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Abstract: Human organoids are small, self-organized, three-dimensional (3D) tissue cultures that
have started to revolutionize medical science in terms of understanding disease, testing pharmaco-
logically active compounds, and offering novel ways to treat disease. Organoids of the liver, kidney,
intestine, lung, and brain have been developed in recent years. Human brain organoids are used for
understanding pathogenesis and investigating therapeutic options for neurodevelopmental, neu-
ropsychiatric, neurodegenerative, and neurological disorders. Theoretically, several brain disorders
can be modeled with the aid of human brain organoids, and hence the potential exists for understand-
ing migraine pathogenesis and its treatment with the aid of brain organoids. Migraine is considered
a brain disorder with neurological and non-neurological abnormalities and symptoms. Both genetic
and environmental factors play essential roles in migraine pathogenesis and its clinical manifestations.
Several types of migraines are classified, for example, migraines with and without aura, and human
brain organoids can be developed from patients with these types of migraines to study genetic
factors (e.g., channelopathy in calcium channels) and environmental stressors (e.g., chemical and
mechanical). In these models, drug candidates for therapeutic purposes can also be tested. Here,
the potential and limitations of human brain organoids for studying migraine pathogenesis and its
treatment are communicated to generate motivation and stimulate curiosity for further research. This
must, however, be considered alongside the complexity of the concept of brain organoids and the
neuroethical aspects of the topic. Interested researchers are invited to join the network for protocol
development and testing the hypothesis presented here.

Keywords: migraine; headache; brain; organoids; brain organoid; human brain organoids; neurologi-
cal; psychological; pathogenesis; drug development

1. Human Organoids

Human organoids are in vitro cultured three-dimensional (3D) structures that are
mainly produced from two types of cells: (1) human pluripotent stem cells (hPSCs) that
include both embryonic stem cells (ESCs) and iPSCs, and (2) organ-specific adult stem
cells (ASCs or AdSCs). They are derived from individuals and recapitulate the cellular
heterogeneity, structure, and functions of original human organs [1,2]. As organoids carry
the genetic information of the source, they hold great potential for biomedical research
and preclinical drug testing [3]. In the future, it is expected that human organoids will
become one of the major sources of personalized regenerative medicine, gene repair, and
transplantation therapy [4,5]. In theory, human organoids can be created from any organ
and used in both basic and clinical research [2]. Researchers have succeeded in generating
various types of organoids [2,3] with the aid of well-defined protocols and advanced
technologies for in vitro differentiation [6,7]. For instance, retinal, kidney, liver, lung,
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gastrointestinal, cardiac, and brain organoids have been created [8,9] for disease modeling,
drug screening, and regenerative therapy [10] (Figure 1).
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Disease Modeling and Drug Screening: From Animal Models to Human Organoids

Disease modeling and drug screening have long been carried out with the aid of
various methods. Animal models, for example, have been successfully used in biomedical
research for more than 100 years and could improve our knowledge of cellular and molec-
ular signaling pathways, identification, and testing of potential drug targets, in addition
to clarifying underlying pathological and disease mechanisms [11]. However, differences
between animals and humans, and the lack of translation of findings from animal models
to humans in a great deal of research, have become major obstacles to the application of
animal models in disease understanding and drug discoveries [12,13]. Animal models
have therefore been subjected to replacement strategies on the grounds of these limitations,
along with ethical and welfare concerns, and the general recommendations of the 3Rs
(replacement, reduction, and refinement) [14].

To reduce the translational gap [15], human in vitro biological systems [16] have
emerged and been optimized over time. Conventional two-dimensional (2D) cell culture
systems have been and continue to be used because they are less expensive, well-established,
have possibilities for comparative literature, and allow for easier cell observation and mea-
surement [17]. Tissue stem cell culture systems of hPSC and AdSC have provided an in vitro
platform of human cellular materials for studying health and disease and testing pharmaco-
logically active compounds or large-scale drug screening [2,18]. The first human embryonic
stem cells (ESCs) line was introduced in 1998 [19]. Human iPSC (hiPSC) technology, estab-
lished in 2007, is now widely used to generate “disease-in-a-dish” models [8,20,21]. This
technology enabled disease modeling toward precision medicine [21]. The development of
clustered, regulatory, interspaced, short, palindromic repeat (CRISPR)/Cas9 endonucleases
has enabled the creation of genetically edited hiPSC-based disease models [22,23]. However,
iPSC-derived 2D cell cultures have some limitations compared with 3D cell cultures [24].
2D cell cultures have some limitations, for example, lack of a hierarchical structure, dimen-
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sionality, and cellular diversity. In some cases, cell-to-cell or cell-to-matrix interactions are
limited in 2D cultures, which can influence certain cellular functions [2,25,26].

