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ABSTRACT Limited non-invasive transhumeral prosthesis control exists due to the absence of signal
sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that
integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to
overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve
classification accuracy (CA) to escalate arm movements’ control performance for individuals who have a
transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral
amputee subjects for six armmotions were participating in the experiment.Myo armbandwas used to acquire
sEMG signals corresponding to four armmotions: elbow extension, elbow flexion, wrist pronation, and wrist
supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response
from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy
of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects,
respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand
motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG
and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of
multifunctional upper-limb prostheses.

INDEX TERMS Classification accuracy, fNIRS, hybrid brain-machine interface, sEMG, transhumeral
prosthesis.

I. INTRODUCTION
Human arm amputation causes substantial functional and
muscle losses for amputees. Transhumeral prosthetic arms
are worn by an amputee who suffered from above elbow
amputation [1]. For transhumeral amputation, at least three
degrees of freedom (DOF) should be available for prosthetic
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arm’s smooth functionality: elbowflexion-extension, forearm
pronation-supination, and hand open-close. Nevertheless,
the transhumeral amputees do not have sufficient residual
muscles to control multiple DOF [2]. The dexterity of control
is restricted and ultimately a low acceptance percentage in
prosthetic device users [3]. Both invasive and non-invasive
procedures exist to control the upper limb prosthesis. The
invasive approach typically involves surgical implantation of
biosensors such as intramuscular electromyography (iEMG)
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[4], intracranial electroencephalography (iEEG), electrocor-
ticography (ECoG) [5], and target muscle reinnervation
(TMR) [6]. All of them require complex surgical pro-
cesses to be performed for microelectrode implantation.
It lays the foundation for the human-machine interface (HMI)
and has been exceptionally effective in controlling upper
limb prosthetic arms [7]. However, these procedures are
far from perfect options, as they are invasive procedures
and include significant risks. Whereas for non-invasive
method, scientists have used several biosensors such as sur-
face electromyography (sEMG) [8], [9], electroencephalog-
raphy (EEG) [10], sonomyography (SMG) [11], near-infrared
(NIR) [12], functional near-infrared spectroscopy (fNIRS)
[13], mechanomyography (MMG) [14], [15], and force myo-
graphy (FMG) [16].

For several decades, sEMG signals are investigated as an
intuitive HMI to control prosthetic arms [17], [18]. It gives
information about muscle activity by placing an electrode on
the skin’s surface [18]–[20]. It is preferred due to the ease
of signal extraction procedure and non-invasive technique.
In addition to that, external sensory inputs from switches,
kinematic features, gyroscopes, pressure sensors, visual ser-
voing [21], and inertial measurement unit (IMU) [22] are also
used to control prostheses [23]. Despite the vast and favoured
application of sEMG, one of the biggest challenges is extract-
ing proper sEMG signals from human biceps and triceps to
detect muscle intention and generate a control command.
This is due to less available residual muscle for transhumeral
amputation. Also, signal degradation due to muscular fatigue
and proneness to crosstalk from neighbouring muscles is
observed [24], [25]. Combining sEMG with other comple-
mentary sensor modalities improves upper-limb prosthesis
control [8], [26]–[28]. Thus, it has been proposed to combine
myoelectric signals with other bio-signals and name them
hybrid myoelectric control systems [29]. Three significant
aims of hybridization are to improve the classification accu-
racy (CA), to increase the number of control commands, and
decrease the time to detect the bio-signal [30]. Presently, non-
invasive hybrid brain-machine interface (hBMI) technologies
are abundantly used to achieve hybridization goals for pros-
thetic limb control. Combining EEG and EMG is a promising
technique to control exoskeletons and prosthetic devices [27].
This scheme attains a decent control performance even in
the presence of muscular fatigue [31]. However, the obtained
EEG signals are not perfect due to signal acquisition difficul-
ties, low data transfer rate, achieved accuracy, and little user
flexibility [26], [29].

