

mimicking phantoms with the recently developed method

named Superpixel spectral Photoacoustic Unmixing (SPAX)

framework. The SPAX is more robust to errors thanks to the

eigenvalues-based choice of the rank unmixing dimension

(number of endmembers). This SVD pre-analysis within the

SPAX ensures that significant information is not lost during

the dimensionality reduction. Thus, as shown in Figure 6 from

the SVD analysis, the SPAX has automatically evaluated the

optimal number of endmembers in the phantoms. Depending

on the absence or presence of the bulk absorber, the number of

endmembers has been automatically chosen as 2 or 3,

respectively. Besides, Figure 6 shows the unmixed source

spectra and respective abundance maps obtained as the final

output of the SPAX from the different phantoms. These

outputs are obtained following all the procedures within

SPAX: NNMF, Superpixel Subsampling, and visual

optimization (as shown in the flowchart of the SPAX in

Figure 1). Even for the phantom with a highly absorbing

background (0.1% v/v India Ink), the SPAX has shown high

unmixing performance by extracting the source components

and abundance maps with high accuracy.

The correspondence between the unmixed abundance maps

by the SPAX framework and the known phantom design was

determined by visual inspection. To validate the accuracy of the

obtained unmixing results the spectral correlation between the

reference spectra measured by the NIR spectrophotometer and

those unmixed by SPAX is performed. Table 2 includes the

obtained correlation values. Pearson’s correlation coefficients

have been estimated in the three phantoms, and the values have

been reported for the India Ink within the background, and

TABLE 2 Correlation values between reference spectra obtained viaNIRS probe and the unmixed spectra via BSS algorithms and SPAX framework for
the vessel-mimicking phantoms with different background absorption.

Vessel-mimicking
phantom

Components PCA (%) ICA (%) NNMF (%) SPAX (%)

No Background Absorption Blue Oil Color −49.7 −41.7 97.7 98.9

Green Oil Color −97.9 74.5 88.9 96.7

Medium Background Absorption India Ink −94.1 64.1 87.3 86

Blue Oil Color 88.3 −72.5 97.6 99.6

Green Oil Color 73.3 81.6 88.1 88.3

High Background Absorption India Ink 37.8 −80.1 77.9 74.8

Blue Oil Color −97.5 −85.1 97.1 95.8

Green Oil Color −84.3 83.4 85.9 82.3

TABLE 3 Unmixing processing time of the BSS algorithms (PCA, ICA,
andNNMF) to distinguish the source components from the vessel-
mimicking phantoms with different background absorption.

Vessel-mimicking phantom PCA (s) ICA (s) NNMF (s)

No Background Absorption 3.28 2.77 1.01

Medium Background Absorption 3.02 6.69 1.77

High Background Absorption 1.81 7.03 0.91

Frontiers in Signal Processing frontiersin.org10

Grasso et al. 10.3389/frsip.2022.984901

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.984901


blue/green targets. The correlation values obtained by SPAX

showed its superior unmixing performance as compared to the

other BSS algorithms. Only in the phantom with high

background absorption, the performance is slightly lower

than pure NNMF, this might be caused by the re-iterations

included within the SPAX that automatically lead the

optimization process to the convergence. These re-iterations

might cause some numerical errors in case of convergence to a

local minimum.

3.3 In vivo imaging

Although the phantom experiments have enabled the

evaluation of the unmixing performance of the different

algorithms, the spectral changes along the depth were not

considered. Compared to the conventional BSS approaches the

SPAX framework, also includes a fluence correction procedure.

Figure 7A shows the source components unmixed via SPAX

algorithm on the interscapular region of the mouse in vivo.

Although the sPAX automatically extracted seven

components, here we reported five identified components of

interest: oxygenated hemoglobin, deoxygenated hemoglobin,

skinline, white adipose tissue (WAT), and water. These have a

high correlation with the theoretical absorption spectra, reported

in the literature, of oxygenated hemoglobin, deoxygenated

hemoglobin, melanin, fat, and water respectively (Jacques, 2013).

For a qualitative validation of the spectra, spectral

measures of endogenous chromophore via NIRS have been

conducted. The interscapular fat pad has been dissected from

the cervical-thoracic area of the mouse post-mortem and the

sample has been prepared to contain pure fat. Thus, to avoid

confounding factors and ensure the measure of the absorption

spectrum from the fat only. NIRS measurements have been

performed and used as a reference to validate the unmixed

spectra via SPAX. Finally, the obtained NIR spectrum has been

FIGURE 6
SPAX framework applied on the vessel-mimicking phantoms without background absorption (row (A)), with 0.05% v/v India Ink (row (B)), and
0.1% v/v India Ink (row (C)) as background absorption. The SVD analysis, implementedwithin the SPAX, automatically determines the optimal number
of source components that is significantly above the noise floor. This has resulted as 2 in (A) and 3 in (B–C)where in addition to blue/green oil colors,
the India ink is present as a background absorber. The unmixed spectra and abundance maps obtained as the SPAX outputs show the extracted
dyes from the vessel-mimicking phantoms. The scale bar size is 2 mm.
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compared with the WAT spectrum automatically unmixed in

