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a b s t r a c t 

A general framework for modeling dependence in multivariate time series is presented. 

Its fundamental approach relies on decomposing each signal inside a system into vari- 

ous frequency components and then studying the dependence properties through these 

oscillatory activities. The unifying theme across the paper is to explore the strength of 

dependence and possible lead-lag dynamics through filtering. The proposed framework is 

capable of representing both linear and non-linear dependencies that could occur instan- 

taneously or after some delay (lagged dependence). Examples for studying dependence be- 

tween oscillations are illustrated through multichannel electroencephalograms. These ex- 

amples emphasized that some of the most prominent frequency domain measures such 

as coherence, partial coherence, and dual-frequency coherence can be derived as special 

cases under this general framework. Related approaches for modeling dependence through 

phase-amplitude coupling and causality of (one-sided) filtered signals are also introduced. 

© 2022 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 
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1. Introduction 

One of the key goals in the analysis of multivariate time series data is to study the interactions between its different

components. Multivariate time series data is being collected and analyzed in fields including environmental and climate 

science ( Sethi and Mittal, 2020; Usman et al., 2020; Mahecha et al., 2020; Pham et al., 2020; Tatsis et al., 2020; Harvill

et al., 2017 ), finance ( Koutlis and Kugiumtzis, 2021; Hlávka et al., 2020; Reboredo and Ugolini, 2020; Qin et al., 2021; Bai

et al., 2020; Ravagli and Boshnakov, 2020 ), computer science and engineering ( Lin and Michailidis, 2018; Avendaño-Valencia 

and Chatzi, 2020; Blázquez-García et al., 2020; Gupta et al., 2020; Park and Jung, 2020; Huang et al., 2021 ), public health

( Del Giorno et al., 2020; Aburto et al., 2020; Baum et al., 2020; Martín Cervantes et al., 2020; Lin et al., 2020 ), and neuro-

science ( Chen et al., 2020; Steinmann et al., 2020; Goyal and Garg, 2020; Soleimani et al., 2020; Manomaisaowapak et al.,

2020; Suotsalo et al., 2020; Schoenberg, 2020; Manomaisaowapak and Songsiri, 2020; Pinto-Orellana and Hammer, 2020a; 

Nascimento et al., 2020; Ting et al., 2021b; Jiao et al., 2021; Maia et al., 2020; Sundararajan et al., 2020; Guerrero et al.,

2021; Ombao, 2019 ). Considering the inherent complexity of those studied phenomena, one of the most common challenges 

and tasks is identifying and explaining the inter-relationship between the various components of the multivariate data. Thus, 

the purpose of this paper is to provide a summary of the various characterizations of dependence between the elements 
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Fig. 1. Categories of dependence models that are covered in the current paper. The section in which the type of dependence measure is explained is 

indicated by a shaded box. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of a multivariate time series. The emphasis will be on the spectral measures of dependence which essentially examines the 

cross-relationships between the various oscillatory activities in these signals. Many of these measures are already being used 

to study dependence in multivariate time series data. One contribution of this paper is to demonstrate a unified framework 

under which these measures can be derived. The proposed framework here is to study the inter-relationships through the 

oscillatory activity derived from linear filtering. This proposed framework is in fact very intuitive and one of its potential 

advantage is that it can serve as a mechanism for studying more complex dependence structures in the multivariate time 

series data. 

Define X (t) = [ X 1 (t ) , . . . , X P (t )] ′ to be a multivariate time series with P components. In environmental studies, compo-

nents X 1 (t) , . . . , X P (t) could represent recordings from various air pollution sensors at time t . Similarly, the same framework

could describe wind velocity recordings at P different geographical locations. In a neuroscience experiment, a component X p 
could be the measurement of brain electrical, or hemodynamic, activity from a specific sensor (electrode) which is placed 

either on the scalp or on the surface of the brain cortex. The key question that will be addressed through various statistical

models and data analysis tools is to understand the a) nature of marginal dependence between a pair of channels X p (t) and

X q (t) or b) between X p (t) and X q (t) conditional on the other components in the data. 

This work is largely motivated from a neuroscience perspective. The brain circuitry can be conceived as the integra- 

tion of a sensory, motor, and cognitive system that receives, processes, and reacts to external impulses or internal auto- 

regulation activities ( Swanson, 2003 , pp. 80-91). Communication and feedback between those structures enable brain func- 

tions. For instance, memory is believed to rely on the hippocampus because it is at the center in the signal flow from

and to the cortical areas, such as the orbitofrontal cortex, olfactory bulb, and superior temporal gyrus ( Witter et al., 2017;

McGaugh et al., 1990 , p. 160-165). From a macro perspective, those memory flows also imply a high activity in the tem-

poral brain region ( McGaugh et al., 1990 , p. 164). From an analytic perspective, these signal interactions can be studied

as undirected dependencies (functional connectivity) X p (t) ⇔ X q (t) ; or directed , or causal , networks (effective connectivity)

X p (t) ⇒ X q (t) ∧ X q (t) ⇒ X p (t) . Additionally, current imaging techniques allow us to understand those interactions at differ-

ent biological levels: (a.) through hemoglobin changes (energy consumption) using functional magnetic resonance imaging 

(fMRI) or functional near-infrared spectroscopy (fNIRS); (b.) through measurements of the electrical activity at the scalp, 

(electroencephalogram, EEG), at the cortical surface (electrocorticogram, ECoG), or in the extracellular environment (local 

field potentials, LFPs). 

We first note that there are several models that aim to represent the different characterizations of dependence ( Fig. 2 )

The most common measure of dependence is cross-covariance (or cross-correlation). In the simple case where E [ X p (t) ] = 0 

and Var [ X p (t) ] = 1 for all p = 1 , . . . , P and all time t , then the cross-correlation (at lag 0) between X p and X q is 

ρpq (0) = E [ X p (t ) X q (t ) ] = 

∫ 
u p u q f pq (u p , u q ) du p du q (1) 

where f pq (u p , u q ) is the joint probability density function of (X p (t) , X q (t)) and the integral is evaluated globally over the

entire support of (X p (t) , X q (t)) . Cross-correlation provides a simple metric that measures the linear synchrony between a

pair of components across the entire support of their joint distribution. When | ρpq (0) | has a value close to 1, we con-

clude that there is a strong linear dependence between X p and X q . It is obvious that cross-correlation does not completely

describe the nature of dependence between X p and X q . First, dependence goes beyond linear associations, and hence this 

paper addresses some types of non-linear dependence between components. Second, dependence may vary across the entire 

support. That is, the association between X p and X q at the ”bulk” of the distribution may be different from its ”tails” (e.g.,

extrema). Third, since time series data can be viewed as superpositions of sine and cosine waveforms with random ampli- 
2 
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Fig. 2. Abstraction of dependence in brain signals. In this model, the hypothetical latent sources are assumed to generate neural oscillations (with their 

own frequency characteristics) that can interact among them before being recorded at the scalp. Different abstractions that model the sources’ interactions 

and the mixing models are explained in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

tudes, it is natural to seek to identify the specific oscillations that drive the linear relationship. For example, Guerrero et al.

Guerrero et al. (2021) proposed a method for investigating the dependence observed by the impact of extreme behavior in 

specific frequency band on the brain network structure. In particular, some types of non-linear dependence in time domain 

can have spectral linear relationships. These types of models are the main focus of the models and methods covered in this

paper. 

