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ABSTRACT This work presents a novel method for motion sensor placement within smart homes. Using
recordings from 3D depth cameras within six real homes, clusters are created with the resident’s tracked
location. The resulting clusters identify the possible position of a sensor and its field of view. By using a
sequence of clusters as input to a Recurrent Neural Network, we evaluate our method on the task of activity
recognition and prediction. These results are compared to using sensor events as input sequence, frommotion
sensors that were installed empirically in the same homes. Different clustering methods are investigated
and all outperform the installed motion sensors, achieving a significant increase of prediction accuracy and
F1-score.

INDEX TERMS Assisted living, clustering, computer vision, sensor prediction, sensor data.

I. INTRODUCTION
Ambient assisted living technologies (AALT) can enable
people to remain longer in their homes, and age well e.g.
by assisting individuals in daily activities, monitoring health
and safety at home, and by improving the cost-effectiveness
and quality of health and social services [1]. AALT usually
comprises information and communication technologies
(ICT), stand-alone assistive devices, and smart-home sys-
tems. A smart-home can be defined as a dwelling in which
sensors and controllers are installed to enhance one or more
aspects of the resident’s everyday life [2]. This can for
example include comfort, energy efficiency, security, and
safety features. It can also include more targeted assistive
functions, however, such systems are to a very limited extent
available today. Assessments of using smart home technology
to support different health concerns, such asADLmonitoring,
chronic obstructive pulmonary disease (COPD), cognitive
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decline and mental health struggles, fall prevention, and
monitoring heart conditions; concluded that the technology
readiness for smart home and health monitoring is still
low [3].

Mild cognitive impairment and dementia (MCI/D) are
cognitive declines that can affect attention, concentration,
memory, comprehension, reasoning, and problem solving [4].
These interfere greatly with a person’s ability to perform
daily activities and therefore in the case of older adults it
leads to disability and dependency of others. A fair amount
of research on smart home functions has aimed at assisting
older adults, with and without MCI/D, in their everyday
life [1], [5]. These systems rely heavily on recognizing and
predicting activities in the home in order to assist the resident.
Recognition and prediction algorithms are created using data
collected from ambient sensors (e.g. cameras and binary
sensors), robots, and/or wearable sensors. Having as few
sensors as possible in the home is beneficial in terms of cost,
privacy-conserving, as well as home aesthetics. Choosing the
number of sensors in the home and their optimal placement
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are important tasks to comply with these. Ideally, sensor
placement algorithm should preserve activity recognition
performance while minimizing the number of sensors that are
required.

In this paper, a method for finding the optimal number of
motion sensors and their placement is presented. Our method
is compared to a baseline which consists of placing the
motion sensors empirically and predicting next sensor event
from previous event sequences. The methods are evaluated
and compared on the task of activity recognition.

Data was collected from six one-bedroom apartments at
an elderly care unit in Oslo. A minimal number of binary
sensors were installed in the apartments – magnetic, power
and motion sensors – for periods between 75 and 385 days.
These sensors were installed empirically in locations that
were assumed to be optimal for detecting activities of interest
for this study. In addition to the binary sensors, depth video
cameras were installed to collect data during one to seven
weeks. The recordings collected from the cameras allowed
to create a labeled dataset of activities, from which a relation
between a sequence of motion sensors to different activities
could be created. Using recurrent neural networks, a model
that recognizes activities based on a sequence of motion
sensor events can be achieved.

In addition, using the recordings from the depth cameras
and a person detection algorithm, allowed creating a dataset
of the position of the resident within their home over time.
The detected positions are in turn clustered, revealing cluster
centroids. Our method uses these centroids as ‘‘optimal’’
locations for motion sensors. We then use a recurrent neural
network that recognizes activity based on a sequence of
centroids (possible motion sensors) and compare to the
activity recognition model accuracies we achieved when the
sensors were placed heuristically.

More specifically on our method, Fig. 1 presents a
sequence of the process to generate centroids that would be
sensor locations. Person detection is performed by applying
the YOLO algorithm. Furthermore, three different methods
of location clustering are analysed and compared: K-means,
DBSCAN and BIRCH.

Our contributions include:
• A novel method for sensor placement within smart
homes. One that adapts to a unique home and the
movement patterns of it’s occupant.

• Comparison of clustering algorithms for identifying key
points within a home.

• Comparisonwith empirical method of sensor placement.
The work has been carried out in an interdisciplinary

project, the Assisted Living Project (ALP), that involves
experts in health, technology, and ethics [6]. The aim of the
project was to develop assisted living technology (ALT) to
support older adults with MCI/D live a safe and independent
life at home.

