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ABSTRACT
People with disabilities, especially those living in institutions, are at higher risk during 
pandemics, while schools also play important roles in disease spread. Yet, less 
attention is paid to the intersection of risk factors at residential schools for children 
with disabilities. Better understanding of spatial and behavioral factors that contribute 
to epidemics in such schools is needed for effective public health plans and responses, 
especially for pandemics where vaccines may be initially unavailable. An agent-
based model of a school for deaf children was developed from Norwegian archival 
sources and 1918 influenza pandemic data to test impacts of non-pharmaceutical 
interventions. Results show differences in the timing and pattern of spread based on 
whether the first case is a student or staff member, while epidemics are smaller with 
more student bedrooms or a hospital ward. Implications for COVID-19 and future 
pandemics, including the need to combine different infection control measures, are 
discussed.
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INTRODUCTION
The COVID-19 pandemic has demonstrated that people with disabilities are likely to have severe 
outcomes during pandemics, with residents of institutions notably at risk (Brown et al. 2021; 
Nguyen et al. 2020; Turk et al. 2020). For example, as of 1 June 2021, deaths among residents 
and employees of long-term care facilities including nursing homes represented about 31% 
of all US COVID-19 deaths, while those facilities only accounted for about 4% of all cases 
(The New York Times 2021). Similarly, the case fatality rate for people with intellectual and 
developmental disabilities living in residential group homes in New York was 15%, compared 
to 7.9% for the state overall (Landes et al. 2020). These numbers reflect outcomes prior to 
the development and distribution of vaccines and so also signify the importance of non-
pharmaceutical interventions against epidemic spread in institutions (e.g., Nguyen et al. 2020). 
While early research during COVID-19 has primarily focused on adult and elderly populations, 
disparities for children with disabilities have been documented during previous pandemics and 
seasonal influenza. For example, more than half of pediatric influenza deaths in the US from 
2004 to 2012 were in children with one or more high-risk medical conditions (Wong et al. 2013). 
Discussion during COVID-19 also has addressed risks associated with schools (Munro and Faust 
2020; Sheikh et al. 2020). Yet, little work on COVID-19 or past pandemics has considered the 
intersection of risk factors and other variables that arise in residential schools or care homes 
for children with disabilities. This paper uses agent-based modeling to examine the unique 
circumstances and potential epidemic experiences of such institutions and populations.

Less than 1% of students with disabilities in the US live in separate residential facilities, but 
this percentage is higher among students with deaf-blindness, hearing impairment, visual 
impairment, emotional disturbance, and multiple disabilities (National Center for Education 
Statistics 2021). UK statistics show that most children in residential schools have severe 
learning difficulties and autism, followed by physical impairments and hearing impairments 
(Morris, Abbott, & Ward 2002). The probability of a child with learning disabilities attending a 
residential school in the UK was higher among children with more severe disabilities (Emerson et 
al. 2012). Severity of conditions, congregate living situations, likely reduced social support from 
parents and other family, and potentially limited access to health care thus place students in 
such schools at higher risk during pandemics. A review of the UK’s response to the 2009 H1N1 
pandemic, which briefly mentioned several deaths of children at special schools for severe 
learning disabilities in Northern Ireland, as well as a case study of a US school during the 1918 
flu, both highlight these concerns (Chamberlain 2020; Hine 2010).

Evidence from past epidemics provides insights into experiences of different populations, 
but additional tools including simulation models are needed to further investigate observed 
patterns and determine plausible outcomes of epidemics. Agent-based models consider 
population-level patterns that emerge from actions and interactions of heterogeneous agents 
within a simplified environment. These and other types of models have been used to study 
epidemic spread in day schools within communities (e.g., Dimka & Sattenspiel 2022; Fumanelli 
et al. 2016; Lee et al. 2010), nursing homes (e.g., Gómez-Vázquez et al. 2021; Nguyen et al. 
2020; Nuno et al. 2008; van den Dool et al. 2008), and hospitals (e.g., Temime et al. 2010; Ueno 
& Masuda 2008). No modeling studies have been identified that focus on residential schools, 
whose populations are likely to have different demographics, contact patterns, and risk factors 
than the other types of institutions previously studied.