To consider spectral measures of dependence, that is, dependence between oscillatory components, the starting point 

will be the Cramér representation of stationary time series. Under stationarity, both X p and X q can be decomposed 

into oscillations at various frequency bands. The key elements of the Cramér representation are the Fourier basis wave- 

forms 
{

exp (i 2 πωt) , ω ∈ (− 1 
2 , 

1 
2 ) 

}
and the associated random coefficients { dZ(ω) } which is an orthogonal increment

random process ( Priestley, 1981 , pp. 244-246), ( Li, 2014 , pp. 20-21), ( Thomson, 1982 ) that satisfies E [ dZ(ω) ] = 0 and

C ov (dZ(ω) , dZ(ω 

′ )) � = 0 for ω � = ω 

′ . The Cramér representation for (X p (t) , X q (t)) is given by (
X p (t) 
X q (t) 

)
= 

(∫ 0 . 5 
−0 . 5 exp (i 2 πωt) dZ p (ω) ∫ 0 . 5 
−0 . 5 exp (i 2 πωt) dZ q (ω) 

)
. (2) 

The Cramér representation above can be used to characterize the nature of synchrony between the ω-oscillation in X p and

the ω-oscillation in X q which are, respectively, exp (i 2 πωt) dZ p (ω) and exp (i 2 πωt) dZ q (ω) . This idea will be further devel-

oped in the next sections of this paper. Note here that the quasi-stationarity assumption is reasonable over brief segments of

both resting-state and task conditions ( Ombao et al., 2017 , p. 188) or within reasonable short time intervals of EEGs ( Sanei

and Chambers, 2007 , p. 20). 

Most brain signals exhibit non-stationary behavior, which may be reflected changes in either (a.) the mean level, or (b.) 

the variance at some channels, or (c.) the cross-covariance structure or dependence between some pairs of channels. Note 

here that (a.) is a condition on the first moment while (b.) and (c.) are conditions on the second moment. Moreover, (a.)

and (b.) are properties within a channel, while (c.) is a property that describes dependence between a pair of channels.

There is no singular measure that can completely describe the nature of dependence between channels. The most common 

pair of measures consists of the cross-covariance and cross-correlation, whose equivalent measures in the frequency domain 

are the cross-spectrum and cross-coherence, respectively. This paper will focus on the frequency domain measures and thus 

dig deeper into being able to identify the oscillations that drive the dependence between a pair (or group) of channels.

Under non-stationarity, the dependence structure can change over time. Our approach here is to slide a localized window 

across time and estimate the spectral properties within each window. This approach is proposed in ( Priestley, 1965 ) and

then reformulated in ( Dahlhaus, 2012 ) to establish an asymptotic framework for demonstrating the theoretical properties of 

the estimators. 

2. EEG spectral characteristics 

To illustrate the various spectral dependence measures, we shall focus on the analysis of EEG signals. EEG is a noninvasive

technique that collects electrical potential at the scalp gathered from synchronized responses of groups of neurons (“signal 
3 
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Fig. 3. Electrode positioning in the 10-20 standard layout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sources”) ( Tatum, 2008 , p. 4) ( Ombao et al., 2017 , p. 555) that are perpendicular to the scalp and dynamically organized in

neighborhoods with scales of a few centimeters ( Stern, 2013 , p. 5). Naturally, EEG is affected by the volume conduction of

the signals over tissue and skull ( Nunez and Srinivasan, 2006 , p. 144). Despite its limitations, the portability and inexpen-

siveness allow the integration of EEG in clinical settings and cognitive experiments that require naturalistic environments 

(in contrast, fMRI experiments require the participants to be in a supine position in a restricted space). In addition, the

high temporal resolution of EEGs enables to capture the temporal dynamics of the neuronal activity. Therefore, through 

spatial, temporal, and morphological EEG patterns, some neurological and mental conditions can be diagnosed ( Stern, 2013 , 

p.3, 19-22). For instance, a specific metric obtained from EEG frequency properties measured on the channel Cz is consid- 

ered an FDA-approved clinical method to assess attention deficit hyperactivity disorder (ADHD) ( Snyder et al., 2015 ). Thus,

EEGs have been extensively used in cognitive neuroscience, neurology, and psychiatry to study the neurophysiological basis 

of cognition and neuropsychiatric disorders: motor abilities ( Wu et al., 2014a ), anesthetic similarities with comma ( Brown

et al., 2010 ), encephalopathy ( Jacob et al., 2019 ), schizophrenia ( Steinmann et al., 2020 ), addictions ( Newson and Thiagarajan,

2019 ), autism spectrum disorder ( Newson and Thiagarajan, 2019; Ibrahim et al., 2018 ), depression ( Mahato and Paul, 2019;

Liao et al., 2017; Mantri et al., 2015 ), and ADHD ( Snyder et al., 2015; Mohammadi et al., 2016 ). Here, we will illustrate some

methods that characterize the dynamics of the inter-relationships between the activity measured at different channels. 

In this paper, we use the EEG dataset related to a mental health disorder collected by Nasrabadi et al. ( Moti Nasrabadi

et al., 2020 ). This data consists of EEGs, sampled at 128Hz, from 60 children with attention deficit hyperactivity disorder

(ADHD) and 60 children with no registered psychiatric disorder as a control group. These electrical recordings were collected 

from 19 channels evenly distributed on the head in the 10-20 standard layout ( Fig. 3 ) ( Oostenveld and Praamstra, 2001 ).

Average recording from both ear lobes (A1 and A2) was used as electrode references. The experiment was intended to show

potential differences in the brain response under visual attention task ( Moti Nasrabadi et al., 2020; Allahverdy et al., 2011;

Mohammadi et al., 2016 ). Therefore, the 120 participants were presented series of images and the task was to count the

number of objects in each image. The number of objects in a set ranged from 5 to 16 - which is reasonable size for the

children participants. Each collection of pictures was displayed without interruptions in order to prevent distraction from 

the subjects. 

Prior to analysis, some standard pre-processing steps were conducted. These procedures are not unique to EEGs, or brain 

signals, as most data often need some cleaning before statistical modeling. Several attempts have been performed to stan- 

dardize those pre-processing steps ( Bigdely-Shamlo et al., 2015; Jas et al., 2017; Pedroni et al., 2019; Debnath et al., 2020;

Desjardins et al., 2021 ). In general, pre-processing aims to increase the quality of the recorded signal by ( Robbins et al.,

2020 ): (a.) removing the effect of the electrical line (electrical interference at 50Hz or 60Hz due to the electrical source);

(b.) removing artifacts due to eye movements, eye blinks or muscular movements; (c.) detecting, removing or repairing bad 

quality channels; (d.) filter non-relevant signal components; and (e.) re-referencing the signal to improve topographical lo- 

calization. In this scenario, filtering is a crucial step that removes components of the signal that could not be related to

cognitive or physiological processes, such as extremely high-frequency components. In this dataset, we applied a band-pass 

filter on the frequency interval (0.50-70.00) Hz and segmented the signal into the main “brain rhythms” ( Ombao et al., 2017 ,

p.610Bsemi Stern, 2013 , p. 33-34,169-170,413-414Bsemi Nunez and Srinivasan, 2006 , p. 12): frequency range into the delta 

band: (0.5, 4.0) Hertz, theta band: (4.0, 8.0) Hz, alpha band: (8.0, 12.0) Hertz, beta band: (12.0, 30.0) Hertz, and gamma

band: (30.0, 50.0) Hertz. A non-causal second-order Butterworth filter was used to perform this frequency filtering: Fig. 4 
4 
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Fig. 4. Frequency decomposition of an EEG, collected at channel Fp1, into the five brain rhythms: delta, theta, alpha, beta and gamma. 