The organization of this paper is as follows. Section II
presents the related work on optimal sensors placement in
the literature. Section III introduces our field trial and the

FIGURE 1. Workflow.

collected data. Section IV-A shows the data pre-processing
steps for depth cameras data. Section IV-B presents the
clustering algorithms applied to the depth video data.
Section IV-C1 presents our neural network model for activity
recognition using motion sensors. Section V presents the
results and then discusses the findings of this work. Finally,
Section VI concludes this paper with final remarks and
suggestions for future work.

II. RELATED WORK
Finding the optimal number of sensors in an environment and
their optimal location is a task many studies have addressed,
for different applications. Empirical placement and several
tests is one way of finding optimal sensor placement,
as performed for categorizing type of physical activity
and corresponding energy expenditure in older adults using
wearable accelerometers [7]. The implementation of Markov
chains and solving the boolean optimization problem derived
from it, is used as method for optimally placing markers and
minimizing their number in large public environments for
robot localization [8]. These robots would assist older adults
in moving around in such spaces.

Sensor placement has been presented formally as a binary
variable problem, as standard optimization algorithms can
be used in that case, for fault diagnosis systems for the
industry [9]. Genetic algorithm has been used for sensor
placement in structures to identify location and severity
of damages [10], [11], and others have combined genetic
algorithms with multi-objective algorithms for the same
goals [12], [13]. Several analytical solutions and mathe-
matical formulations, including path planning and trajectory
tracking techniques, were implemented to identify the
optimal geometrical configuration of sensors in autonomous
underwater vehicles [14]. Optimal sensor placement has also
been formulated as a cost minimization problem for outage
detection in power distribution systems [15].
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More specifically to the focus of this paper, optimal sensors
placement has also been studied in the field of smart homes
for ambient assisted living. For this application, sensors can
be placed in the environment or on the body. Several feature
selection techniques were investigated for sensors placement
on the body for activity recognition in the home [16]. The
work shows that the larger the number of accelerometers, the
higher the classification accuracy becomes. Work has been
done on identifying which inertial sensor contributes to best
classifying activities on the PAMAP2 dataset using LSTM
models [17], [18]. The method of using inertial sensors is
not preferable though, as wearable sensors are not ideal for
older adults with mild cognitive impairment of dementia,
as they can forget why they are using such sensors or that
they need to put them on [19]. This many sensors on the
body are, moreover, uncomfortable to wear all the time.
Ambient sensors are therefore most preferable, and hence
also the most present in the literature. A toolkit of ambient
sensors was proposed as to track daily activities performed by
subjects with Parkinson’s disease and/or dementia, focusing
on minimizing invasiveness and obstruction of the person as
well as ease of installation [20].

A decision-making tool to help experts to do the best choice
for sensors deployment is under development to minimize
costs and the overlapping of motion sensor detections in a
home environment [21], [22]. Their method represents the
motion sensors in a space as binary grids and then integer
linear programming techniques are applied to optimize their
placement, as applied in [9]. The authors implemented their
method in an open space in the home including the entrance
hallway, the kitchen, the dining room and the living room and
presented satisfactory results.

Optimal sensors and their placement for target tracking
within Ambient Assisted Living have been investigated using
an Integer Linear Programming model [23]. In this work,
factors like layout of the Region of Interest, sensor’s field
of view and their orientation are taken into account while
delivering satisfactory results. A user interface was also
developed using this approach, enabling easy monitor and
real-time location, energy consumption and comfort of an
occupant within their home.

Motion sensors have also been used in a Japanese residen-
tial house, where 39 sensors were installed in the living room,
the tatami room, two small rooms, kitchen, hallway [24].
They investigated the number of sensors required for
sufficient localization accuracy in the home. Four algorithms
for sensor placement optimization were examined: forward
greedy algorithm, backward greedy algorithm, l1 regression,
and group lasso. The empirical results show that the backward
greedy sensor selection algorithm achieves the most stable
performance and that a few selected sensors (five to eight)
presented competitive performance compared to the initial
setting with 39 sensors.

Five algorithms for defining motion sensor placement
in smart environments have been also compared: Human

Intuition-Based (HIB), Monte Carlo-Based (MC), Two-
Dimensional Uniform Placement (Grid), Hill Climbing
(HC), and Genetic Algorithm (GA) [25]. The authors use
the CASAS dataset, collected in a 3-bedroom living-lab
apartment and with a semi-grid of 48 sensors – infrared
motion detectors, light sensors, door sensors, temperature
sensors, light switch monitors, and object shake sensors [26].
They have compared the methods such that the placement
of sensors (and possibly also a reduced number of sensors)
derived from them should provide as good activity recog-
nition accuracy as the original dataset. HIB, MC and Grid
were baseline algorithms and generated layouts that covered
more of the space, including areas that did not have any target
activity happening. However, the GA and HC approaches
grouped sensors around the areas that physically divide
activities. The GA was more effective for placing the sensors
and provided better results for the activity recognition. In that
case, 26 motion sensors were in the home, as there were in the
original dataset.