In this paper, data from a school for deaf children in Norway and the 1918 influenza pandemic 
are used to develop an agent-based model of epidemic spread. The pandemic, which may have 
killed at least 50 million people worldwide (Johnson & Mueller 2002), has often been used as 
a worst-case scenario in pandemic preparedness. Further, the rich historical and archival data 
available for the school and time period enable detailed and plausible reconstruction of social 
spaces and behaviors relevant to the spread of disease historically and today. In the following 
sections, I first describe the model design and then present and discuss results. The main aims 
of this paper are to see if model outcomes are consistent with observed patterns and can be 
explained by social variables alone, and to test the impacts of potential non-pharmaceutical 
interventions on epidemic outcomes in the absence of effective vaccines. Therefore, the default 
or baseline scenario is compared to simulations varying the category of the first case (i.e., 
student vs. staff), the number of bedrooms for students, and whether there is a hospital ward. 
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In conclusion, I discuss the relevance of this work for COVID-19 and future pandemics, such 
as implications for staffing of such institutions and the development of improved pandemic 
preparedness plans.

METHODS
MODEL DESCRIPTION

As noted above, agent-based models are used to investigate system- or population-
level outcomes produced by individual-level actions and interactions. The complex data 
requirements and the lengthy process of model design and analysis make these models less 
useful for rapid public health responses but ideal for explaining and understanding processes 
over time and space. The three main components of an agent-based model are agents 
(defined here as entities with heterogeneous attributes and behaviors; agents often represent 
people but could also correspond to smaller or greater scales, such as households), a world 
or environment, and rules of behavior that determine whether and how agents interact with 
each other and the world (e.g., Railsback & Grimm 2012). Agent-based epidemic models are 
typically used to explore the dynamic processes that contribute to disease spread, and they 
are particularly useful for research questions that involve small and/or isolated populations 
where individual variation and random factors likely play important roles in health outcomes. 
Emergent phenomena resulting from simplified behaviors and rules for transmission of disease 
between agents may include, for example, overall epidemic size and timing, spatial clustering 
of cases, or disparities between population subgroups. 

The model described here draws on data on the Norwegian school system at the time of the 
1918 influenza pandemic, obtained primarily from the National Archives of Norway, as well 
as system-level reports available online at Statistics Norway (https://www.ssb.no/). Permission 
to access restricted material was granted by the Director General of the National Archives via 
correspondence in September 2019. The archives contained annual and five-year reports for 
several schools, which provided details such as the demographics of the student population 
and information about curricula, staff, and health conditions. According to the 1918 system-
level report, there were nine schools for children with disabilities, with an average of 39 boys, 
27 girls, and 13 teachers (Kirke- og Undervisningsdepartementet 1923). Of the schools with 
available annual reports for 1918, the one with a distribution closest to this average was 
Holmestrand School for the Deaf (Holmestrand School for the Deaf 1920). This institution is 
therefore the primary inspiration for the modeled school, while additional insights are drawn 
from other archival sources.

The model, constructed in NetLogo 6.2.0 (Wilensky 1999), is described briefly below; more 
details and the full code are available online (Dimka 2022). The model environment (Figure 1) 

Figure 1 Visualization of the 
model at initialization.

https://www.ssb.no/
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consists of bedrooms, classrooms, a dining room, common room, and an outdoor area. Each 
time step (tick) of the model represents one hour, and a simulation runs for 800 ticks to allow 
sufficient time for epidemics to end. A default simulation begins on a Monday morning at 12 
AM.

The 1918 Holmestrand population included 24 boys, 21 girls, the principal, six academic 
teachers, five vocational teachers, two gym/physical education teachers, and three boarding 
school staff members (n = 62). In the model, students are approximately evenly distributed 
into one class per grade level (1–6) and are divided into four dormitories by sex and younger 
and older grades. Several students stayed with nearby family or were boarded in local homes, 
so the remaining girl is classified as one such student. Staff share bedrooms with 0–3 others 
and are assigned an occupation (principal, teacher, etc.), class subject, and years of experience 
at the school.

