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a b s t r a c t

Coupled matrix factorization (CMF) models jointly decompose a collection of matrices with one shared
mode. For interpretable decompositions, constraints are often needed, and variations of constrained
CMF models have been used in various fields, including data mining, chemometrics and remote
sensing. Although such models are broadly used, there is a lack of easy-to-use, documented, and open-
source implementations for fitting CMFs with user-specified constraints on all modes. We address this
need with MatCoupLy, a Python package that implements a state-of-the-art algorithm for CMF and
PARAFAC2 that supports any proximable constraint on any mode. This paper outlines the functionality
of MatCoupLy, including three examples demonstrating the flexibility and extendibility of the package.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Data mining is the discovery of patterns and valuable insight
rom data. MatCoupLy is a Python package for a type of data
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torbyuniversitetet Postboks 4 St. Olavs Plass, 0130 Oslo, Norway.

E-mail address: mariero@simula.no.

mining model called coupled matrix factorization (CMF). CMF
models jointly factorize a collection of data matrices,

{
X(i)

}I
i=1,

with the same number of columns (e.g. samples) but possibly
different numbers of rows (e.g. features or time points), on the
form

X(i)
≈ B(i)D(i)CT,

where C is a factor matrix shared for all X(i)-matrices, and{
B(i)

}I is a collection of factor matrices, one for each X(i).
i=1
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Fig. 1. Illustration of a coupled matrix factorization.

he diagonal D(i)-matrices describe the signal strength of each
omponent for each X(i), and their diagonal entries are often
ollected into a single factor matrix, A (see Fig. 1 for an illus-
ration). The columns of these factor matrices contain different
ypes of patterns in the data. For example, if we, for each feature,
, have a time-by-sample matrix, X(i), then the columns of B(i)

nd C represent time courses for feature i and sample-patterns,
espectively, and air represents how prominent pattern r is for
eature i.

For the factor matrices to be unique and interpretable, it
s often necessary to impose additional constraints. A promi-
ent example of a constrained CMF model is PARAFAC2 [1,2],
hich uses a constant cross-product constraint (i.e. B(i1)TB(i1) =
(i2)TB(i2)∀i1, i2) to achieve uniqueness under mild conditions [3].

PARAFAC2 has been successfully used to, e.g., extract pheno-
types with time profiles that vary across patients from multi-
patient health records [4], brain connectivity networks that vary
across participants from multi-participant neuroimaging data [5],
and student clusters with temporal resolutions that vary across
sensor intrusiveness from multi-modal smartphone data [6].
Other examples of constrained CMF models are simultaneous
non-negative matrix factorization, which has been used within
systems biology [7,8]; muti-set multivariate curve resolution
(multi-set MCR) [9], which extends the two-way MCR method
used for analyzing a chemical sample (or chromatogram region)
for simultaneously analyzing multiple experiments; coupled dic-
tionary learning, which has been used in remote sensing with
multi-source datasets [10]; and some variants of simultaneous
component analysis, which has been used to analyze political
questionnaires across countries [11].

Despite the wide use of CMF models, there is still a lack of
software, in particular free and open-source software, to esti-
mate constrained CMF models. The availability of free accessible
software, such as scikit-learn [12] and PyTorch [13], has been
essential for the rapid progress in machine learning research.
Recently, TensorLy [14] has provided open-source software sup-
port to tensor decomposition models. However, there is no such
software for constrained CMF models.