The method of combining algorithms has also been used
for motion sensor placement within smart homes. One work
used a hybrid of the Particle Swarm Optimization- and
Whale Optimization algorithm with the goal of maximizing
coverage and as well minimizing costs, evaluating their
method on the CASAS dataset [27]. By combining the
algorithms, the strengths of one would cover for the
weaknesses of the other.

Other work has been carried out with the same CASAS
dataset [28]. In this case, the authors investigate whether
activity recognition with a smaller number of sensors could
perform as well as with all sensors. The mutual information
measurement (MI) was used to quantify the dependence
of two variables – sensor and activity. Afterwards, sensors
that had low MI would be removed. A second approach
consists in selecting the number of sensors by applying
hierarchical clustering of the sensors. This cluster would
select the set of clusters with highest MI values and merge
sensors that are close to each other in the space. The work
shows that in their setup, an average of 21% of the sensors
can be removed from the apartment without loss of accuracy
when excluding sensors with low MI. When the hierarchical
clustering is performed, an average of 58% of the sensors can
be removed. The work also established that not only does
an increase in sensors add to the cost of smart environment
as well as maintenance and resource costs, but it can also
actually degrade activity recognition performance. Notably,
more sensors mean also more complex patterns to be learned
by algorithms and possibly more collected data.

The works in [22] and [24] have applied their sensor
placement optimization methods to localization accuracy.
They indicate as future work their application to activity
recognition, which should give more value for functions in
smart homes. The work in [28] applies the method to activity
recognition, however the method does not provide the best
placement of sensors. All the works present the disadvantage
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TABLE 1. Sample of binary sensor data.

of having to install the sensors in the home as a first step,
which is costly operation both in terms of time and capital.
In our approach, instead of several sensors, we would install
a camera in each room prior to installing the final sensors.
In addition, our method can be used to shed light to the best
placement of sensors and use this as a guideline for future
installations. Also, the knowledge can be transferred to other
sensors than motion, as in [22], [24], and [25].

III. FIELD TRIAL
Six residents over 70 years old participated in our field
trial. All apartments are part of a community care facility
and have similar layouts – comprising a bedroom, a living
room, an open kitchen area, a bathroom, and an entrance hall
(Fig. 2).

Binary sensors were installed in each of the apartments,
and were kept to a minimum number in order to minimize
surveillance of the residents. The set of binary sensors
was chosen so that it can enable the realization of useful
functions for older adults withMCI/D as these were indicated
at dialogue cafes with the users [6]. It contains motion
(passive infrared sensor – PIR), magnetic, and power sensors.
Motion sensors (Pyroelectric/Passive Infrared – PIR) detect
motion through detecting a change in infrared radiation in
the sensor’s field of view. The sensor generates an event with
message ‘‘1’’ each time motion is detected. It otherwise sends
no event. Magnetic sensors consist of two components, a reed
switch and a magnet. They are fitted opposite to each other
on doors, windows, and drawers to indicate whether they are
open or closed. An electric current is created when the two
pieces are close to each other, the circuit otherwise being
broken. Events with message ‘‘1’’ are generated for open
and ‘‘0’’ for closed. Power sensors measure the electricity
usage of an appliance. They can therefore indicate whether
the appliance is turned on or off, events with message ‘‘1’’
being for on and ‘‘0’’ for off.

These sensors enable inference of occupancy pat-
terns (movement around the apartment) and some daily
activities – kitchen related activities, dressing, being in bed –,
and leisure activities — reading, watching TV, listening
to radio. The data from these sensors include timestamp
(date and time, precision in seconds), sensor ID, and sensor
message (binary). Table 1 shows an example of data collected
from the sensor network.

All the participants had the same initial proposal of set of
sensors, as shown in Fig. 2. However, not all apartments could
have the exact same set of sensors due to physical limitations
(e.g. fridge door with a too big gap to enable the use of

FIGURE 2. Proposed sensors system for field trial apartments.

magnetic sensor) and/or different equipment (e.g. residents
either have a coffee machine or a kettle). As it has been
reported that ADL scores can be predicted from the long-term
location andmovement records obtained from solitary elderly
people [29], in addition to these being common to all
apartments, we chose to use only the motion sensors data.