With the advancement in technology, 3D cultures have received high interest because
of their more organ-like structures and the potential for the simultaneous culturing of
different cell types [27,28] that can better mimic physiologically relevant organ systems [29].
By modifying the combination of growth factors and cell isolation procedures, researchers
could generate multiple kinds of human organoids [30]. Improvements in protocols for the
development of various organoids have resulted in a prolonged maturation time [31]. In
addition, the generation of assembloids could allow a combination of more organoids to
co-exist and better resemble the complexity of organs [32,33]. The term “assembloid” was
first described by Dr. Sergiu Pas, ca as a 3D structure formed from the fusion and functional
integration of multiple cell types which mimics the complex cellular interactions that exist
in the body organs [34]. In such a system, both genetics and epigenetics [35,36] can be
investigated. In addition, the transplantation of organoids into animals such as rodents
has been reported, for example, the successful transplantation of whole-brain organoids
into the adult mouse brain has been presented [37], where the researchers demonstrated
evidence for anatomical and functional integration. The transplanting strategy somewhat
resembles similar ideas of grafting structured neural tissues for stem-cell-based treatments
that have already been carried out in human clinical trials, for example, in stroke, traumatic
brain injury, and Parkinson’s disease [38].

Figure 2 depicts the potential and limitations of 2D cell culture systems, 3D organoid
cultures, and the establishment of organoids in animal models. It is important to emphasize
that no model is perfect [39]. Thus, the selection of a model must be based on the research
question, and the conclusions must still be viewed cautiously.
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2. Human Brain Organoids

The brain is one of the most complex and advanced organs in the body [40]. Brain
complexity [40] has often limited easy access or thorough investigation of the brain in
health and disease. Knowledge of the human brain has mostly been obtained from the
investigation of postmortem brain samples, and now, with the advancement of human
stem cells [8,41], brain regions can be produced. For example, the cerebral cortex can
be produced from progenitor cell populations that organize and produce mature cortical
neurons. Such cerebral organoids [42] have been shown to recapitulate features of human
cortical development and allow the study of the regional developmental stages of the
brain. On the other hand, stem cells originating from patients could help in modeling
disorders [43], for example, microcephaly [44]. Interestingly, this disorder cannot be
modeled in animals (unsuccessful models in mice); therefore, using organoids [45] could
provide the potential for studying this disorder [46].

In general, neuronal differentiation and developmental problems can be studied in
patient organoids to empower scientists in explaining disease phenotypes. Diverse and
advanced technologies can be coupled with brain organoids [47], for example, in genome
editing, single-cell sequencing, biomaterials, and bioengineering to embed and supply the
brain–blood barrier, vasculature [48], and non-neuronal cells (e.g., microglia) [49].

A consensus in 2022 has been introduced on the nomenclature for nervous system
organoids and assembloids to harmonize naming across users and for ease of understanding
and applications in the field [50]. Attempts have also been made to organize a platform for
sharing protocols where researchers can exchange, revise, and optimize protocols for use in
the brain organoid field [51].

Human Brain Organoids for Neurological Disorders

According to the latest global burden of diseases, neurological disorders are among
the leading causes of death and disability worldwide [52,53]. Neurological disorders
consist of a heterogeneous group of conditions, broadly characterized by peripheral and/or
central nervous system deficits, issues, and malfunctioning. Although the etiology of
neurological diseases varies greatly, they share some characteristics, such as heterogeneity
of clinical presentation and diversity of cellular and molecular pathways [54]. Currently,
most neurological disorders remain poorly treated due to a lack of efficient therapies. The
latter is rooted partially in a poor understanding of the etiology of these disorders that
originates from a lack of translation from basic to clinical modeling of disorders and/or
drug testing.