 

 

 

 

shows an example of this decomposition where the shadow regions show the magnitude response of the applied filter. 

Finally, the EEGs are also often segmented into epochs of sixty seconds. 

3. Coherence and Partial Coherence 

In this section, a formal description of the two most common measures of spectral dependence, namely, coherence and 

partial coherence will be derived under the context of the Cramér representation of weakly stationary processes. One of the 

contributions of this paper is to provide an intuitive framework (i.e., via linear filtering) under which these common metrics 

as well as more complex dependence measures can be derived. Finally, these measures will be derived for the general case

where the signals exhibit non-stationarity, e.g., under conditions where the dependence between signals may evolve over 

time. 

3.1. Coherence and Correlation via the Fourier transform 

Suppose that X (t ) is a P −dimensional weakly stationary process with mean E X (t) = 0 for all time t and sequence of

covariance matrices { �(h ) , h = 0 , ±1 , ±2 , . . . } where �(h ) is defined by 

�(h ) = C ov ( X (t + h ) , X (t) ) = E 

(
X (t + h ) X 

′ (t) 
)
. 

Here,every element of �(h ) will be assumed to be absolute summability (over lag h ): let σpq (h ) be the (p, q ) -th entry of

the matrix �(h ) , then 

∑ ∞ 

h = −∞ 

| σpq (u ) | < ∞ for all (p, q ) . This condition ensures that auto-correlation and cross-correlation

decay to 0 sufficiently fast. 
5 
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There is a one-to-one relationship between the covariance matrix �(h ) and the spectral matrix via the Fourier transform. 

The spectral matrix, denoted f (ω) , is defined as 

f (ω) = 

∞ ∑ 

h = −∞ 

�(h ) exp (−i 2 π ω h ) where ω ∈ �0 = ( −0 . 5 , 0 . 5 ) . 

f (ω) is a P × P Hermitian semi-positive definite matrix. 

To analyze the properties of a single component of the multivariate time series, one should focus on the diagonal ele-

ments of the spectral matrix f (ω) . In fact, the auto-spectrum (univariate spectrum) of the p-th channel, denoted as f pp (ω) ,

is the (p, p) -th entry of f (ω) . In addition, the autocovariance sequence σpp (h ) can be derived from auto-spectrum f pp (ω)

via the inverse-Fourier transform 

σpp (h ) = 

∫ 
ω∈ �0 

f pp (ω ) exp ( i 2 π ω , h ) dω . 

One very important case is when h = 0 , i.e., σpp (0) = Var 
(
X p (t) 

)
. This corollary provides the intuition that the auto-spectrum

is a decomposition of the signal variance across all frequencies ω ∈ �0 = (−0 . 5 , 0 . 5) : 

σpp (0) = 

∫ 
ω∈ �0 

f pp (ω) dω = Var ( X p (t) ) . (3) 

We now introduce correlation as a dependence metric. Correlation between two components X p and X q at time lag h is

defined by 

r p,q (h ) = C or ( X p (t + h ) , X q (t) ) = 

C ov ( X p (t + h ) , X q (t) ) √ 

Var X p (t ) Var X q (t ) 
= 

σpq (h ) √ 

σpp (0) σqq (0) 
. 

It is clear that r p,q (h ) ∈ [ −1 , 1] will reach its extreme value when one of the signals is perfectly linearly related to the other

(one time series is a scaled and/or shifted version of the other). Thus, correlation r p,q (h ) is known for being the simplest

measure the quantifies the linear dependence, or synchrony, at a lag h between the pair of time series. 

The spectral matrix f (ω) provides more information about the interactions of their components. For instance, it allows 

us to identify the cross-spectrum (at frequency ω) between any pair of components, X p and X q , through its (p, q ) -th entry.

In a similar manner to the correlation in the time domain, we can define another measure that quantifies the similarity

between the simultaneous spectral response of X p and X q . This metric is known as coherency which is formally defined as

τpq (ω) = 

f pq (ω) √ 

f pp (ω ) f qq (ω ) 
. (4) 

Coherency is complex-valued whose magnitude lies in [0,1]. However, it is more common to use cross-coherence which is 

the square magnitude of the coherency: 

ρpq (ω) = | τpq (ω) | 2 = 

| f pq (ω) | 2 
f pp (ω) f qq (ω) 

. (5) 

3.2. Coherence and Correlation under the Cramér representation 

We now develop an intuitive framework under which we can derive coherency and coherence. First, recall that the 

Cramér representation of a zero-mean P −dimensional weakly stationary process X (t ) is given by 

X (t) = 

∫ 0 . 5 

−0 . 5 

exp ( i 2 π ω t ) dZ (ω) 

where dZ (ω) = [ dZ 1 (ω) , . . . , dZ P (ω) ] 
′ 

is a vector of random coefficients associated with the Fourier waveform exp (i 2 πωt) 

for each of the P components. The theoretical aspects of this stochastic integration, we refer to ( Brockwell and Davis, 1996 ,

Section 11.2) Here, { dZ (ω) } is a random process defined on ω ∈ (−0 . 5 , 0 . 5) that satisfies E [ dZ (ω) ] = 0 for all frequencies ω
and 

C ov 
(
d Z (ω) , d Z (ω 

′ ) 
)

= 

{
0 , ω � = ω 

′ 
f (ω ) dω , ω = ω 

′ 

The estimation of the second moment of dZ(ω) from a finite sequence is discussed in detail in ( Thomson, 1982 ). From the

above formulation, we note that the correlation and modulus-squared correlation with the coefficients are, in fact, coherency 

and coherence as they were defined in Eqs. 4 and 5 : 

C or [ d Z p (ω) , d Z q (ω) ] = 

f pq (ω) √ 

f pp (ω) f qq (ω 
6 
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‖ 

C or [ d Z p (ω) , d Z q (ω) ] ‖ 

2 = 

| f pq (ω) | 2 
f pp (ω) f qq (ω) 

. 

Note that the Cramér representation of a time series (i.e., it is a linear mixture of infinitely many sinusoidal waveforms

or Fourier waveforms with random amplitudes), provides an interesting perspective on the interpretation of the above- 

mentioned dependence metrics. Consider the components X p and X q , both of them contain Fourier oscillations in a contin- 

uum of frequencies, and let us now focus only on the specific frequency ω in the two components: 

X p,ω (t) = exp ( i 2 πωt ) dZ p (ω) 

X q,ω (t) = exp ( i 2 πωt ) dZ q (ω) . 

Since these random coefficients have zero mean, the variance at the ω-oscillatory activity of X p is 

Var [ X p,ω (t) ] = | exp (i 2 π ω t) | 2 Var [ dZ p (ω) ] . 

Since the random coefficients { dZ p (ω) } are uncorrelated across ω ∈ (−0 . 5 , 0 . 5) , it follows that 

Var [ X p (t) ] = 

∫ 
Var [ X p,ω (t) ] = 

∫ 
Var [ dZ p (ω) ] . 

Based on this relationship, we can introduce an alternative interpretation of the spectral decomposition denoted along with 

Eq. 3 : the total variance of a weakly stationary signal X p at any time point can be viewed as an infinite sum of the variance

of each of the random coefficients. Furthermore, we can think of the relationship between the variance of the random 

coefficients and the spectrum as follows 

Var [ dZ p ( ω ) ] = f pp ( ω ) dω. 