Additionally, EMG and kinematic signals are combined
to assess the CA of eight arm movements in transhumeral
amputees. However, the kinematic signals are susceptible
to motion artefact [32]. An integrated hybrid system is
also developed for simultaneous EMG and MMG mea-
surement [14]. This platform captured muscular activa-
tions in different frequencies tested on able-bodied and
trans-radial amputees. Its results suggested that MMG-
assisted myoelectric sensing can improve control perfor-

mance. An sEMG/NIRS hybrid system is developed to
combine the advantages of EMG and NIRS to fulfil the
requirements of adequate upper-limb prosthesis control. It is
tested on healthy subjects and trans-radial amputees [29].
Buccino et al. [33] reported the control performance of an
EEG-fNIRS hybrid sensor system to discriminate between
a set of motor tasks. The obtained CA of the hybrid sensor
system is higher than the accuracy achieved from individual
modality (EEG or fNIRS), but they proposed this scheme on
limited armmotions. It is evident from the available literature
that most of the hBMI schemes are applied to control transra-
dial prosthesis. However, little work is done to control the
above-elbow amputations [2], [34], indicating a significant
shortcoming [35].

This research proposes an hBMI solution to control six
different arm motions for transhumeral amputees. A hybrid
combination of two non-invasive modalities: sEMG and
fNIRS, is presented. The acquired signals from both modal-
ities were processed, and different features were tested
on a classifier to generate control commands. As per the
authors’ best knowledge, the presented hBMI approach for
transhumeral amputation and its analysis have never been
reported earlier. Section 2 presents materials and methods
used: data acquisition, signal processing, channel selection,
feature extraction, and classification. Whereas, in section 3,
results are presented and discussed before concluding the
work.

II. MATERIALS AND METHODS
In this section, all information related to the experimental
protocol followed by details of the methodology used in
the signal acquisition, signal processing, classification, and
hybridization framework is included.

A. DATA ACQUISITION
1) SUBJECTS
For this study, fifteen healthy subjects (age: 20-35) and three
transhumeral amputees were recruited. The demographic
characteristics of amputees are given in Table 1. None of the
selected participants had a previous history of any neurolog-
ical, cardio-respiratory, or visual ailment. All of the subjects
had normal or corrected to normal vision. The subjects were
also educated in detail about the experimental process, and
all subjects gave their written consent. None of the amputees
was using any prosthetic device. The experiments were con-
ducted following the latest Declaration of Helsinki and were
approved by the Air University HumanResearch Ethics Com-
mittee (AUHREC)

2) SENSOR PLACEMENT
a: sEMG ARMBAND
For decoding elbow and wrist motion of subject’s arm,
the Myo armband (Thalmic Labs, Canada) is used.
It is a wearable gadget provided with eight electromyo-
graphic (sEMG) electrodes, a 9-axes inertial measurement
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TABLE 1. Demographic characteristics of amputees.

unit (IMU) (3-axes gyroscope, 3-axes accelerometer and
3-axesmagnetometer) and a transmissionmodule (MyoArm-
band web site; Thalmic Labs Inc., 2013–2018). The EMG
electrodes detect the signals related to the muscles activity of
the user’s arm. The acquired data are sent via the Bluetooth
Low Energy (BLE) module embedded into the armband,
other electronic devices (actuators, microcontrollers, and
so on), which perform specific functions depending on the
received data on their installed software. It is positioned
on the biceps of the subject’s arm. The armband acquired
the sEMG signals for four-arm motions: elbow extension
(EE), elbow flexion (EF), wrist pronation (WP), and wrist
supination (WS).

b: fNIRS OPTODE PLACEMENT
The NIRx Imaging system, NIRsport (NIRx Medical Tech-
nologies, Germany), was used to obtain fNIRS signals for
two hand motions: hand close (HC) and hand open (HO). The
NIRsport is an accessible, segmental, and robust functional
near-infrared spectroscopy (fNIRS) machine that measures
hemodynamic responses generated by neuro-activation of the
brain via oxy-, deoxy-, and total haemoglobin variations in
the cerebral cortex. Eight sources and eight detectors were
positioned on the subjects’ brain prefrontal cortex region to
record fNIRS signals with a separation of 3 cm between
sender and receiver’s optodes [27], resulting in twenty-two
channels. The sEMG armband and fNIRS optodes placement
on amputee A1 are illustrated in Fig. 1(a).