Human brain organoids provide a promising platform to recapitulate histological fea-
tures of the human brain, model neurological disorders, and advance their treatments [3,55],
for example, the development of organoids derived from patients’ brains can provide
new insights into the mechanisms of a diverse range of neurological disorders, including
neurodevelopmental and neurodegenerative disorders such as schizophrenia, epilepsy,
Alzheimer’s disease, and Parkinson’s disease. Human brain organoids are not only used for
understanding such disorders but can be used for drug screening and perhaps as a novel
tool for treatment. As is seen in Figure 3, besides the application of CRISPR/Cas9 [56,57], it
is expected that other new technologies such as high-throughput single-cell omics, gene
editing, artificial intelligence, and machine learning could push forward precision medicine
in neurological disorders when combined with brain organoid technology [58,59]. However,
brain organoid technology is not yet at a level to completely mimic all of the interactions
and structures of the human brain in vivo, and it is not clear whether it would be needed
and for what purpose [60]. Meanwhile, assembloids have been applied to model interneu-
ron migration and neuronal projections [61]. One interesting and important area is the
neuroendocrine system and its role in various neurological disorders [33]. Researchers
have speculated that brain organoids and assembloids are beneficial in modeling the de-
velopment, regulation, and dysregulation of the stress system to understand a variety of
stress-related neurological disorders [33].
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Figure 3. Schematic overview of the creation of and uses for organoid models of neurological disor-
ders. Neurodegenerative, neurodevelopmental, and neuropsychiatric disorders can be modeled with
the aid of brain organoids. Both neurofunctional and neurodevelopmental aspects can be investigated
with a possibility for comparison between healthy and diseased brain organoids depending on the
source or manipulations introduced, such as genetic manipulation and environmental stressors. In
addition to the use of these models for studying pathogenesis, xenotransplantation of brain organoids
into experimental animal brains has been proposed for treatment purposes or further studies in vivo.
In these models, neural connectivity between different regions can also be studied, for example, in the
assembloids of two brain regions. This figure has been reproduced from [60] under an open access
Creative Common CC BY license granted by MDPI.

3. Human Brain Organoids for Migraine
3.1. Migraine

Migraine is a prevalent neurological disorder that is often underestimated for its
impact and consequences [62]. According to the global burden of disease, migraines are
one of the top causes of disability worldwide [63]. It is estimated that migraines affect
around 20% of people at some point in their lives [64]. They affect women more than
men [65] and appear with re-occurring intense headaches and altered sensory and motor
manifestations [66,67]. Attacks of migraines seem to follow an evolving phenomenon that
occurs over time mirroring the phases that are each marked with certain symptoms as a
result of certain neural mechanisms [68]. The mechanisms behind this evolutive process
are only partially known, but neuroinflammation and central sensitization, influenced by
genetics [69] and epigenetic factors [70], are proposed to play an important role [68,71–74].
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Abnormalities in neuronal activity of several brain regions have been reported, for example
at the spinal trigeminal nucleus, periaqueductal gray, rostral ventromedial medulla, and
dorsal pons. Degrees of dysfunction have also been presented to occur in the hypothalamus,
thalamus, anterior cingulate cortex, insula, and primary somatosensory cortex. Figure 4 de-
picts the regions in the brain that are suggested to contribute to the underlying mechanisms
of migraines [72].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 20 
 

 

of the top causes of disability worldwide [63]. It is estimated that migraines affect around 
20% of people at some point in their lives [64]. They affect women more than men [65] and 
appear with re-occurring intense headaches and altered sensory and motor manifestations 
[66,67]. Attacks of migraines seem to follow an evolving phenomenon that occurs over 
time mirroring the phases that are each marked with certain symptoms as a result of cer-
tain neural mechanisms [68]. The mechanisms behind this evolutive process are only par-
tially known, but neuroinflammation and central sensitization, influenced by genetics [69] 
and epigenetic factors [70], are proposed to play an important role [68,71–74]. Abnormal-
ities in neuronal activity of several brain regions have been reported, for example at the 
spinal trigeminal nucleus, periaqueductal gray, rostral ventromedial medulla, and dorsal 
pons. Degrees of dysfunction have also been presented to occur in the hypothalamus, 
thalamus, anterior cingulate cortex, insula, and primary somatosensory cortex. Figure 4 
depicts the regions in the brain that are suggested to contribute to the underlying mecha-
nisms of migraines [72]. 

 
Figure 4. Brain regions involved in underlying mechanisms of migraines and reported alterations. 
Modulation of incoming noxious inputs: spinal trigeminal nucleus (SpV), periaqueductal gray mat-
ter (PAG), rostral ventromedial medulla (RVM), and dorsal pons. Higher order processing: hypo-
thalamus, thalamus, anterior cingulate cortex (ACC), insula, and primary somatosensory cortex 
(S1). This figure has been reproduced from [72] under an open access Creative Common CC BY 
license granted by Frontiers. 