In addition to the binary sensors, two RoomMate depth
video cameras were installed in the apartments (Fig. 3).
One of them monitors the living room and kitchen area,
while the other monitors the bedroom area, as shown in
Fig. 2. The RoomMate is an infra-red (IR)-based depth sensor
and measures the distance of surfaces to the camera by
time-of-flight (TOF) technology with pulses at 15MHz. The
resolution is 160 × 120 pixels, with a rate of 25 frames
per second. This is rather low resolution – a fact that
is advantageous with respect to privacy, but makes data
processing quite challenging. Adding to the challenge, the
depth images produced by the RoomMate camera have a
fair amount of noise. Fig. 4 shows an example raw image of
RoomMate depth video camera.

IV. METHODOLOGY
As illustrated in Fig. 1, the work presented in this paper was
performed through three steps:

1) Depth data pre-processing (Fig. 1 step 1), which is
elaborated in section IV-A. Using the gathered depth
data, this step consists of creating a dataset with the
occupants location through time.
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FIGURE 3. RoomMate depth sensor deployed in our field trial [30].

FIGURE 4. Raw RoomMate depth image example.

2) Clustering (Fig. 1 step 2) the results from the
previous step using different algorithms, detailed in
section IV-B.

3) Evaluation of our method (Fig. 1 step 3), which
was done by training a classifier to perform activity
recognition based on the input from the previous
steps, and compared to using the the empirically
placed sensors instead. This part is further explained in
section IV-C.

A. DEPTH DATA PRE-PROCESSING
Using the depth images we retrieved from the RoomMate
cameras installed in the homes, we create a time series with
the location of the residents within their homes. Instead
of doing this manually, which would require a very large
amount of time and effort, we performed person detection
throughout the recorded material. You Only Look Once
(YOLO, or YOLOv3) is a state-of-the-art object detection
algorithm within RGB images [31], which works by dividing
the image into a grid of cells and for each of them the
algorithm tries to detect the bounding box of the object(s) it
has been trained to find. The model only goes through each
cell once to which it owes its name and also speed. The model

FIGURE 5. YOLO applied to raw image in Fig. 4.

can subsequently also be trained to detect people as in our
case.

YOLO works best for RGB data which available
pre-trained weights for the network are also optimized for,
however depth images are mono-channeled so we therefore
need to normalize the images and then duplicate the data into
three channels, creating gray scale RGB images. We trained
a detector using 4000 labeled images which we later used
to create a dataset for the location of the residents within all
the recordings. Empirical tests showed the YOLO model was
very accurate despite the noise and lack of color in the images
(see Fig. 5 for an example). Even though fast compared
to alternative methods, YOLO can be a time-consuming
algorithm without the proper hardware, to create our dataset
faster we only tried to detect on each frame using a 5-second
time step, making the assumption that the time gap is
negligible.

When no person is detected in the frames, we assume the
person is either outside of the apartment, or in the bathroom
which is out of the field of view of the cameras. There can
also be multiple people in the home at the same time (visitors,
care-takers, etc.), in these occasions, we marked the possible
cluster with a unique identifier that two people are present,
and treated it as a unique input.

B. CLUSTERING ALGORITHMS
Clustering is an unsupervised technique that groups a set
of samples based on the similarities between their attributes
and/or proximity in the vector space. There are several
types of clustering techniques – partitioning, hierarchical, and
density-based.

In this work, several clustering algorithms were applied to
cluster samples of position coordinates (x and y coordinates
within each frame) that indicate the center of the person
moving around in the apartment, information acquired using
the method as explained in Section IV-A. Our hypothesis is
that these clusters could then indicate how many sensors we
should have in the apartment and more importantly where
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FIGURE 6. Graph for elbow method when K-means clustering the
samples in the bedroom.

they should be placed using the center of the achieved
clusters. The placement and number of sensors is then
tested for activity recognition in the homes. In this section,
we present the clustering results of three different techniques,
one of each type we mentioned.

The clustering models were implemented using the
Scikit-Learn library [32]. Wemodel each room (bedroom and
living room/kitchen) of each apartment individually, with part
of the data – one week of depth data. Then, we label the rest
of the data with the trained model.

1) K-MEANS
The K-means is an algorithm of the type partitioning. In the
K-means algorithm, the position samples of each person are
classified intoK clusters such that the sum of square distances
(SSD) within each cluster is minimized [33]. Each cluster
contains a centroid, given by themean value of each feature of
the algorithm. We perform K-means for a number of clusters
K between 1 and 20 for the room and choose the best K
manually according to the elbow method [34]. This method
consists of plotting an SSD vs. K graph and choosing the
K that resembles an ‘‘elbow’’ (the point of inflection on the
curve), which is the best fit for that problem. As a last step
we tried to identify clusters that we deemed close enough to
each other that they could be grouped into one.