Four major processes occur each tick. First, each agent updates its disease status. All but one 
agent is initially susceptible; the first case is randomly selected among the staff based on 
observations in records that disease was likely introduced to institutions by staff. This agent 
enters the exposed category at 6 AM, that is, tick 7. Others become exposed as a result of 
transmission during the simulation. Each tick, any agents in the exposed category will change 
to infectious if they have reached the end of the latent period (currently a constant value of 
one day). Agents who are already infectious when they begin this method have a constant 
chance of dying each tick. A random number between 0 and 1.0 is compared to the mortality 
probability parameter to determine whether death occurs. A surviving infectious agent then 
might recover, if it has reached the end of the infectious period. Recovered agents never 
become susceptible again.

Second, agents might move to a new social space depending on the day and time period. A 
random, unoccupied cell in the desired destination is selected. Only one agent is able to occupy 
any cell, but room dimensions generally allow all agents to be in their desired space. The 
bedrooms and classrooms can be relatively crowded, however, as suggested by photographs. 
Activity schedules are informed by school records, with several simplifying modifications; Table 1 
provides an abridged list of what behaviors agents do when and where for Monday-Saturday. 
On Sundays, the schedules until breakfast and from dinner remain the same. From 9:00–11:00, 
all agents, except the external student who is absent the entire day, go to the common room, 
then to their bedrooms until 12:00. Except for lunch, students are split between the common 
room and external space all other periods. During each of these ticks, two staff members 
supervise each location. The caretaker always serves as one of the outside supervisors, while 
the next available adult besides the principal is the second supervisor. The next two adults are 
the common room supervisors for the tick, and all other adults go to their bedrooms. It should 

TIME BLOCK ACTIVITY SUMMARY

Early 
Morning

•	 Staff wake at 6.
•	 Students wake, housekeeper and housemother supervise younger student bedrooms at 7. 
•	 Breakfast at 8.

Morning •	 External student arrives.
•	 Students and academic teachers move once per hour within assigned classrooms. 
•	 Principal and vocational teachers remain in bedrooms. 
•	 Housemother and housekeeper may work together or in own rooms. 
•	 Caretaker in external space. 

Afternoon •	 Lunch at 1300. 
•	 Student free time at 1400: small chance of going outside, otherwise common room. All 

students to common room at 1500. 
•	 Vocational classes 1600–1800: subject chosen with some probability based on sex and 

space availability. Vocational teachers move within assigned classrooms 1500-1800.
•	 Principal supervises common room at 1500. 
•	 Housemother and housekeeper supervise common room 1400–1600.
•	 Caretaker in external space. 
•	 At 1800, boys and girls have gym or communication class on alternating days. These 

classes are held in restricted portions of the dining room and common room. 
•	 When not teaching or supervising, staff move to bedrooms. 

Evening •	 At 1900, external student leaves; all other agents eat dinner.
•	 All agents to bedrooms at 2000; housemother and housekeeper supervise younger 

student bedrooms. 
•	 All staff to common room at 2100, then bedrooms at 2200. 

Table 1 Abridged Schedule 
Monday–Saturday.
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be noted that student social and leisure behaviors outside of class, as well as staff schedules 
throughout the week, are less documented in the annual report and so are more speculative. 
Further, there is no attempt to model more specific friendships or interpersonal interactions 
based on, for example, gender or age, due to a lack of information on such relationships as well 
as for simplification purposes. However, the location of an agent within different social spaces 
is randomly selected each tick it moves to or within the space, allowing for varied interactions 
between agents at different times.

Third, disease transmission may occur between susceptible-infectious pairs of agents who 
come into contact with each other through shared behaviors (e.g., students in the same 
class). Susceptible agents check if they have any infectious neighbors in cells to the north, 
south, east, and west within the same social space. If so and if a random value between  
0 and 1.0 is less than the transmission probability parameter, the susceptible agent changes 
its disease status to exposed. A similar process takes place for infectious agents who look for 
susceptible neighbors. As indicated by this process and the method updating disease status, 
the transmission and progression of influenza is determined by epidemiological factors rather 
than presence of symptoms. 