Migraine is a lifelong neurological disorder with an evolutive age-dependent feature 
in its prevalence and clinical manifestation [68]. Understanding migraine pathogenesis is 
challenging, however, progress has been made in genetics, functional, and anatomical 
changes accompanying migraines [75,76]. For example, genome-wide association studies 
(GWAS) using single nucleotide polymorphisms (SNPs) have shown several variants of 
genes that contribute to the neurological and vascular pathways in migraines [69]. The 
partial understanding of migraine pathogenesis has resulted in suboptimal treatment [77]. 
Hence, attempts continue to provide mechanism-based targeting of migraines with acute 

Figure 4. Brain regions involved in underlying mechanisms of migraines and reported alterations.
Modulation of incoming noxious inputs: spinal trigeminal nucleus (SpV), periaqueductal gray
matter (PAG), rostral ventromedial medulla (RVM), and dorsal pons. Higher order processing:
hypothalamus, thalamus, anterior cingulate cortex (ACC), insula, and primary somatosensory cortex
(S1). This figure has been reproduced from [72] under an open access Creative Common CC BY
license granted by Frontiers.

Migraine is a lifelong neurological disorder with an evolutive age-dependent feature
in its prevalence and clinical manifestation [68]. Understanding migraine pathogenesis
is challenging, however, progress has been made in genetics, functional, and anatomical
changes accompanying migraines [75,76]. For example, genome-wide association studies
(GWAS) using single nucleotide polymorphisms (SNPs) have shown several variants of
genes that contribute to the neurological and vascular pathways in migraines [69]. The
partial understanding of migraine pathogenesis has resulted in suboptimal treatment [77].
Hence, attempts continue to provide mechanism-based targeting of migraines with acute
or preventive therapies [78,79]. One example is the involvement of CGRP in migraine
pathogenesis and novel anti-migraine drugs developed to block CGRP or its receptors.

3.2. Modeling Migraine

Migraine is a complicated disorder proposed to appear as a result of a complicated
web of interacting pathogenic alterations [80]. Due to this complexity, and species differ-
ences, many aspects of migraines cannot be modeled in animals [81,82]. Furthermore, the
pathology and changes in disorder faced over time make it difficult to model accurately.
Many in vivo animal models have been used to study certain aspects of migraine disorder
but often have a shortcoming that might be related to environmental factors, genetics, or
both [83]. Another limitation is that drug testing in animal models has often not proven
successful because of the limited translation value [84].
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Human experimental models of pain have been introduced and used for various
purposes, including understanding pain and testing analgesics in the early stages of drug
development [85]. Craniofacial and orofacial pain experimental models [86,87] have been
used to assist in modeling aspects of migraines but remain incomplete due to their limited
nature and ethical considerations. In human experimental pain models [88], various types
of stimuli (e.g., chemical, mechanical, electrical) have caused short-lasting states of pain and
sensitization that can be measured by various methods (e.g., quantitative sensory testing,
brain imaging, biological biomarkers). The analgesic efficacy of drugs can also be tested
using these models [89].

Human postmortem brain samples can provide tissues to be used for further analytical
purposes. Such samples carry the genetic code, and if obtained from patients with disorders
linked to genetic mutations, for example, migraines can be highly relevant for pathogenesis
studies. However, access to high quantities of such materials is limited and most of the
obtained tissues are aged and reflect an end stage of the disease; hence, it is impossible
to evaluate the disease onset and developmental process. In addition, in vitro modeling
of the obtained tissues may show abnormalities, for example, human dura mater cells
obtained postmortem have been used for the establishment of a human in vitro model that
has shown phenotypic, transcriptomic, and genetic abnormalities that must be taken into
account for disease modeling [90].

Studying migraine as a neurological disorder in live humans is complicated due to
unexpected attacks of headaches and access to patients for brain imaging during the at-
tack [91]. In addition, limitations exist due to ethical and practical issues for provocation
studies, where migraines can be experimentally induced by infusion or injection of trigger-
ing factors, such as nitroglycerin [92]. In addition, a migraine is not just a headache and can
affect multiple other organs [93]. Therefore, studying migraines requires more than brain
imaging alone. Consequently, researchers have taken a holistic approach to understanding
the migraine phenomenon. Importantly, functional brain imaging coupled with other
biomarkers could reveal aspects of migraine comorbidities [94], for example, functional
neuroimaging studies have opened up possibilities to investigate the hypothalamus and
the brainstem involved in the pathophysiology of a migraine. The thalamus may also
contribute to the clinical manifestation of migraines [95] and abnormal thalamocortical
network dynamics have presented in migraines [96]. Both functional and structural ab-
normalities have been demonstrated at the cortical level, mainly in the visual areas [94].
The current standard is to use a combined panel of biomarkers for studying migraine
pathogenesis and response to treatments [97] to obtain a more complete picture of precision
medicine for this disorder.