vivo from sPAI. Figure 7B shows the overlay of the measured

spectrum of WAT via NIR spectrophotometer and the

spectrum automatically unmixed via SPAX from the sPAI

data. Spectrally, the WAT absorbs primarily in the

900–950 nm region, as shown by the measured signature of

the dissected interscapular fat pad acquired by the NIR

spectrophotometer. The obtained WAT spectrum, unmixed

via SPAX, shows a characteristic peak at around 930 nm, which

is representative of absorption by lipids. Besides, the

correlation values, between the unmixed spectrum of WAT

and the NIRS reference, show that the SPAX approach could

reveal the WAT presence even with skin intact during in vivo

experiments with ~ 96% correlation. Figure 7C depicts the

WAT components automatically extracted via SPAX from

multiple animals, for a total number of three (M1, M2, and

M3). The WAT spectrum obtained from NIRS is also plotted as

a reference. Thus, in the inter-animals comparison, the WAT

components obtained via SPAX have also shown a similar

trend, maintaining the characteristic peak at around 930 nm.

The SPAX framework guarantees to distinguish the WAT,

which is typically a weak absorber and difficult to unmix in

the presence of highly absorbing components such as

hemoglobin (Zhang et al., 2018; Bagchi and Macdougald,

FIGURE 7
Tissue component spectra unmixed by the SPAX from the cervical-thoracic area of the mouse in vivo. Oxygenated hemoglobin, deoxygenated
hemoglobin, skinline, WAT, and water are the identified components from the seven source components (A). Comparison between the spectrum of
WAT extracted by SPAX and the WAT absorption spectrummeasured via NIRS (B). Comparison between the WAT spectrum extracted by SPAX from
three different animals in vivo and the WAT absorption spectrum measured via NIRS (C).

FIGURE 8
Whole-body US image of the mouse in a prone position with the cervical-thoracic area highlighted by the red ROI (A); Oxy/deoxy hemoglobin
(B) andWAT (C) abundance maps obtained via SPAX depicted in red/green and blue respectively. Schematic of a mouse interscapular adipose tissue
including WAT and iBAT (D). The scale bar size is 2 mm.
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2019), with a low residual spectral fit independently of tissue

depth.

In addition to the unmixed spectra, Figure 8 shows the

abundance maps of the components of interest obtained from

SPAX during in vivo acquisitions. The whole-body US image is

obtained simultaneously during the sPAI acquisition, thus enabling

the recognition of anatomical structures such as the cervical-thoracic

area with high accuracy (see Figure 8A). Figure 8B, depicts the oxy/

deoxy hemoglobin distribution map in red/green respectively.

Figure 8C, shows the distribution map of WAT in the blue

colormap that matches the WAT distribution within the

interscapular region as confirmed by the schematic reported in

Figure 8D. High fidelity and quality of the tissue component

unmixing maps were estimated with in situ visualization

performed after dissection. In particular, as observed in

Figure 8D from the schematic of the interscapular adipose tissue

of a mouse, the WAT has an arrangement between the shoulders

adjacent to the interscapular brown adipose tissue (iBAT) which has

a bilateral symmetrical shape. The SPAX framework has

distinguished WAT in vivo, non-invasively, and label-free.

Therefore, it has been assessed that the adipose tissue can be

separated from other tissue chromophores in vivo, within the

NIR range of 680–970 nm. This has also been confirmed from

ex vivo evaluations where it is possible to verify that the WAT is

localized within the cervical-thoracic region and shows the same

arrangement between the shoulders as automatically obtained in

vivo via SPAX (Reber et al., 2018; Bagchi and Macdougald, 2019).

The interscapular fat pad represents the largest brown

adipose tissue (BAT) depot, located on the dorsal side of the

animal, immediately inferior to the shoulders as shown from

the rodents’ atlas of adipose tissue by Zhang et al. (2018). The

interscapular BAT (iBAT) is covered with white adipose tissue

(WAT), which is a highly efficient energy storage.

Conventionally, the WAT is a weaker absorber that shows

an absorption intensity of around two orders lower than BAT,

thus it is difficult to be automatically differentiated (Reber

et al., 2018). In this study, the fat spectrum identified by SPAX

(see Figure 7), from healthy animals, shows the characteristic

WAT peak at 930 nm, also confirmed by NIRS measurements.