Fourth, substitutes for teaching or supervision duties are identified for staff who died during 
the current tick. Upon the death of a teacher, the principal is assigned to substitute, then 
the housemother if he is unavailable. If a third teacher dies, or earlier, if the principal and/or 
housemother is unavailable, classes are canceled, and students stay in their bedrooms during 
class periods for the rest of the simulation. If the principal dies, the most senior surviving teacher 
assumes those supervision duties but does not change its regular behavior otherwise. If the 
housemother or housekeeper dies, a female teacher assumes supervision duties. Similarly, if 
the caretaker dies, a male teacher moves outside when that agent is supposed to supervise 
students. In this default model, there are no other individual- or institutional-level behavior 
changes to reflect illness or in response to deaths.

DISEASE PARAMETERS

The durations of the latent and infectious periods, one and three days respectively, were 
chosen based on an assessment of literature (e.g., Cori et al. 2012; Mills, Robins, & Lipsitch 
2004). School reports lacked quantitative information about the level of illness but indicated 
the attack rates were substantial. Holmestrand reported that ‘all children were affected by 
the flu’ (Holmestrand School for the Deaf 1920). Similarly, the 1919 annual report for a school 
in Pennsylvania for children with intellectual disabilities noted that more than 80% of the 
population had been infected (Chamberlain 2020). Therefore, the transmission parameter was 
calibrated through preliminary simulations to achieve a target attack rate of approximately 
80%, giving a per-contact transmission probability of 0.014.

The Holmestrand report noted that two children (~4.4%) died from the flu in 1918, while no 
staff deaths were reported (Holmestrand School for the Deaf 1920). Further, mortality was 
also estimated for records extracted from the Demographic Data Base at Umeå University for 
individuals residing in nine Swedish parishes between 1918 and 1920 that included causes of 
death and disabilities marked by parish pastors (CEDAR 2020). Of 58 children aged 5–15 with 
recorded disabilities, there were two deaths attributed to influenza-related causes (~3.4%). 
Therefore, the estimated mortality rate for disabled children during the 1918 pandemic is 
3–4%. The limited data from schools suggest there were few deaths among the presumed 
non-disabled staff. However, these sample sizes are small, and staff health was generally not 
a focus of the narrative reports. Rough estimates from the Umeå database suggest that, out of 
18039 individuals aged 15–65 with no recorded disabilities, there were 454 influenza-related 
deaths (~2.5%). For simplification purposes and to test whether differences in student and staff 
outcomes can be explained by social and institutional factors alone, a single mortality rate 
of 3% is used for the default model. This rate was used to calculate a mortality probability of 
0.00053 per tick of the infectious period (details in Dimka 2022).

EXPLORATORY SIMULATIONS

Results presented here have two aims: first, baseline simulations were run to determine 
whether the model produces reasonable and expected outcomes. Second, three potential 
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mechanisms to explain patterns of epidemic spread within institutions and identify pathways 
for interventions are considered. First, simulations where the first case is a residential student 
(for example, due to exposure from a visitor or a trip outside the school) are compared to those 
introduced by a staff member. Second, the number of students who shared a bedroom may 
have varied based on school size, financial resources, or student age. In the default model, 
there are four rooms of 10–12 students each, and this is compared to an alternative scenario 
allowing eight bedrooms of 5–6 students each. From an epidemiological perspective, fewer 
students sharing promotes more social distancing. Finally, a hospital ward is added to the 
model, allowing for the isolation of at least some infectious agents away from the rest of the 
population. If an infectious student does not die or recover during a tick of the infectious period, 
it has a chance of being removed from its typical activity and placed in the ward; staff members 
are not hospitalized in this scenario. Although some literature has reported estimated risks 
or rates of hospitalization for preschool and school-aged children in recent pandemics and 
seasonal influenza (e.g., Encinosa, Figueroa, & Elias 2022; Hauge et al. 2020), plausible rates 
for already institutionalized children with medical risk conditions are more difficult to identify. 
Rather, using a similar strategy as with the mortality probability, a per-tick hospitalization 
probability was calculated. Sensitivity analyses varying this probability were run to achieve a 
target hospitalization of approximately 5–25% of all children in increments of 5%. 