3.3. Can Human Brain Organoids Be Used as a Substitute Model for Migraine Disorder?

Considering the potential for the creation and application of human brain organoids,
it is not irrational to consider that human brain organoids can also be applied to help in
understanding the pathogenesis of migraines. The fundamental basis for this opinion is
that migraine is a brain disorder that has been proposed to be linked to both genetic and epi-
genetic factors [70,80,98]. Hence, brain organoids can potentially be used for this purpose.
Theoretically, both guided organoids (neural organoids resembling regions or domains
of the nervous system) and unguided organoids (pluripotent stem cells differentiated in
self-organizing 3D cultures) [50] can be explored for this purpose. Since brain imaging
techniques have already demonstrated the connection between various brain regions [99], it
is rational to consider assembloids [50] (for example a combination of different specialized
cell types) in migraine research. Assembloids are also generated from a combination of
two types of organoids (e.g., a fusion of dorsal with ventral forebrain) [50], and this can
potentially offer a research value in modeling migraines.

A relevant benefit of an unguided brain organoid is that the organoids can survive
in culture for approximately one year [60], permitting tests of various factors during the
maturation of neurons and brain development that might be involved in the migraine-
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developing brain. Therefore, it has been speculated that brain organoids might offer a
powerful tool to study migraine pathogenesis, drug screening, and even the use of brain
organoids as a tool for treatment [100]. An optimal model of migraine must allow for
studying the onset, development, pathology, and causes of the disorder accurately. In
addition, an optimal model would provide the possibility to investigate malfunctioning
pathways, abnormal protein interactions, and pathological mutations. Last, but not least,
an optimal model would permit drug testing and identification of mechanism-based thera-
peutic effects. The latter is important because most of the available drugs for migraines are
aimed at symptomatic therapy, not disease modification or cure of migraines [101]. Current
brain organoids have limitations and shortcomings; therefore, for modeling migraines
with the aid of brain organoids, the shortcomings of available models must be taken into
account, as is explained in the below section.

4. Potential and Limitations of Brain Organoids for Migraine

Conceptualizing the theories behind migraine pathogenesis [102], for example, neu-
rovascular theory [103], can help rationalize which brain organoids should be used and how
they can be used for understanding migraines. For example, the neurovascular mechanisms
of CSD (migraine aura) or neurovascular coupling and uncoupling in CSD are proposed to
be changes with a longer-lasting effect than the initial CSD response and may be involved
in the delayed activation of nociceptive pathways [104]. Aura development and cortical
spreading depression (CSD) in migraines can potentially be studied further with the aid of
brain organoids. Neuropeptide release evoked by KCl can serve as a quantitative measure
of nociceptor excitation [105].

Human brain organoids can be used to study the impact of genetic mutations (e.g.,
channelopathy [106]) and environmental factors (e.g., environmental stress [107]) on the
onset, development, and progression of migraines. Brain organoids in migraines can be
used to investigate altered neuronal or metabolic pathways, protein, and mRNA expres-
sion, similar to what has been used for other neurodevelopmental or neurodegenerative
disorders [60,108]. New single-cell proteomic techniques are powerful tools to identify
protein function and alterations and provide valuable insights into post-translational modi-
fications [109].

Several brain structures have been proposed to play a role in migraine pathogenesis
including the trigeminal cervical complex (TCC) [110], periaqueductal gray (PAG), locus
coeruleus (LC), rostral ventromedial medulla (RVM), thalamus, and hypothalamus. Hu-
man organoids of these regions can be considered relevant. The hippocampus is another
important region. A potential link [111] between migraine and transient global amnesia
(TGA) [112] has been proposed concerning anatomical and physiological disorders of the
hippocampus, although controversies are present in the current literature. Migraines are
often comorbid with several other brain disorders, and this feature opens up possibilities
for studying commonly involved brain regions in migraine co-morbid conditions.