We now study the relationship between the signals X p and X q as a function of the oscillations. The covariance between the

ω−oscillation in X p and the ω−oscillation in X q is 

C ov [ X p,ω (t) , X p,ω (s ) ] = exp ( i 2 πω(t − s ) ) C ov [ dZ p (ω) , dZ q (ω) ] . 

Moreover, since | exp (i 2 πωt) | = 1 for all t , the variances of these respective ω-oscillations are 

Var [ X p,ω (t) ] = Var [ dZ p (ω) ] and Var [ X q,ω (t) ] = Var [ dZ q (ω) ] . 

In addition, the correlation between these ω-oscillations is 

C or [ X p,ω (t) , X p,ω (s ) ] = exp ( i 2 πω(t − s ) ) C or [ dZ p (ω) , dZ q (ω) ] 

and the respective modulus-squared correlation is given by 

| C or [ X p,ω (t) , X p,ω (s ) ] | 2 = | C or [ dZ p (ω) , dZ q (ω) ] | 2 
which is identical to the definition of coherence given in Eq. 5 . 

In summary, it is possible to affirm that coherence between a pair of weakly stationary signals at frequency ω is the

square-magnitude of the correlation between the ω-oscillations of these signals. 

3.3. Coherence and filtering 

In practical EEG analysis, coherence between a pair of channels is defined and estimated at some frequency bands - 

rather than in a singleton frequency. The standard frequency bands are delta (0 . 5 , 4 . 0) Hertz, theta (4 . 0 , 8 . 0) Hertz, alpha

(8 . 0 , 12 . 0) Hertz, beta (12 . 0 , 30 . 0) Hertz and gamma (30 . 0 , 50 . 0) Hertz. This segmentation of the frequency axis has been

widely accepted for many decades. However, there is a growing direction towards a more specific (narrower) frequency band 

analysis and a more data-adaptive approach to determining (a.) the number of frequency peaks, (b.) the location of these 

peaks, and (c.) the bandwidth associated with each one of them. This will be necessary for a finer differentiation between

experimental conditions and patient diagnosis groups. The immediate task at hand is to point out the connection between 

linear filters and spectral and coherence estimation. 

To estimate coherence, the first step is to apply a linear filter on time series components X p and X q so that the resulting

filtered time series will have spectra whose power is concentrated around a pre-specified band �. In essence, a k -th order

linear frequency-filter is comprised of a set of coefficients { a 0 , . . . , a K } and { c 1 , . . . , c K } under the constraint 
∑ 

k | a k | < ∞ and∑ 

k | c k | < ∞ . The filtered signal y ∗(t) is obtained as a linear combination of the previous values of the unfiltered time series

y (t) , . . . , y (t − K) and its previous values y ∗(t − 1) , . . . , y ∗(t − K) : 

y ∗(t) = 

M ∑ 

k =0 

c k y (t − k ) −
M ∑ 

k =1 

a k y 
∗(t − k ) (6) 

Filters with a k = 0 ∀ k are known as finite impulse response (FIR) filters or infinite impulse response (IIR) filters when

∃ a k � = 0 for some k . For an extensive analysis of linear time-invariant filtering, we refer to ( Hayes, 1996 ). Even though for
7 



H. Ombao and M. Pinto Econometrics and Statistics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; November 26, 2022;22:16 ] 

Fig. 5. Sample filter response in magnitude and phase for a 20th-order and a 50th-order FIR filter. 

Fig. 6. Alpha-filtering of EEG signals in channels F3 and F4: A,B) Power spectrum density C F4 and C F3 after applying a band-pass filter. Note that the power 

is concentrated only in the interval 8-12Hz. The gray line in the background corresponds to the unfiltered spectra. C,D) Signals X F3 and X F4 without before 

filtering; and E.F) Alpha waves in both channels: X F3 ,α and X F4 ,α . 

8 
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Fig. 7. Linear relationships between the channels F3 and F4: A) Scatterplot of the unfiltered signals, with a correlation of 0.033. B-F) Scatterplots of alpha- 

filtered channels at different lags: -40, -20, 0, 20, and 40. Note that lags are denoted from reference to F3 ( X p ). Thus, negative lags imply that F4 is leading 

F3 during the correlation estimation. G) Cross-correlation as a function of the lags. The maximum cross-correlation (0.138) is located at lag 1. 

 

 

 

 

 

 

 

 

 

 

 

the biomedical purposes discussed in this paper, this frequency bandwidth is the most relevant filtering feature. We also 

need inherent frequency-domain properties associated with the selected set of coefficients, such as the frequency transient 

response, passband ripples, and phase response ( Fig. 5 ). Ripples in the bandpass frequency interval are small magnitude os-

cillations that could appear in the desired bandpass. Transient response is the type of attenuation that the filter can provide

for ”intermediate frequencies” between the bandstop region and the bandpass. Faster transient responses are typically linked 

with higher ripples, and therefore, higher distortion in the time domain. In addition, the phase response is the frequency- 

associated delay that the filter naturally induces in the output filtered signal. Linear responses are associated with lower 

distortion and are ensured for FIR filters. We refer to ( Widmann et al., 2015 ) for a more detailed discussion of the strategies

for designing filters in biomedical signals. In this paper, we will focus on the FIR family of filters. 

Consider the filter so that { c k , k = 0 , ±1 , ±2 , . . . } . A one-sided linear filter will be used to examine causality between the 

different oscillations, a further discussion about the reasons behind this condition is given in Section 5.4 . The Fourier trans-

form of the sequence of FIR filter coefficients { c j } is C ( ω ) = 

∑ 

k c k exp (−i 2 πω k ) The set of filter coefficients are selected

so that | C(ω) | has a peak that is concentrated in the neighborhood of the frequency band � (band-pass region). In the

frequency intervals outside of � (stop-band region), | C(ω) | is expected to has relatively small values. Thus, to extract the

component of X p and X q that is associated with the �-oscillation, we apply the linear filter 
{

c j , j = 0 , ±1 , ±2 , . . . 
}

to obtain 

the convolution 

X p, �(t) = 

∞ ∑ 

j= −∞ 

c j X p (t − j) and X q, �(t) = 

∞ ∑ 

j= −∞ 

c j X q (t − j) . 

The auto-spectra of each filtered series, { X p, �} and { X q, �} are 

f pp, �(ω) = | C(ω) | 2 f pp (ω ) and f qq, �(ω ) = | C(ω) | 2 f qq (ω) , 

respectively, which has spectral power attenuated outside of the band �. 

Example 1 (EEG example) . Recall the EEG-ADHD dataset described in Section 2 . Let us focus in the signals recorded at

channels F3 and F4, collected from the control subject S041. We denoted them by X p and X q ( Fig. 7 .C-D). These biomedical

signals are sampled at 128 Hertz and with a 60-second epoch. In consequence, the total number of time points available

for the analysis is T = 128 × 60 = 7680 . We extract the alpha-band component ( � = 8 − 12 Hertz) using a 10-th order FIR

band-pass filter defined by the coefficients: 

{ c i } = { −0 . 0272 , −0 . 0468 , −0 . 0423 , 0 . 0771 , 0 . 2677 , 

0 . 3629 , 0 . 2677 , 0 . 0771 , −0 . 0423 , −0 . 0468 , −0 . 0272 } 
This 10-order filter was chosen as a compromise between filter delay and attenuation. The filtering results are depicted in 

Fig. 7 .E-F with the spectrum after the filtering process in Fig. 7 .A-B. 
9 
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The next step is to study the dependence between the time series X p and X q through their filtered components. In

practice, dependence can be examined at various frequency bands but in this example, we focus only on the alpha band for

illustration purposes. As noted by Eq. 5 , coherence is well defined for a single frequency ω. Nevertheless, for a frequency

set �, we present two approaches to estimation: 

̂ ρ(A ) 
p,q ( �) = 

1 

‖ 

�‖ 

∑ 

f∈ �

| P xy ( f ) | 2 
| P xx ( f ) | | P yy ( f ) | , 

and 

̂ ρ(B ) 
p,q ( �) = 

∑ 

f∈ � | P xy ( f ) | 2 ∑ 

f∈ � | P xx ( f ) | ∑ 

f∈ � | P yy ( f ) | . 