Repetition analyses indicated that 500 simulations are sufficient to capture general model 
behavior relative to stochastic “noise” (see Dimka 2022). Thus, for all scenarios, 500 simulations 
were run, with analyses conducted on epidemic runs only, defined as >6 agents (10%) ever 
infected. The outcomes reported here include average size and timing measures. The final size 
(% ever infected) is presented separately for the student, staff, and total populations, while 
mortality (% dead) and peak size (maximum % infectious during a simulation) are calculated 
for the total population. The proportion of children who are ever hospitalized is also reported. 
The peak day is calculated as the average of the first and last tick the peak size was recorded, 
divided by 24 (again, each tick represents 1 hour), while the last day is the last tick any agent 
was infectious, divided by 24. Finally, the day to epidemic threshold is the first tick where the 
number of susceptible agents dropped below 56, based on the definition of an epidemic above, 
divided by 24. 

RESULTS
As expected, baseline simulations produce epidemics where, on average, approximately 80% of 
the population is infected and 3% dies (Table 2). This impact is not equally distributed, however. 
On average, 86.2% of the students are infected compared to 62.6% of the staff (t = 16.94,  
p < 0.00), while 3.4% of the students and 2.6% of the staff die (t = 2.73, p < 0.01). Epidemics 
reach the threshold about one week after the start of the simulation, peak one week later, and 
end ten days after that.

Relative to the baseline, the scenario where a student is the first case produces substantially 
more epidemics, which reach the threshold, peak, and end significantly earlier by about one, 
two, and one days, respectively (Table 2). Significantly fewer teachers become infected, but 
there are no differences in the proportion of the student or total population affected or the 
peak size. The shapes of the average epidemic curves for the subgroups also vary depending 
on the first case (Figure 2). In the baseline scenario, the staff curve appears bimodal, with the 
proportion of infectious staff reaching a quick early peak and then another one after the student 
peak. Meanwhile, the student curve begins to rise somewhat, although not dramatically, later 
into a single peak. When a student is the first case, the staff curve has a single, more sustained 
peak. In both scenarios, the overall curve mirrors that of the much larger student population, 
obscuring the differences between the subgroups.

When there are more student bedrooms, epidemics have significantly smaller peak and final 
sizes, with the student population clearly benefiting more than the staff (Table 2). There are 
no or marginal differences in timing between this scenario and the baseline model. Similarly, 
the introduction of a hospital or isolation ward, using a default hospitalization parameter of 
0.003 (15% target), also significantly reduces the final and peak sizes of epidemics but does 
not meaningfully affect the timing of the peak or duration of the outbreak compared to the 
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baseline. Although the time to epidemic threshold is significantly shorter with hospitalization, 
this difference is <1 day. 

Varying the hospitalization probability shows that an increased chance of hospitalization also 
reduces the final and peak proportions of the population affected, with no or marginal effects on 
the timing of epidemics (Table 3). Post hoc pairwise t-tests indicate that the size differences are 
largely driven by lower hospitalization probabilities, while there are no significant differences in 
final and peak sizes produced by the three largest values (results not shown). While the actual 
proportion of children hospitalized is larger than the target for lower values of the probability, it 
is noticeably lower than expected with larger values. The difference between target and actual 
hospitalization at 0.005 (25% target) is 2.3%, compared to 1.1% or smaller differences for 
other values. Although rounding of the parameter estimates may contribute to variation from 
the target, the clear trend suggests that the reduction in the at-risk population (i.e., infectious 
students) may better explain this result.

DISCUSSION
In addition to the intentional final size and mortality outcomes, the baseline model produces 
emergent timing outcomes – a peak at about two weeks and termination at about three weeks 
– that are consistent with observations (Table 2). Norwegian school records noted that the 
majority of cases occurred within one or less than two months, while Adams (2020) documented 
that half of the student population at the Haskell Institute, a federal Indian residential school in 
Kansas, had severe cases within two weeks during the first wave of the 1918 pandemic, while 
the second wave lasted about one month.