Brain organoids have also been used to study genetic and epigenetic regulation of
the brain, neuronal connectivity, and neuro-immune interactions in healthy and diseased
brains [60,113]. These are relevant aspects of migraine pathogenesis that must be considered
in the development and use of brain organoids for migraines. In addition, iPSC-derived cell
types can undergo genetic modifications using CRISPR/Cas9, as has also been proposed
for clinical applications [114]. Furthermore, optogenetic tools can be introduced into the
individual cellular components before implementation in an engineered organoid [115].

The iPSC-derived trigeminal ganglia (TG) organoids can be generated with iPSCs
differentiating into sensory nociceptors, mechanoreceptors, and proprioceptors to study
their actions in migraines. The usage of sensory ganglia organoids has previously been
addressed for dorsal root ganglia (DRG) [116]. These components are considered a part of
the PNS and hence can assist in understanding peripheral aspects of migraine pathogenesis.

Since no brain organoid exists for migraine, the speculation is to develop model(s) step
by step and optimize them over time. The task is to ensure that the model would accurately
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resemble the disorder in vivo. Allowing for the development of a vascular system and the
presence of microglia are important aspects to consider for balancing the ratios between
neurons, and including glial cells for proper maturation, interconnectivity, and homeostasis
within brain organoids [60,117]. At present, brain organoids face apoptosis in the core
because the vascular system aids the circulation of nutrients, and gas exchange does not
develop, hence waste removal is a challenge. This challenge has been noted in neurological
disease modeling with organoids, for example, in stroke research [118]. Current attempts
to vascularize organoids include the adjustment of culture protocols, the introduction
of microfluidic devices [119], and the transplantation of organoids into highly vascular
tissues in immunodeficient rodents [120]. Adjustment of protocols has been tried by the
implementation of endothelial cells in the developing organoids to result in an elementary
circulatory system [121]. IPSC-derived microglia have also been added to organoids to
create a self-renewing microglia population [122].

The connections among distinct brain regions in migraine pathogenesis can potentially
be reproduced in brain assembloids to assist in understanding alterations in the connec-
tivity of neural networks in this disorder. Addressing connectivity in in vitro research
might be challenging, but advancements in assembloids can generate a robust model to
facilitate translating connectivity measurements that are recorded by neuronal imaging
in human brains to possible investigations in human brain organoids [123]. Advances
in bioengineering techniques will most likely help overcome the existing challenges in
developing organoids [28] or assembloids [34] for migraines. In this vein, modeling human
nociception, by reprogramming patient-derived iPSCs into organoids with relevant cell
types, has also been proposed [105].

Figure 5 presents a general overview of the current challenges and potential of human
brain organoids.
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5. Drug Discovery and Development: Potential and Limitations of Brain Organoids

Drug development for disorders of the central nervous system (CNS) is generally chal-
lenging [124]. The challenges can be related to target identification and validation, animal
models of diseases, and research infrastructure and resources. The potential for human
brain organoids to provide a more dynamic and biological system for drug development
and target identification has generated huge interest [125]. Brain organoids can provide the
potential for large-scale screening of potential candidates. This advantage can be combined
with the application of artificial intelligence and machine learning to accelerate the drug
screening development process with a potentially improved success rate. From a long-term
perspective, brain organoids might help in reducing the cost of preclinical testing in drug
development.

Compared with other organoids that are used for drug screening and development,
limited information is available for use of brain organoids for such purposes. However,
available literature shows that brain organoids have successfully been used for drug tests
in some neurological disorders. For example, in a recent study [126], the neurodegenerative
incurable disease of Creutzfeldt–Jakob Disease (CJD) was modeled with the aid of a human
cerebral organoid model. This model of human prion disease was used to screen drugs
for this disorder, where the researchers tested the effect of pentosan polysulfate (PPS) and
identified prion propagation delay and exertion of therapeutic effects [126]. Several other
neurodegenerative and neurodevelopmental disorders have been modeled with the aid of
organoids [127] such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and autistic
spectrum disorders (ASD). These models also offer the potential for drug testing. The
development of human CNS barrier-forming organoids (CBFOs) [128] has advanced the
potential for testing the permeability of drugs to CNS, hence offering a platform for drug
screening in CND drug development. Blood–brain barrier (BBB) organoids could facilitate
prescreening of the drug candidates for permeability before the screening of functionality
for a potential effect against neurological disorders [127].

Brain organoids have also been employed to screen neurotoxicity in response to vari-
ous compounds at early developmental stages. Literature shows studies that have identified
drugs and heavy metal chemicals with neurotoxicity effects. For example, Liu et al. [129]
used cerebral organoids and presented that vincristine could induce dose-dependent neuro-
toxicity. This model also allowed the researchers to investigate the mechanisms underlying
neurotoxicity, where expression of fibronectin, tubulin, and MMP10 was inhibited by
vincristine.