3) EXPERIMENTAL PROCEDURE
The experiment comprised of two parts: a training session
and a testing session. All subjects were instructed to execute
six tasks, among which four tasks were detected by sEMG
and two tasks by fNIRS. The experiments were executed
in a confined room for the training session to reduce dis-
turbance from the surrounding environment. Each subject
was seated in a comfortable chair with their arms placed on
armrests. They were also advised to remain relaxed during
the experiment to avoid any unnecessary movement or think-
ing. The training session was initiated with a resting period
of 3 mins to establish a data baseline. After completing the
rest period, participants received cues of six specific tasks
shown on a screen approximately 80 cm away from the
subject. The first two tasks were performed to acquire fNIRS
signals from the prefrontal region of the subject’s brain.
It included mental arithmetic (MA): subtraction of two-digit

numbers from three-digit numbers in pseudo-random order
(e.g., 245 − 22 =?) and word formation (WF): formation of
six-letter words (e.g., ‘‘Monday’’). It is reported that the
word-formation signals are weaker than mental arithmetic,
and hence these two activities can easily be differentiated
from each other, aiding in the classification [21].

The remaining four tasks were executed to acquire sEMG
signals, and the subjects were asked to have an initial 5-sec
rest followed by a 20-sec task period. This model was imple-
mented for the acquisition of four different arm movements:
elbow extension (EE), elbow flexion (EF), wrist pronation
(WP), and wrist supination (WS). The information regard-
ing the experimental protocol and data recording process is
provided in Fig. 2.

B. SIGNAL PROCESSING AND CHANNEL SELECTION
The data from both modalities (sEMG and fNIRS) were
acquired using the paradigm given in Fig. 2. The obtained
data set from each sensor was independently processed and
filtered to obtain the desired signals.

1) fNIRS SIGNAL PROCESSING
fNIRS data were recorded using NIRports (NIRx Inc.) using
two wavelengths, 760 nm and 850 nm, respectively. Sig-
nal processing and data analysis were carried out using the
nirsLABr software. The fNIRS data were first preprocessed
to remove physiological noises [28], and a sampling rate
of 7.81 Hz was used to acquire the data. For each experiment,
every channel’s signal was filtered using a band-pass filter
(0.01–0.2 Hz) to reduce the effects of cardiac, respiratory
and very low-frequency confounders [29]. The Modified
Beer-Lambert Law (MBLL) [21, 30], given in (1), was used
to convert changes in raw optical density signals into oxy-
and deoxy-haemoglobin concentration changes, respectively,
(1cHbO(t) and 1cHbR(t)) :

[
1cHbO (t)
1cHbR (t)

]
=

[
αHbO (λ1) αHbO (λ1)

αHbO (λ2) αHbO (λ2)

]−1 [
1A(t; λ1)
1A(t; λ12)

]
l × DPF

(1)

In (1), DPF is the curve path length factor, and l is the
distance between source and detector. A(t; λ1) and A(t; λ2) is
the absorption at two different instants, αHbO(λ) and αHbR(λ)
are the extinction coefficients of HbO andHbR,1cHbO(t) and
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FIGURE 1. Hybrid surface electromyography (Myo armband) and functional near-infrared spectroscopy (optodes placement)
setup: (a) amputee A1 while wearing Myo armband on his biceps and NIRSport head cap positioned on his prefrontal region of
the brain to acquire.

FIGURE 2. After an initial 3-min rest, each fNIRS block consists of 10-s activations, and 20-s rests, while every surface
electromyography block comprises of 1-s activations and 1-s rests. The total experiment duration for acquiring sEMG and fNIRS
signals is 11mins.

1cHbR(t) are changes in the concentration of HbO and HbR,
respectively.

2) sEMG SIGNAL PROCESSING
Myo armband was used to acquire sEMG signals. It is a wear-
able and resizable device that allows acquiring sEMG signals
from different arm sizes (thin or thick). It includes eight
sEMG sensors and a 9-axis inertial measurement unit which
contains a gyroscope, an accelerometer, and a magnetometer,

three axes each. The armband uses a 200 Hz sampling fre-
quency for signal acquisition. Myo armband was placed on
the biceps of the subject’s arm while they were sitting. After
sensor placement, the armband was connected to a laptop via
a USB Bluetooth adapter. Myo diagnostics software was used
to display signals in graphical form for each electrode. The
signals on this graphical display can be visually inspected
for electrodes’ signal quality during each specific task. The
signals were captured during the experiments using the Myo
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Capture tool of the software. Myo Capture stored the time
series of all the numerical values of voltages obtained from
the sensors in an auto-generatedMicrosoft excelr sheet. The
excel sheet held nine columns: eight containing data for eight
electrodes and one containing time points. Myo armband
extracts data as an analog voltage signal in millivolts (mV),
uses its built-in filters to remove noise(s), and yields noise-
free 8-bit data. The output voltages vary between −30mV to
+80mV. These voltages are digitized from −128 to 127 and
later normalized between −1 and +1 for data processing
in MATLAB 2019r. Fig. 5 shows the averaged raw signal
obtained from eight electrodes of the armband for elbow
extension (EE) motion captured from a healthy subject.