Fig. 6 shows the graph of SSD vs. number of clusters,
as dictated by the elbow method, for the bedroom area in
apartment 1. A number of clusters equal to seven gives
optimal results. For the living room, the graph looks similar
and also with seven clusters as optimal. Hence, we create
a separate model with seven clusters for each room – see
Fig. 8 and 7. Notice that even though the number of clusters
in the bedroom is 7, we group clusters 0, 4 and 6 as one,
as they are very close to each other. Hence, a manual step
after executing the algorithms is required.

2) BIRCH
The Balanced Iterative Reducing and Clustering using Hier-
archies (BIRCH) is a hierarchical clustering technique [35].

FIGURE 7. Clusters found with K-means in the bedroom.

FIGURE 8. Clusters found with K-means in the living room.

FIGURE 9. Clusters found with BIRCH in the bedroom.

The method has as a first step to build a Clustering Feature
tree (CF tree) while scanning a given dataset. Each node in
the CF tree is a cluster, that can contain sub-clusters.

Fig. 9 and 10 present the results for this technique when
applied to the same room and data as in Fig. 8 and 7, using
the following parameters:

• Branching factor of 50.
• Threshold of 0.10.
• Number of clusters set to 11.
As opposed to K-means, where we could use the elbow

method to decide the number of clusters, here we had to
choose the number of clusters empirically through testing,
but up to the maximum number of sensors that were already
installed within the room.
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FIGURE 10. Clusters found with BIRCH in the living room.

FIGURE 11. Clusters found with DBSCAN in the bedroom. Each color
represents a cluster.

3) DBSCAN
Density-based Spatial Clustering of Applications with Noise
(DBSCAN) is the last type of data clustering algorithm
investigated. The main idea is to group data points that are
close to each other in space [36].

Fig. 11 and 12 show the results for when DBSCAN is
applied to the same room and data as in Fig. 8 and 7, using
the following parameters:

• Maximum distance of 0.02 between samples to be
considered of in the neighborhood of the other.

• Minimum of 5 samples within a neighborhood to be a
core point.

• Euclidean distance as metric for measuring distance.

C. EVALUATION—ACTIVITY RECOGNITION
As mentioned in the introduction of this paper, in order to
evaluate the success of our method we train a classifier for
activity recognition using as input the events from the sensors
installed within the homes, compared to using the clusters.
In this section we describe our model for recognizing the
ongoing activity based on the different stated inputs. We are
using Recurrent Neural Networks (RNN) that take as input
a sequence of unique events, and predict one of six labeled
activities – getting (un)dressed, eating, walking, reading,
watching-TV and sleeping. With the term unique events we
mean that we pre-process and group all sequential similar

FIGURE 12. Clusters found with DBSCAN in the living room. Each color
represents a cluster.

events and treat them as one event, so for example in the case
where we have sequence A → B → B → C where the
event B is triggered twice after each other, we group these
two events into one and this becomes A → B → C .

For our purpose the activities were labeled manually by
inspecting the recordings of the residents. For each labeled
activity we retrieve N (after mentioned grouping) previous
events in time to the activity, and train the network thereafter.
In the Results section we evaluate and discuss optimal values
for N that we refer to as memory length.
Not all activities occur equally often, creating an imbalance

between the number of samples representing each class.
We employ certain methods discussed in this section to help
balance the training set, and use the F1-score as evaluation
metric that is well suited for imbalanced datasets.

1) RECURRENT NEURAL NETWORK
Recurrent Neural Network (RNN) maintains an internal
memory and has therefore been broadly applied to sequence
prediction. It achieves good performance for inputs that are
sequential in time and has been applied, for example, to text
generation [37], speech recognition [38], and pattern recog-
nition in music [39]. Long Short-TermMemory (LSTM) [40]
is an RNN architecture that is designed to be better at storing
and accessing information than the standard RNN [41].

2) NETWORK ARCHITECTURAL SEARCH
The architecture of a neural network and the parameters that
are used can heavily influence the end-performance of the
model, it can as well prove difficult to find these parameters.
For the task of finding the optimal architecture and training
parameters we took use of genetic algorithms [42]. Genetic
algorithms have shown to outperform other methods for
hyperparameter-tuning by converging much faster. The
basic idea behind genetic algorithms is to avoid trying all
possible permutations of parameters and keeping track of
the combinations that perform well. The algorithm is run in
generations in each of which there is a given population.
For the first generation all the members are assigned random
parameters from a fixed gene pool. The gene pool are the
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FIGURE 13. Final network architecture where M denotes the memory
length (i.e. sequence length of the input) and N is the number of classes
for the method (i.e. number of sensors or clusters).

different parameters that you want to test combinations of.
Here they are the number of hidden layers, number of inputs
for each layer, dropout rate and learning rate. At the beginning
of each generation, eachmember of the population has a score
computed for them which they are ranked after. The lowest
scoring members are discarded, while the highest ones breed
by random sampling their parameters to create offspring
that take the place of the discarded members. To avoid the
possibility of falling into a local minimum there is a random
mutation of the population and we can also keep a number
of the lower ranking members between generations. Using
this method we therefore avoid computing the score for all
members of the population as we already know it for those
that are kept, we only need to do this for the offspring and
any that mutated.