Research on psychiatric institutions and tuberculosis sanatoria in Norway demonstrate a 
crossover where more staff fell ill but there was a higher case fatality rate for the patients (Dimka 
& Mamelund 2020; Mamelund & Dimka 2019). Such a crossover would not be possible with the 
current model processes. Further, these outcomes may reflect underlying susceptibility and/
or social and environmental factors, and so would not necessarily be expected within schools. 
Indeed, school reports suggest that there were more student cases as well as more deaths. The 
model does show that significantly different outcomes between students and staff can occur 
from social behaviors alone, even when all agents share constant transmission and mortality 
probabilities (Table 2, Figure 2). However, the practical implications of statistically significant 
but absolutely small differences must be considered, as the discussion below demonstrates. 
This concern is also relevant given the range of variation around many of the averages, likely 
due in part to the small sample size.

Historically and today, most infectious diseases are likely introduced to institutions via staff, 
especially when there is restricted visitation. Records from psychiatric institutions noted that 

Figure 2 Average epidemic 
curves showing infectious 
agents over time (in 
increments of one tick) as the 
percentage of each subgroup 
(top) and number of cases 
(bottom), when the first case 
is a staff member (left) or 
residential student (right). 
Each graph includes curves for 
the overall population (solid 
line), staff (dotted line) and 
students (dashed line). 
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cases spread earlier among staff before entering the patient population (Dimka & Mamelund 
2020). Simulation results suggest that this pattern would be expected with a staff member first 
case, but not with a residential student first case. As Figure 2 shows, the absolute differences in 
initial spread between the two subgroups are not striking, but these differences may be more 
noticeable in institutions with stricter segregation or larger populations. Further, even the slight 
delay (in these results, just over one day) before the epidemic threshold is reached when a 
staff member is the first case may be actionable with careful surveillance and rapid response, 
potentially preventing an epidemic from occurring in the first place. 

Simulations also show significant differences in epidemic size when fewer residents share 
bedrooms, consistent with findings in other research (Brown et al. 2021). Comparisons show 
that, as would be expected since there are fewer possibilities for transmission between 
students, the practice benefits the students while there is no effect for the staff (Table 2). Large 
dormitories may have been common among students historically, whereas newer schools or 
care homes may allow single rooms or sharing among only a few individuals. In the modeled 
scenario, only approximately three more students, on average, escaped infection, but the 
benefit could be even more substantial with more rooms or less sharing. Further investigation 
is needed on the variation in housing structure among different types of institutions, including 
whether staff are also residents. 

Hospital or isolation wards, which also reduce epidemic size in the model, may be or have 
been more common in larger institutions and/or in more isolated institutions that do not have 
access to surrounding health care resources. Comparison of the extra bedrooms and hospital 
scenarios show significant differences for only the average last day and the proportion of staff 
affected (results not shown); as seen in Table 2, these differences are not practically meaningful 
however (i.e., less than one day and 5.5%, or approximately one case). The similarities 
between the scenarios reflect the fact that they both play roles in reducing contacts and thus 
breaking links in chains of transmission. Further, the lack of significant differences between 
larger probabilities of hospitalization suggests there may be a threshold after which additional 
benefits from this isolation are negligible, without other health-related behavior change. In the 
current scenario, hospitalization does not influence other disease parameters, i.e., agents still 
have the same infectious period durations and mortality probabilities. Although there were no 
effective antivirals or vaccines at the time of the 1918 pandemic, nursing care was important 
for patient outcomes (Mamelund 2011). Therefore, additional benefits would be expected if the 
model adjusted for this care, including fewer deaths and the earlier reintroduction of recovered, 
non-susceptible individuals who could serve as ‘buffers’ in the social spaces (essentially, 
contributing to herd immunity). 

LIMITATIONS AND FUTURE WORK

Models are simplified representations of a more complex reality (Sattenspiel 2003). Despite 
potential criticisms of being too simple or unrealistic (Waldherr & Wijermans 2013), it is good 
practice to construct models in increasingly complex stages in order to test assumptions, 
ensure the model is working as intended, and more thoroughly understand the mechanisms 
behind emergent results rather than simply producing ‘black box’ processes and outcomes 
(e.g., Railsback & Grimm 2012; Sattenspiel 2003). In addition to limitations noted above, the 
current version of the model does not yet include differences in susceptibility to infection or 
death based on demographic characteristics or disability status. This exclusion was deliberate 
in order to focus on social, spatial, and behavioral factors relevant to non-pharmaceutical 
interventions. Another added value is that results may provide insights for other schools, such 
as residential schools for Indigenous students, which were also strongly impacted during the 
1918 flu (Adams 2020). Nonetheless, biological mechanisms (e.g., immunosuppression or 
reduced respiratory function) also may explain disparities among people with disabilities (e.g., 
Bracchi-Ricard et al. 2016; Centers for Disease Control and Prevention 2012; Havers et al. 2014; 
Perez-Padilla et al. 2010). Future applications of the model will test varying parameter values 
to reflect disability status as well as age. Importantly, teachers in some schools for children 
with disabilities may have shared these conditions (such as deafness or blindness) and thus 
the associated potential risk.
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IMPLICATIONS FOR COVID-19 AND FUTURE PANDEMICS