3) CHANNEL SELECTION
Before features extraction, appropriate electrodes/optodes
must be selected if a brain-machine interface (BMI) aims
to achieve high CA with minimum complexity. Preceding
studies have proposed different methods to select channels or
signals for classification, comprising bundled optode-based
approaches [31] and t-value-based approaches [28]. On the
other hand, further studies have employed their algorithms,
for instance, independent component analysis [32]. There-
fore, we used the following criteria to select sEMGand fNIRS
electrodes/ optodes.

For sEMG signals, after the signal acquisition of all sub-
jects, the amplitude of each electrode was analyzed. For
each electrode, the minimum value of the signal was sub-
tracted from the median value. This difference of values
was averaged for all eight electrodes. The averaged values
ranged between 48∼58 mV for all subjects. Therefore, 48mV
was selected as the threshold value to see the channel acti-
vation. Any channel with a lesser value than 48mV was
discarded. Whereas for fNIRS signals, a channel-averaging
approach [33] was used.

C. FEATURE EXTRACTION
To generate six control commands, relevant features for the
classification were extracted. For fNIRS the signal peak (SP)
and signal mean (SM) were selected as features. As per the
literature [34], SM and SP provide better control performance
for fNIRS-based systems. Also, considering the reported
possibility of an initial fNIRS signal dip, a minimum (min)
signal value was added as a feature [35]. For sEMG signals,
we selected the waveform length (WL) and the number of
peaks as features. The features were calculated from only
selected electrodes that showed significant activation using
a 250 ms moving window. For both modalities (sEMG and
fNIRS), MATLABr was used to implement all the features’
computation.

D. CLASSIFICATION
Linear discriminant analysis (LDA) was used to classify the
sEMG and fNIRS signals to evaluate the performance of
the features. In literature, LDA has been extensively applied
to multiclass problems. It results in high performance with

low computational cost [36], [37] and faster than the support
vector machine [34], which motivated the authors to select
LDA. The governing Fisher’s criteria is given as in (2).

J (v) =
vtSBv
vtSwv

(2)

Between classes scatter matrix SB is defined as in (3):

SB =
c∑
xi

ni (µi − µ) (µi − µ)
t (3)

where, ni represents several samples that belong to class i.
Whereas, within-class scatter matrix, Sw, is given as (4):

Sw =
c∑
xi

Si =
c∑
xi

∑
xk∈Classi

(xk − µi) (xk − µi)
t (4)

Generalized eigenvector problem is represented as (5):

SBv = λSwv (5)

The optimal v is the eigenvector corresponding to the
largest eigenvalue and represented as (6) provided that Sw is
nonsingular.

v = S−1W (µi − µ) (6)

The LDA classifier performance was estimated using
10-fold cross-validation. The whole data was split randomly
into ten groups, among which nine were used for training
purposes, and the remaining one was used for testing. This
entire procedure was repeated ten times till all the groups
were tested against each other. However, Fig. 3 illustrates
an hBMI scheme for transhumeral prosthesis control using
sEMG and fNIRS.

III. RESULTS
In this study, two signal modalities, i.e., sEMG and fNIRS,
are hybridized to generate six control commands for a tran-
shumeral prosthesis. Fig. 4 plots subject 6’s selected optode-
wise hemodynamics states values for two-hand activities.
While performing a brain activity, it was observed that not
all channels were active. Chanel 1, 2, 3, 9, 12, and 16 show
the activity for word formation, while on channels 18, 19,
20, and 22, the activity from the arithmetic means. In Fig. 4,
the block averages of the selected optodes are illustrated.
It is visible that both the tasks are visually separately and
hence resulted in higher accuracy. These active channels were
used to extract the statistical features which took part in the
classification. However, for both mental tasks, the activation
pattern seems to appear on the same channels. Thus, there
existed a need to select channels that are are contributing
rather than increasing computational time. In the previous
section, a channel-averaging approach was used for channel
selection. In our case, the subjects were asked to move their
right hand. [28], [38]. However, both these actions appeared
in the different regions of the brain that can be identified. The
spatial features were calculated, which reflects brain activity
in the prefrontal cortex region.
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FIGURE 3. The framework of hybrid sEMG and fNIRS for transhumeral prosthesis control.