Currently, some limitations exist [127] in the application of brain organoids for drug
screening and testing that mainly stem from the quantity and quality of organoids in terms
of efficiency and reproducibility. For instance, poor quality of organoids resembling the
phenotypic characteristics of the original organ or disease can dramatically influence the
reliability of results when drugs are tested on these platforms. Another limitation is that
while drugs can be tested on brain organoids, their interaction with other organs and
systems cannot be tested [127]. Attempts are, however, being reported for overcoming
some of these challenges. For example, an integrated system-level approach has been
established to determine drug targets for AD and test re-purposing FDA-approved drugs
for this disorder [130].

Collectively, these examples trigger the idea that brain organoids might also offer the
potential for drug screening in migraine and drug development, such as testing drug effects
or toxic effects at the preclinical stage. It is conceivable that iPSCs generated from patients
with migraines would provide an experimental platform to test drugs or identify molecular
targets, similar to what has been done for other disorders [131]. Migraine is a complex
disorder and is influenced by various factors; building up systems that can recapitulate the
disease pathogenesis might enable us to accelerate the identification of useful drugs for
this disorder. Drug development for migraines is not at the rate or speed of other lines of
drug development, for example, drug development for cancer. However, new therapeutics
for migraines have also been introduced [132]. After the triptans developed for migraine
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in the 1990s, a breakthrough came recently with the emergence of ditans, gepants, and
anti-calcitonin gene-related peptide monoclonal antibodies against migraines [133].

We must be mindful that organoid models cannot mimic entire migraine pathogenesis,
and hence cannot be a perfect model for drug screening either. However, the ambition is
to benefit from a collaborative platform provided by advanced technology and research
methods and a combination of neuroscience, stem cell biology, neurology, bioengineering,
and biomaterials to explore the potential of brain organoids in migraine research and drug
screening for this disorder.

6. Neuroethical Considerations

Neuroethics [134] cannot be separated from the neuroscience of human brain organoids.
Research with ex vivo brain tissue and brain organoids raises several neuroethical questions
and concerns, for example, morality and the potential for consciousness [135–137]. For
instance, the transplantation of organoids in rodent brains has raised some concerns as to
how a juncture would be treated as a human–rodent mixture, legally and ethically [137,138].
Recently, a systematic review of ethical issues has been presented [139] to assist in the re-
sponsible development and clinical implementation of human brain organoids. A four-step
approach has been proposed to assist in overcoming ethical and legal concerns related
to the generation and application of organoids [140]. The proposed step consists of the
consideration of existing regulations and guidelines with required adjustments, building
special regulatory provisions, the involvement of the public, and careful monitoring of
the rapid advancements in the neuroscience field to match the speed of consolidation of
neuroethics in this field [140].

7. Global Cooperation

As human brain organoid projects continue to develop around the world, there re-
mains an ongoing emphasis on the importance of global conversations regarding shared
opportunities and challenges, and collaborative international efforts to overcome those
challenges to maximize success. Indeed, reproducibility is a challenge in this field, and at-
tempts are ongoing to set standard protocols that are openly shared, discussed, and revised
for improvement and harmonization. STAR protocols (Cell Press) are one example of an
open-access protocol journal that publishes a wide range of protocols, including human
brain organoid protocols. More than 5000 human brain organoid or assembloid protocols
have been published as STAR protocols according to GoogleScholar (as of December 2022).
A collaborative workplace has recently been created (https://www.protocols.io/ accessed
on 3 February 2023) to help achieve collaboration and enhance reproducibility. Within this
platform, an area has been dedicated to organoid and assembloid method development,
where the community involved in this field can reach out and share information. The
protocols are kept organized and up to date.