This ambiguity was also raised and discussed by Kulaichev (2011) . Thatcher et al., Thatcher et al. (1986, 2008) ; Thatcher

(2011) , also established the procedure of calculating coherence as “first computing the power spectra” over all frequencies, 

and later, “computing the normalized cross-spectra” as in ρ(B ) 
p,q ( �) in our notation. In this manuscript, we rely on this 

procedure. Note also that, from Ombao et al. (2006) , coherence at the alpha-band is estimated to be 

̂ ρp,q (α) ∝ max 

 

∣∣∣∣∑ 

t 

X p,α(t) X q,α(t − 
 ) 

∣∣∣∣2 

(7) 

where X p,α (t) is the α-oscillatory activity in channel X p . 

Example 2 (Contemporaneous mixture) . We now illustrate that coherence gives information beyond cross-correlation (or 

the square cross-correlation). Consider the setting where there are two latent sources Z 1 and Z 2 where Z 1 is a high-frequency

source and Z 2 is a low-frequency source. Define the observed time series X 1 and X 2 to be mixtures of these two sources,

e.g., (
X 1 (t) 
X 2 (t) 

)
= 

(
c 11 c 12 

c 21 c 22 

) (
Z 1 (t) 
Z 2 (t) 

)
+ 

(
ε1 (t) 
ε2 (t) 

)
. (8) 

Suppose that c 21 = 0 and the other entries of the mixing matrix are all non-zero. This implies that X 1 contains both low-

frequency component Z 1 and high-frequency component Z 2 . However, X 2 contains only the high-frequency component Z 2 . 

Thus, it is the high-frequency component that drives the dependence between X 1 and X 2 . The scatterplot of X 2 (t) vs X 1 (t) in

Fig. 8 .E shows that these two time series are correlated and the sample cross-correlation is computed to be 0.4776. However,

correlation is limited in the information it can convey about the relationship between a pair of signals. For instance, it does

not indicate what frequency band(s) drive that relationship. 

To now investigate deeper the relationship between X 1 and X 2 , we apply a low-pass filter (on band �0 ) and a high-pass

filter (on band �1 ) and denote these filtered signals to be 

X 1 , �0 
(t) , X 1 , �1 

(t) , X 2 , �0 
(t) , X 2 , �1 

(t) . 

Under stationarity, the random coefficients in the Cramér representation are uncorrelated across frequencies (i.e., 

C ov [ dZ 1 (ω) , dZ 2 (ω 

′ )] = 0 when ω � = ω 

′ ). Thus, 

C ov [ X 1 , �0 
(s ) , X 2 , �1 

(t)] = 0 and C ov [ X 1 , �1 
(s ) , X 2 , �0 

(t)] = 0 . 

For some non-stationary processes, there could be possible linear and non-linear dependence between different frequency 

bands. For the moment, we focus only on the correlation between the low-frequency components X 1 , �0 
(s ) and X 2 , �0 

(t) and

the high-frequency components X 1 , �1 
(s ) and X 2 , �1 

(t) . The lag-0 scatterplots are shown in 8 .F-I. It is clear here that the

linear relationship between the low-frequency components is weaker than the dependence on high-frequency components. 

This was to be expected from the data generating model in Eq. 2 , which specifies that X 1 and X 2 both share the common

high-frequency latent source. Assuming that the sample mean of these oscillations are all 0, then the coherence estimate at 

the low-frequency band is the squared cross-correlation between the X 1 , �0 
and X 2 , �0 

, i.e., 

̂ ρ12 (�0 ) = 

{∑ T 
t=1 (X 1 , �0 

(t) X 2 , �0 
(t)) 

}2 ∑ T 
t=1 (X 1 , �0 

(t)) 2 
∑ T 

t=1 (X 2 , �0 
(t)) 2 

. 

Note that due to the symmetric property of cross-correlation between X 1 , �0 
and X 2 , �0 

, coherence ̂ ρ12 (�0 ) is also symmetric.

The coherence estimate at the high-frequency band is computed similarly. The estimated values for coherence at the low 

and high-frequency bands are, respectively, 0.0608 and 0.8583. 

Example 3 (Lagged mixture) . The data generating process in the previous example ( Eq. 2 ) assumes an instantaneous mix-

ture, i.e., the observed signals at a specific time t , { X 1 (t ) , X 2 (t ) } depend explicitly on the latent processes Z 1 (t) and Z 2 (t) }
also at the same time t . However, we can extend this model towards cases when there is some lag in the mixtures,

e.g., the latent source has a delayed effect on some components of the observed signals. As Nunez et al. pointed out
10 
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Fig. 8. Simulation from Example 2 : system with an instantaneous mixture with latent sources ( Z 1 (t) , Z 3 (t) ) and mixed components ( X 1 (t) , X 2 (t) ). Note 

the differences in the correlation between the unfiltered, and the �0 - and �1 -filtered components. C or [ X 1 (t) , X 2 (t) ] = 0 . 4776 while C or [ X �0 (t) , X �0 (t) ] = 

0 . 0608 and C or [ X �1 (t) , X �1 (t) ] = 0 . 8583 . 

 

 

 

 

( Nunez et al., 2015 ), axons can have propagation speeds in the range 60 0-90 0 cm 

s , and considering the average distance from

the cortex to the scalp is 14.70 mm for middle-aged humans ( Lu et al., 2019 ), we presume that delays of a few milliseconds

(from any neural source to the scalp) can be feasible in the EEGs. Statistically, in order to handle these lagged mixtures, we

introduce the backshift operator B h (where h = 0 , 1 , . . . ) to be B h Z(t) = Z(t − h ) . Consider now the lagged mixture (
X 1 (t) 
X 2 (t) 

)
= 

(
c 11 B 

h 11 c 12 B 

h 12 

c 21 B 

h 21 c 22 B 

h 22 

) (
Z 1 (t) 
Z 2 (t) 

)
+ 

(
ε1 (t) 
ε2 (t) 

)
. (9) 

Here, suppose that the mixture weight c 21 = 0 ; and the lags for the latent sources are h 12 = 0 and h 22 = 10 . Thus, the

two observed time series are 
11 
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Fig. 9. Simulated example 3 : system with latent sources ( Z 1 (t) , Z 3 (t) ) and lagged mixed components ( X 1 (t) , X 2 (t) ). Note the high contrast between corre- 

lation and coherence in low- and high-frequency components. C or [ X �0 (t) , X �0 (t) ] = 0 . 0026 and C or [ X �1 (t) , X �1 (t) ] = 0 . 4213 while C oh { X �0 (t) , X �0 (t) } = 

0 . 039 and C oh { X �1 (t) , X �1 (t) } = 0 . 8060 . Furthermore, the maximum correlation in the high-frequency components is located at lag 10. 

 

 

X 1 (t) = c 11 Z 1 (t) + c 12 Z 2 (t − 10) + ε2 (t) 

X 2 (t) = c 22 Z 2 (t) + ε1 (t) . 