Window sizing of diverse spans has been utilized in several
studies to detect fNIRS features [38]–[40]. It is intended
to minimize the window size to generate a fast response
for real-time applications. So, the time spans of 0 – 0.5,
0 – 1, and 0 – 2 seconds windows were selected. These
split seconds were employed for EMG features extraction
and investigation of hemodynamic features to secure the best
window size to decrease calculation time. Fig. 5 represents
the raw sEMG signals obtained from eight electrodes for
elbow extension (EE) motion captured from a healthy subject
arm. It can be seen that electrodes 2, 3 and 4 show significant
activity as they are positioned on the tricep muscle activated
for the elbow extension motion.

The reported performance measures were computed based
on the number of correctly classified samples over the task
time (0–10 s) and were evaluated by 10-fold cross-validation.
The highest value of accuracy recorded for two-class fNIRS
activity was 97% for subject 6, and for sEMG activity,
the highest accuracy recorded is 94%. As for the amputees,
the fNIRS signals were more expressed compared to the
sEMG signals. Hence, the accuracy for two classes of fNIRS
was recorded to be 94.6%, while sEMG resulted in the accu-
racy of the highest value of 73%. The accuracies obtained
using sEMG and fNIRS for all healthy and amputated sub-
jects are shown in Fig. 6.

The offline testing results on the trained modal has been
illustrated in Table 3. It can be seen that themostmisclassified
motions are of hand-open and hand-closed motion, as stated
earlier in section II, which arise the notion for control com-
mand generation using a combination of modalities.

Similarly, as per the experimental design, real-time valida-
tion was separated into two types: Type-1: training and testing
with all motions with both signal modalities and 2) Type-2:

training with one motion and testing with other motions
muscle contraction hemodynamic response as well. In this
strategy, the amputated subject is instructed to perform the
activity with different random (can include untrained) inten-
tions at the time of testing. A total of 10 activities have been
performed in a randomized manner. For healthy subjects,
the number of activities was increased to 20 motions.

1) Type-1: The result of all activities is shown in Table 4 for
the amputee-1. The mean CA of ≈% has been reported. The
highest and lowest error rates of 0% and 40% have been seen
for the activity EE, EF, HO, HC, WP, and WS. The pattern
recognition error is the highest 50% for the activity HC when
amputee-3 has been considered, as shown in Table 4. The
overall classification error of 18%, 11%, and 18.3% has been
observed for A1, A2, and A3. For amputee-3, the CA is 88%,
and the highest error of 40% is seen as shown in Table 4.
A similar trend has been observed in offline analysis. This
validates the proposed scheme for the real-time application.

Type-2: Testing with the unknown signals resulted in the
CA of 25%, 15%, and 25% has been observed when the clas-
sification model was developed using training with different
subjects for A1, A2 and A3, respectively. The results of this
experiment are described in Table 5.

IV. DISCUSSION
Combining various bio-signals is a potential method to attain
abundant neural information for multiple degree prosthesis
control. This will aid to decode more accurate motion inten-
tion of transhumeral amputees. In this work, to improve the
control performances of multi DOF myoelectric prosthetic
arm, an hBMI scheme through sEMG and fNIRS signals
for hand, wrist and elbow motion identification is studied.
The authors combined two non-invasive modalities in the
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FIGURE 4. Selected optode-wise hemodynamic states block averaging visualization for both the tasks.

FIGURE 5. Channel/electrode-wise raw sEMG data for elbow extension EE motion captured from a healthy subject.

presented research: sEMG and fNIRS, to generate six control
commands for trans humeral amputee. This study demon-
strated the feasibility of fusing sEMG and fNIRS signals
towards improving motion classification accuracy for above-
elbow amputees, enhancing the control performances of mul-
tifunctional myoelectric prostheses in clinical application.
It also overcomes the specific disadvantages of each individ-
ual modality of BMI. This is the first time sEMG and fNIRS
signals are combined to generate control commands for pros-
thetic arm control to the best of the authors knowledge.