According to the adipose tissue atlas (Zhang et al., 2018), the

distribution map of fat obtained via SPAX is also matching the

WAT distribution depicted in the schematic (see

Figure 8C,D). On contrary, the iBAT significantly

contributes to the nonshivering thermogenic response and

regulates the body temperature homeostasis. Thus iBAT can

be activated via cold exposure. Once activated, the iBAT

becomes highly vascularized which may contribute to

greater absorption than WAT. Beyond WAT, as

demonstrated elsewhere (Reber et al., 2018), the activation

of BAT can be also indirectly monitored by tracking

hemodynamic changes as a marker of BAT’s metabolic

state. Thus the activation of BAT can be also monitored via

sPAI. However, in this study, we focused on the label-free

detection of less prominent tissue components such as WAT,

via SPAX framework.

Besides, although the axial depth of the in vivo images is

30 mm, the fat pad deposited within the interscapular region is a

superficial target. Therefore, in this case, the additional benefits of

SPAX in terms of spectral fluence compensation at depth is not so

evident. However, our previous study (Grasso et al., 2022) shows in

detail the improvements and high robustness of the SPAX for

unmixing absorbers positioned at deeper imaging depths.

4 Discussion

Spectral photoacoustic imaging (sPAI) has shown high

potential to determine detailed information on molecular

tissue composition. Conventionally, linear unmixing (LU) and

blind source separation (BSS) approaches are implemented to

differentiate the tissue components from sPAI. Although the

linear spectral unmixing method (Erhayiem et al., 2011; Reber

et al., 2018) is widely used, this has some drawbacks as it requires

user interaction to provide the expected spectral signatures of the

tissue components. Due to unpredictable spectral changes in

disease conditions or in clinical scenarios, linear unmixing is

challenging and can lead to suboptimal results. Thus,

unsupervised approaches that can automatically reveal any

spectral change or fingerprints that might be related to

pathological conditions are beneficial. Over the years, blind

source separation (BSS) algorithms have shown promising

automated unmixing performances in sPAI. Thus the BSS

methods present a possible solution to this ill-posed unmixing

problem and open up more photoacoustic applications both in

preclinical and translational research.

Here, we evaluated the unmixing performance of various BSS

algorithms to solve the sPAI unmixing problem in an

unsupervised way. The performance of previously reported

blind unmixing algorithms as principal component analysis

(PCA), independent component analysis (ICA), and non-

negative matrix factorization (NNMF) have been investigated

in detail on experimental vessel-mimicking phantoms. Although

these different methods are all part of the BSS category of

algorithms, they implement different hypotheses, constraints,

and optimization procedures, thus producing different results.

Besides, near-infrared spectroscopy (NIRS) technology has been

used as a reference to validate the unmixed spectra obtained by

the different unmixing algorithms.

The phantom experiment has shown that all the studied BSS

algorithms achieved the separation of the absorbers and PCA has

shown the advantage of being faster than ICA when background

absorption is present. On the other hand NNMF, despite the

non-negativity constraint, computationally appears to be the

fastest method to implement and converges to more

interpretable data. Furthermore, the cross-correlation values

measured between the reference NIR spectra and the unmixed
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spectra by the NNMF range between 77.9–97.7%. Thus, this has

confirmed that the NNMF enabled more accurate unmixing

performance for sPAI, as compared to PCA and ICA.

Specifically, the NNMF has shown promising unmixing

performance even in more complex scenarios, where the

phantom has a highly absorbing background that confounds

the included absorbers of interest and thus drastically reduces the

quality/SNR of the sPAI. This confirms that the imposed

positivity constraints are crucial to unmix tissue

chromophores from sPAI. While NNMF has shown superior

unmixing performance compared to the other BSS approaches,

this is sensitive to uncertainties and misinterpretation, especially

of less prominent chromophores at depth. In particular, NNMF

assumes that the most prominent absorbers such as hemoglobin,

are the sole tissue absorbers, not accounting for the presence of

other absorbing molecules (e.g., extrinsic molecules, melanin,

lipids, etc.) that are weaker absorbers. Therefore the less

prominent absorbers are discarded within the NNMF

unmixing, thus leading to incomplete tissue composition.

Besides, the unmixing result is hampered by the choice of the

hyperparameter and is jeopardized by the spectral coloring effect.

Specifically, the excitation light fluence used in sPAI generally

decreases with depth, and thus degrades the image uniformity,

causing spatial fluence variations within the tissue. Therefore the

NNMF could lead to significant errors in unmixing the tissue

spectra, especially in deeper areas where spectral coloring is

dominant.

Therefore, in addition to the classical BSS algorithms, a

recently developed unmixing framework named superpixel

photoacoustic unmixing (SPAX), which also considers these

aspects, has been explored (Grasso et al., 2022). Specifically,

the SPAX framework includes multiple procedures to accurately

identify the tissue composition by minimizing the user

interaction and prior knowledge about the tissue components.