8. Conclusions

To advance the understanding of neural development, and the brain in health and
diseases, human brain organoids have been developed. These in vitro models have been
generated from pluripotent stem cells that have a unique ability to differentiate into any
of the germ layers in vitro, with the aid of 3D cell culture methods. The organoid cultures
allow the cells derived from healthy individuals or individuals with brain disorders to
self-organize into brain organoids. The cells can also be guided to resemble specific brain
regions or to form assembloids. These models are expected to be reliable, realistic, and
personalized models of the human brain. To probe these 3D cultures, genetic, anatomical,
and functional read-outs are used. Human brain organoid technology combined with
bioengineering has opened a wide potential for understanding the human brain and the
pathogenesis of neurological and psychiatric disorders. In line with the advancement of
brain organoids and assembloids, it is expected that more scalable and improved assays of
3D tissue will be available that can also be used for the identification of therapeutic targets.

https://www.protocols.io/
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Brain organoids are already under investigation and are used for several neurological
(e.g., epilepsy, Alzheimer’s disease) and neuropsychiatric disorders (e.g., schizophrenia),
and promising results are accumulating rapidly. Migraine is a brain disorder with a heredi-
tary and non-hereditary nature. Migraines are one of the most widespread and disabling
non-communicable diseases [64], with a complex pathogenesis and features of biopsy-
chosocial elements [141] that can be considered a potential subject for the application of
human brain organoids to further investigate its biological pathogenesis and potential
drug development. Here, extending the concept of the possible inclusion and use of
brain organoids—among other experimental models used to study migraines [83]—was
discussed. The expectation is that by improving the reliability, anatomical accuracy, pre-
dictability, and scalability of human brain organoids, this can be achieved. Currently, there
is no human brain organoid available for migraines, and this is open for testing. Interested
researchers are invited to join the network for protocol development and exchange ideas.

Figure 6 summarizes some of the proposed applications of human brain organoids in
neurological diseases [125] that can theoretically be applied to migraine disorder.
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ATAC-seq, assay for transposase-accessible chromatin with high-throughput sequencing; ChIP-
seq, chromatin immunoprecipitation, and sequencing; MethylC-seq, MethylC sequencing; qPCR,
quantitative PCR; RNA-seq, RNA sequencing. This figure has been reproduced according to [125]
under an open access Creative Common CC BY license granted by Frontiers.

It Is expected that modeling brain organoids for migraines will be in line with incorpo-
rating various cell types, e.g., glia, endothelial cells, and pericytes, to study neuroimmuno-
logical and neurovascular interactions in brain organoids for this disorder. In addition,
it is expected that reliable models will provide the capacity to test environmental causes
of pathogenesis besides genetic aspects. In the next steps of development, it is proposed
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that building large-scale platforms for drug discovery and compound screening will also
accelerate antimigraine drug development. Currently, the transplantation of organoids into
rodents is undergoing rapid development, and this method can also be useful for modeling
migraines to obtain circuit-wide integration and advancement of the field.

Careful pairing of the advanced neuroscience of human brain organoids with legal and
neuroethical aspects will ensure the ethical generation and application of these complex
entities in research and clinical care.

Funding: This research received funding from the Centre for Intelligent Musculoskeletal Health
(CIM, led by Margreth Grotle), Faculty of Health Sciences, Oslo Metropolitan University, Norway
for participation in the meeting “Development and 3D Modeling of the Human Brain”, organized
by Guo-li Ming, the University of Pennsylvania, Perelman School of Medicine, and Sergiu Pasca,
Stanford University, which was held on 7–10 December 2022 at Cold Spring Harbor Laboratory, One
Bungtown Road, Cold Spring Harbor, NY 11724.
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18. Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10,
68. [CrossRef]

19. Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines
derived from human blastocysts. Science 1998, 282, 1145–1147. [CrossRef]

20. Kim, C. iPSC technology–Powerful hand for disease modeling and therapeutic screen. BMB Rep. 2015, 48, 256–265. [CrossRef]
21. Chang, E.A.; Jin, S.W.; Nam, M.H.; Kim, S.D. Human induced pluripotent stem cells: Clinical significance and applications in

neurologic diseases. J. Korean Neurosurg. Soc. 2019, 62, 493–501. [CrossRef] [PubMed]
22. Huang, Y.Y.; Zhang, X.Y.; Zhu, P.; Ji, L. Development of clustered regularly interspaced short palindromic repeats/CRISPR-

associated technology for potential clinical applications. World J. Clin. Cases 2022, 10, 5934–5945. [CrossRef]
23. McTague, A.; Rossignoli, G.; Ferrini, A.; Barral, S.; Kurian, M.A. Genome Editing in iPSC-based neural systems: From disease

models to future therapeutic strategies. Front. Genome Ed. 2021, 3, 630600. [CrossRef]
24. Bédard, P.; Gauvin, S.; Ferland, K.; Caneparo, C.; Pellerin, È.; Chabaud, S.; Bolduc, S. Innovative human three-dimensional

tissue-engineered models as an alternative to animal testing. Bioengineering 2020, 7, 115. [CrossRef]
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