As in the previous example, the observed signals are driven by the high-frequency latent source Z 2 , but the effect of Z 2 
on X 2 is delayed by 10 time units. Consider now the scatterplots of the high-frequency filtered time series at (a.) lag 0:

X 1 , �1 
(t) vs. X 2 , �1 

(t) and (b.) lag 10: X 1 , �1 
(t) and X 2 , �1 

(t − 10) . In Fig. 9 , it is clear that the linear relationship at lag 10

appears stronger compared to the contemporaneous correlation. Denote the cross-correlation estimate at lag 
 to be 
12 
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Fig. 10. Autoregressive process spectrum AR (2) as a function of the magnitude of its roots. The closer the magnitude is to one, the narrower the spectrum. 

 

 

 

 

 

 

 

 

 

̂ r 12 (�1 , 
 ) = 

{∑ T 
t=1 (X 1 , �1 

(t) X 2 , �0 
(t − 
 )) 

}2 ∑ T 
t=1 (X 1 , �1 

(t)) 2 
∑ T 

t=1 (X 2 , �1 
(t)) 2 

. 

Then the estimated coherence at the frequency band �1 is ̂ ρ12 (�0 ) = max 

 =0 , ±1 , ... 

| ̂  r 12 (�1 , 
 ) | 2 . 

3.4. AR(2) processes - discretized Cramér representation 

One can approximate the Cramér representation of weakly stationary processes by a representation based on latent 

sources with identifiable spectra where each spectrum has its own unique peak frequency and bandwidth (or spread). Here, 

we will consider the class of weakly stationary second-order autoregressive, or simply AR(2), models to serve as ”basis”

latent sources. A process Z(t) is AR(2) if it admits a representation 

Z(t) − φ1 Z(t − 1) − φ2 Z(t − 2) = W (t) 

where { W (t) } is white noise with E [ W (t) ] = 0 and Var [ W (t) ] = σ 2 
W 

and the AR(2) coefficients φ1 and φ2 must satisfy that 

the roots of the AR(2) polynomial function (denoted u 1 , u 2 ) 

(u ) = 1 − φ1 u − φ2 u 

2 

must satisfy | u c | > 1 for both c = 1 , 2 . In particular, we will consider the subclass of AR (2) models whose roots are non-real

complex-valued so that they are complex-conjugates of each other u 2 = u ∗1 and thus they can be reparametrized as 

u 1 = M exp (i 2 πψ) and u 2 = M exp (−i 2 πψ) 

where M > 1 and ψ ∈ (−0 . 5 , 0 . 5) . Note that the AR(2) model can be parametrized by the coefficients (φ1 , φ2 ) or by the roots

(u 1 , u 2 ) or by the magnitude and phase of the roots (M, ψ) . In fact, the one-to-one relationship between the coefficients

and the roots is given by 

φ1 = 

2 

M 

cos ( 2 πψ ) and φ2 = − 1 

M 

2 
(10) 

One very important and interesting property of an AR(2) process with complex-valued roots is that its spectrum has 

a peak at ψ and the spread of this peak is governed by the magnitude M. When the root magnitude M −→ 1+ then the

bandwidth of the peak around ψ becomes narrower. Conversely, when M becomes much larger than 1 then the bandwidth 

around ψ becomes wider ( Fig. 10 ). 

Example 4 (AR(2) with the peak at the alpha band) . We now describe how to specify an AR(2) process whose spectrum

has a peak at 10 Hertz. Assume that the sampling rate is 100 Hertz with a consequent Nyquist frequency of 50 Hertz. The

roots of the AR(2) processes are then complex-valued with phase ψ = 

10 
50 and magnitude L . To model an AR(2) spectra with

a narrowband response around 10 Hertz, we set the magnitude of the roots to be L = 1 . 05 . Moreover, to model a broadband

response, we set L = 1 . 50 . 

Therefore, the AR(2) coefficient parameters for the narrowband process are 

φ1 = 

2 

1 . 05 

cos 

(
2 π

10 

50 

)
and φ2 = − 1 

(1 . 05) 2 
(11) 

while, for the broadband signal, the AR(2) coefficients are given by 

φ1 = 

2 

1 . 50 

cos 

(
2 π

10 

50 

)
and φ2 = − 1 

(1 . 50) 2 
. (12) 

The corresponding auto-spectra of these two AR(2) processes are displayed in Fig. 10 . 

We now construct a representation for X (t) that is a linear mixture of uncorrelated AR(2) latent processes Z 1 , . . . , Z K 
whose spectra are identifiable with peaks within the bands �1 , . . . , �K . Define g k (ω) to be the spectrum of the latent
13 
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Fig. 11. Direct and indirect dependence between two channels p and q Indirect links could appear if both channels depend on a common channel c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AR(2) process Z k . These spectra will be standardized so that 
∫ 0 . 5 
−0 . 5 g k (ω) dω = 1 for all k = 1 , . . . , K. Moreover, these spectra

have peak locations that are at unique frequencies and that these are sufficiently separated. The choice of the number of

components K may be guided by the standard in neuroscience where the K = 5 bands are modeling components in the

delta, theta, alpha, beta, and gamma band (as they were defined in a previous section). Another approach is developed in

Granados-Garcia et al. (2021) , which data-adaptively selects K, the peak locations, and bandwidths. Therefore, the mixture 

of AR(2) latent sources is given by ⎛ ⎜ ⎝ 

X 1 (t) 
X 2 (t) 
. . . 

X P (t) 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

A 11 A 12 . . . A 1 K 

A 21 A 22 . . . A 2 K 

. . . 

A P1 A P2 . . . A PK 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

Z 1 (t) 
Z 2 (t) 
. . . 

Z K (t) 

⎞ ⎟ ⎠ 

(13) 

. 

Consider components X p and X q . Suppose that, for a particular latent source Z k , the coefficients A pk � = 0 and A qk � = 0 . Then,

these two signals share Z k as the same common component, and that X p and X q are coherent at frequency band �k . 

This stochastic representation in terms of the AR(2) processes as building blocks is motivated by the result from Gao et al.

(2020) for univariate processes where the essential idea is the following: define the true spectrum of a weakly stationary 

process X p to be f pp (ω) and set f A pp,K (ω) to be the mixture (or weighted average) of the spectrum of the K AR(2) latent 

processes that gives the minimum discrepancy, i.e., 

f A pp,K = inf S 

∫ ∣∣ f pp ( ω ) − S A pp,K ( ω ) 
∣∣dω (14) 

over all candidate spectra from a mixture of K AR(2) processes, S K . This discrepancy decreases as K increases, and therefore,

the model provides a better approximation. 

3.5. Partial coherence 

One of the key questions of interest is determining whether the dependence between two components X p and X q is pure

or it is indirect through another component X c (or a set of channels c � = p, q ). In Fig. 11 , we show the distinction between

the pure vs. indirect dependence between X p and X q . In Fig. 11 .B, if we remove the link between X c and X p and the link

between X c and X q , then there is no longer any dependence between X p and X q . 