Several packages support matrix factorization with a single
data matrix. For example, scikit-learn includes matrix decompo-
sition models such as non-negative matrix factorization, principal
component analysis, and dictionary learning [12]. pyMCR [15]
implements matrix factorization with various constraints useful
for performing MCR. However, these libraries do not support the
joint factorization of multiple data matrices and are therefore
limited in terms of finding shared patterns from related mea-
surements. The Prince library supports jointly analyzing multiple
data matrices with multiple factor analysis, which adapts PCA for
multiple datasets [16]. However, this method is specific to PCA
and cannot be used for other constrained CMF models. TensorLy
can analyze multiple data matrices with PARAFAC2 but with
the direct fitting algorithm [2], which uses the reformulation
B(i) = P(i)∆B with P(i)TP(i) = I to impose the constant cross-
product constraint. However, this reformulation hinders the use
of additional constraints for the B(i) matrices, and TensorLy only
supports non-negativity constraints for the other modes [14].
Thus, there is a need for easy-to-use, documented, and open-
source software for fitting constrained CMF models that support
flexible constraints.

The contribution of this work is to introduce the MatCoupLy
software package, which addresses this need by building on top
of TensorLy and implementing CMF fitted using alternating op-
timization with the alternating direction method of multipliers
(AO-ADMM) [17,18]. Specifically, MatCoupLy solve non-convex
optimization problems on the form

min
{B(i),D(i)}Ii=1C

I∑
i=1

{B(i)D(i)CT
− X(i)

2
F +

NB∑
n=1

g (n)
B(i)

(
B(i))

+

NA∑
n=1

g (n)
D(i)

(
D(i))}

+

NC∑
n=1

g (n)
C (C) ,

where
B(i)D(i)CT

− X(i)
2
F is the sum of squared errors for the

X(i) data matrix, and the g (n)
⋆ -functions represent the nth reg-

ularization for the different factor matrices. Since the software
2
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Fig. 2. Diagram showing an overview of the MatCoupLy API.

ses AO-ADMM, it supports any regularization penalty whose
roximal operator, given by

roxg(n)
⋆

(x) = min
y

g (n)
⋆ (y) +

1
2

∥x − y∥2 ,

an be evaluated efficiently. For more details on the AO-ADMM
lgorithm implemented in MatCoupLy, we refer the reader to
18].

This software was developed as part of ongoing research on
ata mining with temporal data and constrained PARAFAC2 mod-
ls. It uses the algorithm introduced in [18,19] and is based on the
ode that enabled these works.

. Software description

MatCoupLy extends the TensorLy API with similar classes for
ecompositions and functions for fitting the models, supporting
oth the TensorLy NumPy and PyTorch backend. In the following
ections, we outline the overarching software architecture and
escribe the modules and additional software features that most
sers of MatCoupLy will interface with.

.1. Software architecture

Fig. 2 shows an overview of the software architecture. A user
as a collection of data matrices they want to factorize simulta-
eously. The user then defines an appropriate set of constraints
r regularization penalties by creating ADMMPenalty instances

from the penalties module, either by using one of the many
built-in penalty classes or by creating a custom penalty class. For
ease of use, the built-in penalties can also be specified using the
arguments of the decomposition function. Next, the dataset is
factorized using either the cmf_aoadmm function (for a general
CMF model) or the parafac2_aoadmm function (for PARAFAC2).
These functions return a CoupledMatrixFactorization in-
tance, which is a container for the extracted A, B(i) and C
factor matrices. The decomposition functions can also return
optional optimization diagnostics information in the form of two
NamedTuples: ADMMVars (for auxiliary- and scaled dual vari-
ables for the inner ADMM iterations) and DiagnosticMetrics
(for general optimization diagnostics, such as loss and feasibility
gaps).

2.2. Software functionalities

The coupled_matrices module: The coupled_matrices
module provides functionality to interact with CMFs. CMFs can
either be stored as a two-tuple containing a weight vector and
a list of factor matrices or as a separate CoupledMatrixFac-
torization object. All functionality for forming dense datasets
from factorizations is provided as both functions in the cou-
pled_matrices module (for use with two-tuples) and methods
of the CoupledMatrixFactorization class.