Despite potential historical differences including the level of medical knowledge, the size of 
institutions, and the number or proportion of children with disabilities who attend residential 
schools, the model results still provide important insights for such schools, group homes, and 
other institutions for children with disabilities today. For example, as seen with COVID-19, 
effective vaccines may take several months or longer to be developed and distributed (AJMC 
Staff 2021). Therefore, non-pharmaceutical interventions such as the ones modeled here are 
vital for controlling spread and reducing negative outcomes. For example, results reinforce 
empirical observations that epidemics can spread rapidly within institutions, but the pattern 
and timing of spread may be different if a staff member is the first case rather than a student. 
As staff are likely to have more contact with the surrounding community, especially with 
lockdowns or visitor restriction, attention must be paid to preventing the introduction of disease 
by these individuals. Since results suggest that, when introduced by a staff member, disease 
may spread among staff first, reach the epidemic threshold later and result in a later peak, 
frequent testing and quick recognition of early cases may stop or reduce transmission before 
the disease can reach students. Research into the experiences of long-term care institutions 
for the elderly in different European countries during COVID-19 also suggests solutions such as 
increased permanent and/or full-time employment (including nursing, cleaning, and kitchen 
staff) to reduce the number of employees working multiple jobs, more protective equipment, 
and improved buildings and facilities (Ertzeid 2021; see also Nies et al. 2020). Additionally, 
schools with available space and resources may develop options for non-resident staff to 
temporarily board at the school and thus minimize the chances of introducing the disease. 
Further, results show that some strategies (e.g., more bedrooms) significantly alter the size 
but not the timing of outbreaks, or vice versa, while isolating or hospitalizing ill students could 
benefit the entire institution population. Coordinated implementation of different interventions 
therefore may be necessary to achieve desired outcomes. 

Schools today may have a mixed day and residential school population, or students may live 
at the school for different lengths of time, such as during the week, term, or entire year. The 
latter typically requires stricter policies and accountability (Lenehan & Geraghty 2017), and so 
pandemic policies need to reflect those requirements, as well as the risks that come from more 
frequent travel for other types of schools. For example, the level of disease in the surrounding 
community, as well as distance and modes of transportation, must be considered for any 
policies involving visiting or closure of the schools and sending the students home. 

While deinstitutionalization remains important, the relatively small proportion of children with 
disabilities who attend residential schools today should not be forgotten during health crises 
like pandemics. Further, for some, such as members of the Deaf community, separate schools 
are culturally desirable, and there may be less intention to close those institutions (National 
Association of the Deaf 2021). Pandemic plans for such schools, which may have different 
motivations for placement of students, demographics, and services than schools for children 
with other types of disabilities, must also be developed and updated. 

In at least some countries, health authorities showed less concern for or provided fewer financial 
and other resources to employees and residents of nursing homes or institutions for elderly 
populations compared to hospitals (Ertzeid 2021). Similarly, although policy and commentary 
pieces about residential schools and care homes during COVID-19 have highlighted concerns 
about well-being and educational services (Banerjee, Khan, & Kesavan 2021; Crane et al. 2021; 
Goldman et al. 2020), they have been overwhelmed in the media and literature by articles 
about more typical day schools for the general population, while the epidemic modeling 
literature has focused mostly on other types of institutions. Future research should consider the 
characteristics of residential or separate schools for children with disabilities, in order to better 
understand the factors that contribute to transmission, protect students during outbreaks, and 
establish appropriate and effective plans for future pandemics.
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