A standard approach in the time domain is to calculate the partial correlation between X p and X q (( Fried and Didelez,

2005; Fried et al., 2005 )), which is essentially the cross-correlation between them after removing the linear effect of X c on

both X p and X q . This is also achieved by taking the inverse of the covariance matrix, denoted �−1 (0) and then standardizing

this matrix by a pre- and post-multiplication of a diagonal matrix whose elements are the inverse of the square root of

the diagonal elements of �−1 (0) . The procedure for the frequency domain follows in a similar manner, as outlined in

Fiecas et al. (2011) : define the inverse of the spectral matrix to be g (ω) = f −1 (ω) and let h (ω) be a diagonal matrix whose

elements are 1 √ 

g rr (ω) 
. Next, define the matrix 

�(ω) = −h (ω ) g (ω ) h (ω ) . (15) 

Then, partial coherence (PC) between components X p and X q at frequency ω is | �pq (ω) | 2 . This particular characterization of

PC requires inverting the spectral matrix. This can be time computationally demanding when the dimension P is large, and 

it also can be prone to numerical errors when the condition number of the spectral matrix f (ω) is very high (i.e., the ratio

of the largest to the smallest eigenvalue is large). This happens when there is a high degree of multicollinearity between

the ω−oscillations of the components of X . To alleviate this problem, Fiecas et al. (2010) and Fiecas et al. (2011) developed a
14 
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class of spectral shrinkage procedures. The procedure consists in constructing a well-conditioned estimator for the spectral 

matrix and hence produces a numerically stable estimate of the inverse. The starting point is to construct a ”smoothed”

periodogram matrix which is a nonparametric estimator of f (ω) . From a stretch of time series X (1) , . . . , X (T ) } ( T even),

compute the Fourier coefficients 

d (ω k ) = 

T ∑ 

t=1 

X (t ) exp (−i 2 πω k t ) 

at the fundamental frequencies ω k = 

k 
T where k = −( T 2 − 1) , . . . , T 2 ) . The P × P periodogram matrix is 

I (ω k ) = 

1 

T 
d (ω k ) d 

∗(ω k ) 

where d 

∗ is the complex-conjugate transpose of d . 

Though the periodogram matrix is asymptotically unbiased, it is not consistent. We can mitigate this issue by construct- 

ing a smoothed periodogram matrix estimator ˜ f (ω) = 

∑ 


 

Q b (ω 
 − ω) I (ω 
 ) 

where the kernel weights Q b (u ) are non-negative and sum to 1. The bandwidth b can be obtained using automatic band-

width selection methods for periodogram smoothing, such as the least-squares in Lee (1997) or the gamma-deviance-GCV 

in Ombao et al. (2001b) . The shrinkage targets are either the scaled identity matrix or a parametric matrix (that can be

derived from a VAR model). 

Suppose that a VAR (L ) model is fit to the signal X (t) , t = 1 , . . . , T } (B ) X (t) = W (t ) where W (t ) is a zero-mean P −variate

white noise with C ov W (t) = �W 

and (B ) = I − 1 B − . . . − L B 
L . Then the spectrum of this VAR( L ) process is 

h (ω) = ( exp (−i 2 πω)) �W 

∗( exp (−i 2 πω)) 

. 

The parametric estimate of the spectral matrix, denoted 

˜ h (ω) , is obtained replacing 
 , 
 = 1 , . . . , L , by the maximum

likelihood or conditional maximum likelihood estimators. The shrinkage estimator for the spectrum takes the form ̂ f (ω) = W 1 (ω ) ̃  I (ω ) + W 2 (ω )) ̃  h (ω ) 

where the weights W s (ω) fall in (0,1) and W 1 (ω) + W 2 (ω) for each ω. Moreover, the weight for the smoothed periodogram

is proportional to the mean-squared error of the parametric estimator, i.e., W 1 (ω) ∝ E | ̃  h (ω) − f (ω) | 2 . 
This method can be interpreted as a spectrum estimator that automatically chooses the estimator with better ”quality”. 

Therefore, when the parametric estimator is ”poor” (high MSE), the weights shift the estimator towards the nonparametric 

estimator. However, when the parametric model gives a good fit, the shrinkage shift to the parametric spectral estimate. 

Thus, the resulting spectral estimator has, in general, a good condition number and can be used further for the estimation

of PC where the quality of the spectral information is critical. 

An alternative view to the above approach in constructing partial coherence is through analyzing the oscillations. For 

simplicity, we consider the ω-oscillations for channels X p , X q and X c , which we denote to be X p,ω , X q,ω and X c,ω , respectively.

At this stage, we shall consider only the contemporaneous (i.e., zero-phase or zero-lag) partial cross-correlation 

C or { X p,ω (t) , X q,ω (t) | X c,ω (t) } . 
To proceed, regress of X p,ω (t) against X c,ω (t) and extract the residuals, denoted R p ̇ c ,ω (t) and also X q,ω (t) against X c,ω (t) ,

and extract the residuals, named as R q ̇ c ,ω (t) . 

Then, the zero-phase partial coherence between X p and X q at frequency ω is the quantity 

ρpq ̇ c (ω) = 

∣∣C or 
[
R p ̇ c ,ω , R q ̇ c ,ω 

]∣∣2 
. 

Example 5 (Partial coherence on a gamma-interacting system) . Consider the setting where the independent latent processes 

are specific AR(2)’s that mimic the delta, alpha, and gamma activity which we denote by Z δ (t) , Z α(t) and Z γ (t) . Suppose

that the observed time series are X 1 (t) , X 2 (t) and X 3 (t) , which are defined by the mixture ( 

X 1 (t) 
X 2 (t) 
X 3 (t) 

) 

= 

( 

a 1 δ a 1 α a 1 γ
a 2 δ a 2 α a 2 γ
a 3 δ a 3 α a 3 γ

) ( 

Z δ(t) 
Z α(t) 
Z γ (t) 

) 

. (16) 

We now examine the dependence between X 1 and X 2 under the following setting. First, suppose that X 3 contains the

gamma-oscillatory activity Z γ purely, that is, a 3 δ = a 3 α = 0 . Next, suppose that X 1 contains only Z α and Z γ , that is, a 1 δ = 0 ;

and X 2 contains only Z δ and Z γ , that is, a 2 α = 0 . A realization of such a system is shown in Fig. 12 . Under this construction,

X 1 and X 2 have zero coherence at the δ and α frequency band. However, X 1 and X 2 both contain the common gamma-

oscillatory activity and hence have a non-zero coherence at the gamma-band. In our particular example, C oh 

{
X 1 ,γ , X 2 ,γ

}
= 

0 . 759 , C oh 

{
X 1 ,γ , X 3 ,γ

}
= 0 . 770 , and C oh 

{
X 2 ,γ , X 3 ,γ

}
= 0 . 893 . 
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Fig. 12. Coherence network of a system with a dominating gamma component ( Example 5 ). Three latent sources (delta-, alpha- and gamma-band waves) 

are linearly into combined three observed components X 1 , X 2 and X 3 . As expected, the network map (P.) denotes that all components are related within 

the gamma-band. The correlation across lags is also displayed to emphasize the coherence magnitudes. 

 

 

 

 

 

 

However, if we compare coherence and partial coherence ( Fig. 13 ), we can unveil some indirect dependence effects.

Partial coherence between X 1 and X 2 (conditional on X 3 ) at the gamma-band is zero. This result indicates that if we remove

X 3 (the gamma-band activity) from X 1 and X 2 , then their ”residuals” will no longer contain any common latent source. 

Example 6 (Partial coherence) . As a continuation of Example 5 , suppose that (a.) X 3 contains only gamma-oscillatory activity

Z γ , i.e., a 3 δ = a 3 α = 0 ; (b.) X 1 contains only Z α and Z γ : a 1 δ = 0 ; and (c.) X 2 contains Z δ , Z α and Z γ . In such a dependence

structure, we can observe the following frequency-dependent effects on X 1 and X 2 : 

(i.) At the delta-band, the coherence between X 1 and X 2 is zero; and hence the partial coherence (conditioned on X 3 ) is

also zero; 

(ii.) At the alpha-band, the coherence and partial coherence between X 1 and X 2 are both non-zero; 

(iii.) At the gamma band, the coherence between X 1 and X 2 is non-zero but the partial coherence is zero. 