The penalties module: The penalties module contains
functionality for imposing constraints and regularization on
CMFs. We refer to both hard constraints and regularization penal-
ties as ADMMPenalty objects and divide them into three sub-
sets: row-wise penalties, matrix-wise penalties, and multi-matrix
penalties. Row-wise penalties can be directly imposed on all
modes; matrix penalties can always be imposed on

{
B(i)

}I
i=1 and

C, but only on A if a constant feasibility penalty is imposed; and
the multi-matrix penalties can only be imposed on

{
B(i)

}I
i=1. Each

penalty type inherits from an abstract base class, which ensures
that all penalties implement all needed functionality and that
implementing new penalties requires a minimal amount of new
code. E.g., if a user wants to implement a row-wise penalty, they
only need to inherit from RowVectorPenalty and implement
the factor_matrix_row_update and penaltymethods, while
the matrix-wise and multi-matrix updates are automatically gen-
erated. The penalties module also includes a wide variety of
built-in ADMMPenalty objects, listed in Table 1.

The decomposition module: All functionality for decompos-
ing datasets is contained in the decomposition module. The
user will generally interact with the cmf_aoadmm and the
parafac2_aoadmm functions, which provide an easy interface
to decompose datasets. To make it straightforward to impose
multiple constraints, both functions support two ways to input
constraints:

1. Each built-in penalty type has a corresponding function
argument. MatCoupLy will automatically parse these,
combine compatible penalties (e.g., non-negativity and uni-
modality) and create a minimal set of ADMMPenalty
objects with sensible default values, thus increasing the
efficiency of the algorithm.
3
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Table 1
Overview of the constraints implemented in MatCoupLy v0.1.5.
Penalty Class name Penalty type

ιNN (x) =

{
0, if xi ≥ 0∀xi ∈ x
∞, otherwise

NonNegativity Row penalty

ιbox(l,h) (x) =

{
0, if l ≤ xi ≤ h∀xi ∈ x
∞, otherwise

Box Row penalty

∥x∥1 =

∑
n

|xn| L1Penalty Row penalty

∥M∥L = Tr(MTLM) GeneralizedL2Penalty Matrix penalty
∥M∥TV =

∑
r

∑
n

|mn+1,r − mn,r | TotalVariationPenalty Matrix penalty

ιB(R) (M) =

{
0, if ∥m∥2 < R for all columns
∞, otherwise

L2Ball Matrix penalty

ι∆ (M) =

⎧⎨⎩0, if mn,r ≥ 0∀n, r and
∑
n

mn,r = 1∀r

∞, otherwise
UnitSimplex Matrix penalty

ιU (M) =

{
0, if all column vectors of M are unimodal
∞, otherwise

Unimodality Matrix penalty

ιPF2

({
B(i)

}I
i=1

)
=

{
0, if B(i1)TB(i1) = B(i2)TB(i2) ∀i1, i2
∞, otherwise

Parafac2 Multi-matrix penalty

2. If a user has created their own ADMMPenalty class or
wants to change the default behavior (e.g., initialization
of auxiliary variables), they can provide ADMMPenalty in-
stances directly through the regs-argument.

Automatic test suite: MatCoupLy is built following best soft-
are practices with automatic tests and continuous delivery.
he extensive test suite contains both unit- and integration tests
nd covers 99% of all code statements. Additionally, it provides
unctionality for automatically creating a minimal number of unit
ests for penalties. To create tests for a new penalty, a software
ser only needs to create a test class inheriting from BaseTest-
actorRowPenalty, BaseTestFactorMatrixPenalty, or
aseTestFactorMatricesPenalty and implement function-
lity for generating data invariant to the proximal operator
i.e., prox(x) = x) and data not invariant to the proximal operator
i.e., prox (x) ̸= x).

Extensive documentation: MatCoupLy also includes extensive
ocumentation. The documentation contains a primer on CMFs,
PI documentation, and extensive examples covering useful top-
cs such as analysis of real and simulated data and how to extend
atCoupLy with custom penalty functions.