In our case, we implemented the genetic algorithm using a
population size of 20, keeping the best 8 members and having
a mutation chance 0.25%, which we ran for 10 generations.
Each member was evaluated on the same training and
validation datasets, and were ranked after the validation
accuracy. Early stopping was used to speed up the process
a little and avoid overfitting. The dataset was a merger of all
the users’ data where the memory length was set to 10. This
was done for each kind of input: sequence of sensor events,
and sequence of clusters. After each finished we chose the
common best performing parameter settings so we had one
network architecture only to evaluate our methods on.

Our search gave the following parameters:
• 1 hidden LSTM layer.
• 128 neurons for each layer.
• 0.2 dropout to avoid overfitting.
• Learning rate of 0.001 for the ADAM optimizer.
The final architecture is shown in Fig. 13.

3) SMOTE
In order to tackle the class imbalance in our datasets, as some
activities happen more often than others, the Synthetic

TABLE 2. Duration and Number of Samples for each Apartment.

Minority Over-sampling Technique (SMOTE) is used [43].
SMOTE is an over-sampling technique that creates synthetic
samples for theminority classes. The new samples are created
by interpolating the values of the existing samples and are
only used to train the model. The Imbalanced-Learn library
was used to implement this technique [44].

V. RESULTS AND DISCUSSION
Table 2 shows the duration of data collection (for both motion
sensors and depth data) and the number of samples each
apartment had, which is dependent of having both motion
sensors data and recordings with the depth camera working
at the same time.

A. CLUSTERING ALGORITHMS
Section IV-B shows the results when applying the clustering
algorithms K-means, BIRCH and DBSCAN to group the
residents’ locations in the living room/kitchen and bedroom
areas.

From the three algorithms, we can conclude that both
K-means and BIRCH are more suitable than DBSCAN for
placing sensors in a home as they provide only one point
for each cluster, which can be seen as the location of the
sensor. DBSCAN provides a grouping of the sensors by
density, and do not provide centers of clusters indicating
where sensors could be positioned. It can be however very
suitable for applications where depth cameras are used in
the final system. For example, in Fig. 11, the blue cluster
possibly indicates movement whilst the others can indicate
other activities – e.g. in bed or going to bed (red cluster),
in front of the wardrobe/changing clothes (pink cluster).
Hence, we chose K-means and BIRCH to analyze.

In addition, the methods for finding the optimal number of
clusters are not yet perfect for clustering algorithms. After
clustering the positions, there is a manual step where we
remove some clusters that are too close to each other, even
if the algorithm provided that as the optimal. For example,
in Fig. 7, clusters 0, 4 and 6 are grouped as one cluster. Hence,
a manual step after executing the algorithms is required. This
is performed for both K-means and BIRCH. Note also that
the optimal number of clusters is also affected by the type
and number of activities that have been defined as further
discussed in section V-E.

Table 3 shows the final number of K-means and BIRCH
clusters for each apartment. We can notice that BIRCH
provides either the same number or more clusters than
K-means.
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TABLE 3. Number of clusters found by each algorithm for each apartment.

B. MEMORY LENGTH
We refer to memory length as the number of previous events
used to predict the next one. Fig. 14a, 14b, 14c, 14d, 14e, 14f
show the evolution of the mean F1-score by memory length,
after running the LSTM network model 5 times with different
training and validation sets for each apartment. The validation
set would always have 3000 different samples in order
to compare the F1-scores fairly. These results are also
summarized in tables 4 and 5. The different apartments
show similar evolution of increasing F1-score with increasing
length of the input sequence to the model. We observe
F1-scores ranging between 0.28 and 0.65 for the shortest
memory length of 2, depending on the input and apartment,
up to F1-score between 0.47 and 0.95 for the longest memory
length of 100 subsequent unique events. In some cases we
can observe a top F1-score already after a memory length of
15, but for most apartments, the peak F1-score is attained
at memory length of 50 with F1-scores ranging between
0.48 and 0.95. Some apartments still improve with higher
memory length, for example apartment 6 that improves with
0.03 for a memory length of 100 using k-means. Considering
the small size of each apartment, the movement pattern of the
resident therefore becomes quite similar whichever activity
they are going to perform, which explains the need for a
longer sequence for the model to be able to properly match
the patterns to activities.