Specifically, within the SPAX an initial fluence compensation

step based on US image segmentation and spectral Monte Carlo

simulation enables to mitigate unmixing misinterpretations

caused by the spectral coloring artifact at depth. The singular

value decomposition (SVD) analysis, included within the SPAX,

allows the automated choice of the hyperparameter. Therefore,

the SPAX framework has shown higher sensitivity than the

classic BSS methods for sPAI. Specifically, the SPAX approach

is more robust against nonlinearities caused by inaccurate fluence

estimation, converging to source components strengthened by a

meaningful positivity constraint. Besides, when the mixing

matrix is more ill-conditioned, as in the case of low SNR,

SPAX provides significantly more accurate results as it is

based on a parts-based decomposition, including the

innovative superpixel subsampling approach.

We have validated the SPAX on preclinical in vivo studies

focusing on the automated detection of less and most prominent

endogenous chromophores within the cervical-thoracic area.

Specifically, the SPAX has shown the ability to resolve not

only hemoglobin, considered the main source of endogenous

contrast in sPAI, but also less prominent tissue features such as

white adipose tissue (WAT) which is an important biomarker in

several diseases (Erhayiem et al., 2011). Finally, the results

obtained from the cervical-thoracic area via SPAX have been

compared to the NIR spectroscopic measures. A Pearson’s

correlation value of 96% has been obtained for the WAT, thus

showing the high sensitivity of SPAX to unmixWAT from highly

absorbing components. Therefore, it has been assessed that by

using SPAX the WAT can be separated from other tissue

chromophores in vivo, non-invasively, and label-free within

the NIR range of 680–970 nm.

Although the SPAX framework has demonstrated exemplary

performance as a data-driven unmixing approach for sPAI,

additional aspects can still compromise the performance of

spectral unmixing. For instance, the accuracy of the spectral

photoacoustic imaging reconstruction could also impact the

unmixing. Specifically, the recorded photoacoustic spectral

signals can be corrupted by many noise sources. To overcome

this limitation, advanced image reconstruction techniques, which

lead to a reduced alteration caused by artifacts and noise (Han

et al., 2015), have been developed to guarantee higher quality

sPAI and, consequently, more robust unmixing results.

Moreover, spectral unmixing still has absolute quantification

limits caused by additional uncertainties within the spectral

coloring compensation. Specifically, improved measurements

of the tissue properties, system response, and Gruneisen

parameters are still required. To this end, Brochu et al. (2017)

have demonstrated to retrieve the tissue optical properties

iteratively using finite element-based simulations, thus no

predefined library of properties is needed. Besides, deep

learning approaches based on non-explicit light fluence

estimation have been proposed (Li et al., 2022) for

application-specific tasks. Thus, in the future, developing deep

learning approaches that can be data-driven based would be

beneficial.

Furthermore, blind approaches like SPAX produce a number of

components that need to be visually inspected by an expert to select

the most relevant one based on experience and prior knowledge or

determined using e.g., a spectrophotometer. This may introduce

uncertainties, especially, in pathological conditions where there is no

theoretical comparison with the spectral components automatically

unmixed. Thus, future implementations of prediction models based

on simulations could help to recognizemeaningful features and their

relation with specific disease conditions. Finally, to promote the

clinical translation of the sPAI technology real-time unmixing

processing would be beneficial. Typically, spectral unmixing

techniques are not feasible for real-time applications due to the

long acquisition time associated with transmitting multiple laser

wavelengths in sPAI. Thus, further efforts would be required to

adjust the tradeoff between acquisition time and spectral resolution.

Currently, the SPAX is optimized for spectral PAI including a

spectral decoloring approach based on high-resolution US images
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and multi-wavelength Monte-Carlo light fluence simulations. This

approach is ideal for accurate and highly sensitive offline unmixing

analysis. However, opportunely choosing a minimum number of

excitation wavelengths during PAI acquisition, which maintains the

accuracy and sensitivity of the spectral unmixing approach, would

reduce the acquisition and processing times. As already

demonstrated by Luke et al. (2013), the implementation of

advanced algorithms for the selection of significant wavelengths

could facilitate unsupervised unmixing using an optimum number

of wavelengths, thus minimizing the acquisition time and speeding

up the analysis.

In addition to the number of wavelengths, the linear motor

step size and consequently the number of slices of 3D multi-

wavelength data also limits the real-time acquisition. Thus, the

motor step size can be selected to minimize imaging artifacts by

maintaining a good compromise between speed of acquisition,

resolution, and continuity of volumetric imaging. Besides, the

optimization of spectral Monte Carlo simulations for fluence

compensation by using GPU-based implementations would also

speed up the computational processing time, encouraging the use

of SPAX in further applications. By optimizing these parameters,

acquisition and processing time can be improved, thus

facilitating the translation of the approach into clinical practice.
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