. Illustrative examples

This section contains three examples, one of which demon-
trates how the AO-ADMM algorithm can be used to extract
nsights from a dataset with bike-sharing data. This dataset was
repared for this publication and is published with an open
icense together with the code. The second example demon-
trates how easy it is to create a new ADMMPenalty and how
o use MatCoupLy’s automatic unit test generation. Finally, the
hird example compares MatCoupLy with other related libraries.
he examples in this section are abbreviated versions of three
xamples from the documentation.

.1. Non-negative PARAFAC2 analysis on bike-sharing data

Here, we consider a dataset consisting of two years of
ike-sharing data from three major cities in Norway: Oslo,
ergen, and Trondheim. The dataset is organized as three
rrival_station_id × time matrices where each city shares
he same temporal profiles. The time is converted from UTC

to local (CET) time. The (j, k) entry of the data matrix for one
city represents the number of trips that ended in station j at
time-point k.

Listing 1 contains code to load the dataset, fit a four-
component non-negative PARAFAC2 model, and Fig. 3 shows a
visualization of the components. The non-negative PARAFAC2
model clusters together four different types of bike trips (sorted
in order of signal strength):

• biking home, which is mainly active at the end of the work-
day during weekdays;

• biking to work, which is mainly active at the start of the
workday during weekdays;

• general trips, which are active during the whole day;
• leisure trips, which are mainly active during the summer

and weekends.

The bike station components represent the areas across cities
where people bike to work, home from work, and to leisurely
activities. For example, for the leisure trip component, we see
activation at Huk and Sukkerbiten in Oslo and Nordnes in Bergen,
which are stations next to popular bathing places. Trondheim
does not have any bike stations at large outdoor bathing places,
but here we see activity at Lade idrettsanlegg, which is a popular
sporting arena for children and within walking distance from a
popular bathing spot.

3.2. Implementing an ADMMPenalty

To implement an ADMMPenalty, we only need to inherit from
the correct penalty class and implement the corresponding prox-
imal operator and penalty function. In this example, we create
a penalty class for the hard constraint with unimodality on all
component vectors except one (the last), which is unconstrained.
The code to create this penalty class and impose it when fitting
a PARAFAC2 model is shown in Listing 2. To create a test for this
penalty, we only need to inherit from BaseTestFactorMatrix-
Penalty and MixinTestHardConstraint and implement the
get_invariant_matrix and get_non_invariant_matrix
methods. The test code and output from running pytest are
shown in Listing 3.
4
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Fig. 3. Components for the bike sharing data. (a) shows the component strength for the different cities, (b) shows a zoomed in plot of one week of the temporal
profile for the different components and (c)–(e) shows the spatial distribution of the leisure trip component (component 3) for the different cities. Instructions on
how to make interactive versions of these plots are given in the documentation.

3.3. Evaluating constrained CMF models on simulated data

To illustrate the advantage of MatCoupLy, we compared the
erformance of non-negative PARAFAC2 (N-PARAFAC2) from
atCoupLy, PARAFAC2 from TensorLy [14] (with non-negativity

on A and C) and non-negative matrix factorization (NMF) from
scikit-learn [12] in terms of recovering simulated components
from noisy data. We simulated six components inspired by gas
chromatography–mass spectrometry (GC–MS) data. The entries
of the A-matrix were drawn from a uniform distribution between
5
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0 and 1, U(0, 1), and the entries of the C-matrix were drawn
rom a truncated normal distribution. Five out of the six B(i)-
omponents were Gaussians whose average shifted for each i,
nd the entries of the final B(i)-component were drawn from
(0.5, 1.5) for each i.
Following this setup, we generated 20 simulated datasets, and

dded noise following
(i)
noisy = max

(
0,X(i)

+ η(i)) ,

here η
(i)
jk was normally distributed and scaled so

√∑
ijk η

(i)2
jk =

.1
√∑

ijk x
(i)2
jk . The values of X(i)

noisy were truncated since the NMF
function in scikit-learn only supports non-negative data. We used

five random seeds for each fitting algorithm, selecting the initial-
ization with the lowest loss among the feasible solutions.