The trend that we observe for the F1-score is shared
between all three kinds of inputs, where the sensor events
are not able to acquire the same peak F1-score as the
clusters, with the exception of apartment 3. The difference
between the peak performance attained by the different
methods varies significantly across apartments, where we
observe a 0.44 F1-score increase between using the sensor
data and using BIRCH clusters for apartment 5, and only
a 0.02 increase for apartment 2. The only exception to this
was apartment 3 where the sensor data attained 0.11 higher
F1-score than K-means, which was the second-best method
for this apartment.

Overall, BIRCH and K-means perform equally well, both
achieving on average a peak F1-score of 0.90, while the
baseline with motion sensors is the worst performing with an
average peak F1-score of 0.77 across apartments.

C. SIZE OF TRAINING DATASET
We have two aims for analyzing the obtained prediction
F1-score versus the size of the training set: firstly, to check
whether the collected data is enough to train the model, and

TABLE 4. Mean F1-score by memory length and input type for
apartments 1, 2 and 3.

TABLE 5. Mean F1-score by memory length and input type for
apartments 4, 5 and 6.

can achieve a stabilized F1-score; and secondly, to identify
the amount of data that needs to be collected on each resident
for the purpose of accurate activity recognition. A validation
set of 3000 samples is allocated for each apartment, and
is used for each defined training set size to make a fair
comparison. Here we also chose to use the dataset with
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FIGURE 14. F1-score of prediction of the activity vs. memory length for different apartments.

a memory length of 50 as this was the shortest memory
length for which many of the apartments achieved their peak
performance, as discovered in section V-B. Training set sizes

of 200, 500, 1000, 2500, 5000, 7500, 10000, 15000 and
20000 samples were used. Apartment 3 and 6 are exceptions
for the tests as they both did not have enough samples of
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TABLE 6. Mean F1-score by training set size and input type for
apartments 1, 2 and 3.

motion sensor events for the labeled data set due to technical
errors, however, the results are clear also for these apartments.

The dependence of F1-score on training set size for each
apartment is shown in Fig. 15a, 15b, 15c, 15d, 15e and 15f.
At a first glance, we can see that the results are all in
accordance with the findings in section V-B when it comes to
comparative performance between clusters and binary sensor
data. We can also observe that relatively little data is needed
to create a well-performing model: most apartments achieve
their peak F1-score with only 5000 samples. The trend is
very similar for all apartments, namely that the performance
reaches a plateau after an initial quick increase with training
dataset size. The results for all apartments are summarized in
6 and 7.
Only slight improvement may be possible for larger

datasets. The exception to this rule appears to be apartment
1 that may appear to still improve with larger dataset sizes.
This can be due to the resident of this apartment having more
unique movement patterns within their home, requiring more
data samples for better activity recognition. Besides this, the
high F1-score results for relatively modest dataset sizes can
imply that the activity patterns are distinct enough, and that
further performance improvement would require additional
inputs to the model.

D. ACTIVITY RECOGNITION
In this section, we use confusion matrices to analyze the
performance of the activity recognition in detail for two of the
apartments – 1 and 3. In apartment 1, as in most apartments,
K-means and BIRCH attain much higher F1-score than the

TABLE 7. Mean F1-score by training set size and input type for
apartments 4, 5 and 6.

motion sensor dataset. In apartment 3 however, the highest
F1-score is achieved by the motion sensor dataset.

Fig. 16a presents the confusion matrix of the motion sensor
dataset of apartment 1. We can notice that only walking and
sleeping can bewell recognizedwith 78% and 93%. The other
four activities are very much confused with walking. This is
as expected since having only one sensor in each room, there
is not enough information to distinguish between activities.
K-means and BIRCH are however able to recognize these,
as shown in Fig. 16b and 16c. Indeed, there is no significant
confusion between activities in either of the algorithms. It is
interesting to notice that BIRCH can recognize watching-
tv 6% better than K-means, even though it has very few
samples. In apartment 1, BIRCH derived 10 more clusters
than K-means, and this has shown to be significant for
recognizing this activity.

Fig. 17a, 17b and 17c show the confusion matrices for
the activity recognition with the motion sensor, K-means and
BIRCH datasets for apartment 3. As discussed earlier, this
is the apartment where an exception occurred, the sensor
dataset provided better results than K-means and BIRCH.
We can notice from the confusion matrix with the motion
sensor dataset there is no real confusion between classes.
This resident does not move much around the apartment
due to physical impairments. In addition, there is a lot of
furniture, limiting the paths between rooms. As a result,
the number of patterns in this apartment is limited, and the
confusion matrices of the datasets indicate that a simpler
sensor system, fewer sensors, would suffice in this case.
Having more sensors or placing them in other positions than
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FIGURE 15. F1-score of predictions of the activity vs. training set size for different apartments.

the empirical ones does not have a significant effect as the
patterns seem to be simpler and fewer. We can also notice

that K-means and BIRCH are biased towards the class with
most samples for this resident, watching-tv activity.
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FIGURE 16. Confusion matrices using different clustering algorithms for apartment 1 with 20000 training samples.