This research’s ultimate goal was to control six arm
degree motions: EE, EF, WP, WS, HO and HC using non-
invasive hBMI. These arm motions are the least prerequisite

to maintain the functionality for above elbow amputation.
The proposed scheme generates four control commands
from sEMG data acquired from the biceps and triceps. The
obtained average accuracy was 94.6% and 74% for healthy
and amputated subjects, respectively. Nevertheless, previous
to this study, sEMG data from bicep and triceps of healthy
and amputated subjects were also acquired for HO and HC
motion. However, quality sEMG signals were not achieved
from the biceps and triceps of healthy subjects or stumped
muscles in amputees. A possible reason would be that when
an above-elbow amputee makes a hand motion, the remain-
ing muscles will produce relatively weak sEMG signals.
Although these muscles are not functionally associated with

113252 VOLUME 9, 2021



N. Y. Sattar et al.: Enhancing CA of Transhumeral Prosthesis: Hybrid sEMG and fNIRS Approach

FIGURE 6. Subject wise obtained classification accuracies using sEMG and fNIRS for fifteen healthy subjects are represented
as S1 – S15 while amputated subjects are labelled as A1 – A3.

TABLE 2. Comparison of proposed method with recent hybrid brain machine interface based on modality type, sensor placement, classifier, command
generation and accuracy for upper limb prosthetic control. The H represents healthy subjects while a for amputees.

the respected hand movements [41]. The obtained classifica-
tion accuracy of sEMG for six control commands was around
16.4 – 29.3%, not acceptable. Unlike the forearm, the arm,
which is the upper limb between the shoulder joint and the
elbow joint, has minor muscle activity, and the elbow joint
and forearm twist motions cannot be predicted. Therefore,
non-invasive signal processing is a big challenge for above
elbow amputation, but the state of the artwork shows that
hBMI may help resolve such problems. Table 2 shows details
of different existing hBMI for upper-limb prosthesis control,
whereas the last 5 schemes have been carried out in the last
five years. It also includes the presented research results as
current work in the last row of the table to compare existing

hybrid methods. It is apparent from Table 2 that most of them
have carried their experiments for transradial amputees. The
obtained results of this research are included in the Table 2.

Through the proposed scheme, it can be seen that the
number of commands is increased, and there is no decrease
in the accuracy. When sEMG alone is used, the recorded
intentions from hand motion are weak and disturb the sys-
tem’s overall accuracy. Using fNIRS individually does not
help much either. As the number of commands increases, the
accuracy of the classifier decreases. It is because the hemody-
namic patterns take time to reach the baseline after activation.
Due to this time delay, which can be of 17s [37], the con-
trol command generation accuracy is affected. By using
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TABLE 3. Offline amputee classification results motion-wise.

TABLE 4. Real-time amputee motion-wise accuracy for case #1.

TABLE 5. Real-time amputee motion-wise accuracy for case #2.

both modalities, this issue was addressed. When the fNIRS
response comes back to baseline, the sEMG can predict
a motion that can be translated into a control command.
The number of commands is increased as well the accuracy
remains above 90%.

For this study, the results were obtained based on offline
analysis, and the classification accuracy only evaluated the
performances of the proposed hybrid method. In the future,
the proposed method’s efficiency would be investigated in
a real-time environment and assessed by more measures
such as motion selection time, motion completion time, and
motion completion rate.

V. CONCLUSION
In this research study, we investigated the prospect of decod-
ing six commands from the subject’s biceps and the prefrontal
cortices region with better accuracy using hBMI. Hybridiza-
tion: combining surface electromyography (sEMG) and func-
tional near-infrared spectroscopy (fNIRS) is proposed. Four
sEMG control commands were generated, corresponding to
two elbows and two wrist movements (EE, EF, WP and WS
movements), using the number of peaks and the waveform
length as features. Two fNIRS control commands were gen-
erated for two hand movements (HO and HC), using the
means and peaks of signals as features. For fNIRS, mental
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arithmetic (MA) and word formation (WF) tasks were cho-
sen for activity decoding. We selected a 0 –2s window and
250ms window for fNIRS and sEMG signals, respectively,
to generate six control commands. The signal mean, peak,
and minimum values were used to incorporate hemodynamic
signals and initial dip features in the classifier. The per-
formed experiments demonstrated the hBMI feasibility and
potential applications of the proposed six command decoding
scheme. The outcome of this study might help realize the
control of multifunctional myoelectric prostheses for above-
elbow amputees. However, further research is needed on
feature selection criteria and increasing the number of control
commands to improve the prosthetic arm’s controllability.
Moreover, incorporating adaptive algorithms for prosthetic
control and hBMI for motion control can further strengthen
the results.
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