Since the NMF model is a matrix factorization model, we
converted the true factorization as well as the ones obtained with
N-PARAFAC2 and PARAFAC2 to equivalent matrix factorization
models by constructing a new data matrix, X, and factor matrix,
B̃, given by

X =

⎡⎢⎢⎢⎢⎣
X(1)

X(2)

...

X(I)

⎤⎥⎥⎥⎥⎦ and B̃ =

⎡⎢⎢⎢⎢⎣
B(1)D(1)

B(2)D(2)

...

B(I)D(I)

⎤⎥⎥⎥⎥⎦ ,
6
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respectively. Then, we computed a factor match score (FMS) for
these matrix factorization models, given by

FMS
((

B̃, C
)

,

(̂
B̃, Ĉ

))
=

1
R

R∑
r=1

b̃T
r
ˆ̃brb̃r

 ̂b̃r

 cr Tĉr
∥cr∥

ĉr ,

where the hat represents the estimated factor matrices. To com-
pute the FMS, we used the implementation in TensorLy-Viz [20].

Fig. 4 shows a boxplot of the FMS, where we see that
N-PARAFAC2 outperformed both NMF and PARAFAC2. To ensure
that the difference was significant, we used a paired nonpara-
metric Wilcoxon signed-rank test implemented in SciPy [21],
and obtained p-values 2.4 × 10−5 (N-PARAFAC2 more accurate
than PARAFAC2) and 2.0 × 10−4 (N-PARAFAC2 more accurate
than NMF). Thus, we see that by leveraging MatCoupLy’s abil-
ity to combine constraints, we improve the recovery of the
components.

4. Impact

MatCoupLy is a further development of the codebase used
for two publications [18,19] and is used in an ongoing research
project on blind source separation from hyperspectral data. The
easy-to-use framework enables researchers to easily fit CMF
models with constraints adapted to their specific needs. Prox-
imal operators for several penalties are implemented in the
package, including unimodality and the PARAFAC2 constraint,
which are quite technical and are not found in any well-tested
open-source Python package. Moreover, the flexibility of the
package facilitates rapid prototyping of new constraints and reg-
ularization penalties with automatic unit test generation, which
gives immediate feedback on the correctness of the implementa-
tions, speeding up the workflow of researchers using CMFs and
PARAFAC2.

Finally, we note that while constrained PARAFAC2 models
have gained increased interest in recent years [4,22,23], there is
7
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Fig. 4. Boxplot showing the FMS for the simulated datasets for each model evaluated in Section 3.3.

till a lack of accessible, easy-to-use, and open-source packages to
it such models.1 MatCoupLy fills this gap, providing a straightfor-
ard and well-tested interface to the only available method for

itting PARAFAC2 models that supports proximable regularization
n all factor matrices [18], thus facilitating the pursuit of new
esearch questions within various fields, such as data mining,
euroscience, chemometrics, and remote sensing.

. Conclusions

This paper introduces MatCoupLy, a package for fitting con-
trained CMF models with AO-ADMM in Python. MatCoupLy’s
lexibility makes it effortless to use a variety of constraints and
egularization methods. Moreover, the extendible nature of Mat-
oupLy enables users to easily implement custom constraints
r regularization methods in a well-tested environment. Thus,
atCoupLy provides researchers across different fields with a
treamlined tool to extract insight from their datasets with CMF
ethods without needing detailed knowledge about non-convex
ptimization. Future work could improve MatCoupLy’s flexibil-
ty further by implementing more constraints and regularization
enalties, adding other loss functions (e.g., the Kullback–Leibler
KL)-divergence and cross-entropy loss) and adding support for
ecomposing datasets with missing data or incomplete matrices.
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All datasets can be loaded with functions in the software
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