When looking at the different sequences generated for
apartment 3 using the K-means and BIRCH methods
for further explanations we found that a few sequences
dominated the dataset. As previously mentioned, as a post-
processing step of the clustering we grouped any cluster
that we deemed similar enough. This was a manual step,
and in the case of this particular apartment there seemed
to be two clusters that were not grouped, but were still
similar enough so that the resident just shifting position,
created sequences that resulted in moving back and forth
between the clusters. This resulted in losing vital information
for activity recognition, and presumably |||explains why the
sensor data, that did not have this problem, performed better.
This illustrates the limitations of using a manual step after the
clustering.

E. SUMMARY COMPARISON—CLUSTERS VS. SENSORS
Overall the results show that using the location clusters
generates better results than the sensor event data, the
F1-score improvement ranging from 0.02 (apartment 2) to
0.44 (apartment 5) for our data. Both memory length and
dataset size tests indicate this discussed in detail in V-B and
V-C. One exception sticks out, apartment 3, where the results
are actually better for the installed sensors. As discussed,
this is thought to be due to the physical limitations of this
resident that lead to fewer and simpler motion patterns around
the apartment. Having more sensors or in different locations
than the empirical placement, does not improve, but rather
decreases the F1-score as more inputs generate more complex
patterns acting like noise when in reality the patterns are
rather simple.
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FIGURE 17. Confusion matrices using different clustering algorithms for apartment 3 with 5000 training samples.

Among the different clustering methods the results are
very similar in the end, where one has some small advantage
over the other in some cases, but reversed in others. This
is quite surprising as the clusters generated by the different
methods could differ a great deal. Especially BIRCH resulted
in more granularity. However, this also depends on the chosen
activities of daily living and their granularity. For example,
to the extent a certain location reflects a certain activity,
keeping this location cluster, or equivalently placing a binary
sensor at that position, will improve activity recognition
and prediction. On the other hand, if this activity has not
been defined in the list, then the cluster will not lead to
better recognition or prediction. Hence the original selection
of activities to monitor in the home may pre-determine
the optimal granularity, and this in turn will affect which

clustering method will perform best. Increasing the number
of sensors or clusters beyond what is reflected by the
set of activities will not be manifested in the attained
prediction F1-score but will only contribute to redundant
data. Similarly, defining activities that are not possible to
monitor by any sensor will create inaccuracies. By comparing
the placement of K-means cluster centers in Fig. 8 and 7,
with those of BIRCH in 10 and 9, it is evident that in
locations for performing activities (bed for sleeping, kitchen
for cooking, chair for watching TV, etc.) they share the
exact same clusters. However, BIRCH adds more clusters
for transition paths between these locations. Considering the
small size of the apartments, and the defined set of activities,
these added clusters do not contribute much to additional
unique patterns, and thus do not increase the F1-score of
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prediction of the next activity - in agreement with the
results.

Our results show that longer memory lengths are favorable,
however, the F1-score does not increase considerably beyond
a memory length of 50, and in some cases we only need
15 previous clusters as input to reach the peak F1-score. This
suggests that anything lower makes sequences that are not
distinguishable enough to deduce the next activity.

VI. CONCLUSION
In this paper we describe a novel method for placing motion
sensors in the home of older adults. Data is collected from
six real apartments where seven motion sensors were placed
empirically. We use depth video cameras, collect data in
each apartment and apply clustering techniques – namely
K-Means and BIRCH – to identify position clusters. The
cluster centers indicate the positions where motion sensors
should be placed in the apartment, based on real movement
patterns. We evaluated the performance of this method by
comparing the attained F1-score of activity recognition of
the K-means and BIRCH datasets with that attained by the
motion sensors dataset that then acted as a baseline. Our work
sheds light to the optimum positioning of sensors.

K-means and BIRCH dataset presented significantly
improved F1-score results for all apartments except one.
Activity recognition was performed with F1-scores between
0.86 and 0.97 using K-Means and BIRCH, except in
apartment 3 (0.75 for both clustering methods). In this
apartment, the sensor dataset performed best (0.87). This case
shows that are our method might have some limitations in
certain specific use cases.

Future work will include analyzing the optimal number of
sensors, in addition to their optimal placement. Again, both
the optimal placement and the optimal number of sensors
will depend on the activities we aim at identifying. Finally
improved results might be achieved by further focusing on the
different steps of our method. For example, in addition to the
traditional clustering algorithms employed in this study, other
algorithms such as spectral clustering, could be explored in
future work [45].
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