These observations can be summarized in the coherence and partial coherence networks of Fig. 14 . 

3.6. Time-varying coherence and partial coherence 

As noted, many brain signals exhibit non-stationarity. In some cases, the autospectra varies over time which indicates 

that the contributions of the various oscillations to the total variance change across the entire recording. In others, the 

autospectra might remain constant, but the strength and nature of the association between components can change. In fact, 

in Fiecas and Ombao (2016) , the coherence between a pair of tetrodes from a local field potential implanted in a monkey
16 
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Fig. 13. Comparison between coherence and partial coherence in Example 5 . 

Fig. 14. Comparison between coherence and partial coherence in Example 6 . 

 

 

 

 

 

evolves both within a trial and even across trials in an experiment. Here, we will follow the models in Priestley (1965) and in

Dahlhaus (2012) to define and estimate the time-varying coherence and partial coherence. The methods for non-stationary 

signals are discussed in Section 7 . 

4. Dual-frequency dependence 

In this paper, we view the components of a multivariate time series X to consist of oscillations at various frequencies

with random amplitudes and phases (complex-valued coefficients). Thus, we present a framework for modeling dependence 

between the components of X through thes e random oscillations. This is motivated by the Cramér representation X (t) =∫ 0 . 5 
−0 . 5 exp (i 2 πωt) dZ (ω) where, for weakly stationary processes, the random increments dZ (ω) are uncorrelated across the 

frequency range in the unit interval ω ∈ (−0 . 5 , 0 . 5) . Hence, for ω � = ω 

′ , the ω −oscillations in component X p and the ω 

′ -
oscillations in X q are, by default, uncorrelated (or independent if dZ (ω) is Gaussian). However, there are situations, in the

non-stationary setting, when the interesting dependence structure is between different frequency oscillations. 

Loéve, in Loève (1955) , introduced the class of harmonizable processes, which now allow for dependence between oscilla- 

tory activities at different oscillations. Here, we shall explore different characterizations of dependence between the random 
17 
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oscillations X p,ω (t) = exp (i 2 πω t) dZ p (ω ) and X q,ω ′ (t) = exp (i 2 πω 

′ t) dZ q (ω 

′ ) . The first natural measure of dependence is the

linear association between these two oscillations, which we call the dual-frequency coherence 

ρ(p,ω) , (q,ω ′ ) = C or 
[
X p,ω (t) , X q,ω ′ (t) 

]
. 

This perspective opens up many possibilities of characterizations of dependence that are beyond that by classical coher- 

ence. We will now further generalize this notion of dual-frequency coherence to the situation where this measure could 

evolve over time. For example, during the course of one trial recording of an electroencephalogram, it is possible for co-

herence between the theta and gamma oscillations to be to be low upon the presentation of a stimulus but could grad-

ually strengthen over the course of a trial. We will summarize the notion of time-dependent dual-frequency coherence in 

Section 4.1 . In addition, note that coherence, partial coherence, and dual-frequency coherence all capture only the linear 

dependence between the various oscillations. Here, we will examine other non-linear measures of dependence, such as the 

phase-amplitude coupling. In Section 4.2 , we will illustrate how the amplitude of a gamma-oscillatory activity in channel p

might be change according to the phase of the alpha-activity in channel q . One such example could be the increase in the

gamma-oscillation amplitude when the theta oscillation reaches its peak. 

4.1. Evolutionary dual-frequency coherence 

The modeling framework for developing the notion of a dual-frequency that evolves over time was first proposed in 

Cristina et al. (2018) via a frequency-discretized harmonizable process which we now describe. Here, we shall focus on the 

practical aspect of modeling and analyzing dual-frequency coherence in the observed brain signals. The technical details 

such as the asymptotic theory required for defining the population-specific quantity are developed in Cristina et al. (2018) .

Suppose that we observe the time series X and focus on a local window centered time point t with N observations. Define

the local Fourier coefficient vector at frequency ω at time point t to be 

d (t, ω) = 

∑ t+ N 2 

s = t−( N 2 −1) 
X (s ) exp (−i 2 πωs ) (17) 

and define the local dual-frequency periodogram matrix at frequencies ω j and ω k to be 

I(t; (ω j , ω k )) = (1 /N) d(t, ω j ) d(t, ω k ) . (18) 

When the data consists of several time-locked trials, one can compute trial-specific local dual-frequency periodogram 

matrices and then average them (across trials) in order to obtain some population-specific measure of the evolutionary 

dual-frequency spectral matrix. In the absence of replicated trials (i.e., the data is only from a single trial), then one can

smooth the local dual-frequency periodogram matrices over time t within that single trial and also over frequencies a two- 

dimensional neighborhood around (ω j , ω) k ) . Denote the averaged dual-frequency periodogram matrix to be ̂  f (t, ω j , ω k ) .

One measure of the strength of linear dependence between the ω j -oscillations at component X p and the ω k -oscillations at

component X q is the time-localized dual-frequency coherence 

̂ ρ(p,ω j ) , (q,ω k ) (t) = 

| ̂  f (p,ω j ) , (q,ω k ) 
(t) | 2 ̂ f (p,ω j ) , (p,ω j ) 

(t) ̂  f (q,ω k , (q,ω k ) 
(t ) 

. (19) 

Consistent with the approach adopted in the paper, linear dependence between the different oscillations will be exam- 

ined also via linear filtering which we now describe. Consider two frequency bands �1 and �2 and the zero-mean filtered 

signals to be X 1 , �1 
and X 2 , �2 

. Under the proposed framework, the time-varying dual-frequency coherence estimate at a local 

time t by first computing the local cross-covariance and local variance estimate over the window { t − L, . . . , t + L } (for some

L > 0 ) as follows ̂ f (1 , �1 ) , (2 , �2 ) (t) = 

1 
N 

∑ t+ N 2 

s = t−( N 2 −1) 
X 1 ,ω 1 (s ) X 2 ,ω 2 (s ) 

̂ f (1 , �1 ) , (1 , �1 ) (t) = 

1 
N 

∑ t+ N 2 

s = t−( N 2 −1) 
X 1 ,ω 1 (s ) X 1 ,ω 1 (s ) 

̂ f (2 , �2 ) , (2 , �2 ) (t) = 

1 
N 

∑ t+ N 2 

s = t−( N 2 −1) 
X 2 ,ω 2 (s ) X 2 ,ω 2 (s ) . 

Consequently, the estimated local dual-frequency coherence at time t is 

̂ ρ(1 , �1 ) , (2 , �2 ) (t) = 

| ̂  f (1 , �1 ) , (2 , �2 ) (t ) | 2 ̂ f (1 , �1 ) , (1 , �1 ) (t ) ̂  f (2 , �2 ) , (2 , �2 
(t ) 

. (20) 

4.2. Phase-Amplitude coupling 

In the previous sections, we first examined coherence and partial coherence - both of which aim to measure the strength

of linear dependence between a pair of channels or components X p and X q through the oscillatory activity at the same fre-

quency. As a generalization, in Section 4 , we examined dependence at different frequencies and how this dependence may 

change over time through the evolutionary dual-frequency coherence. However, all major limitation of these measures is 
18 
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that they aim to capture only linear dependence. In the neuroscience literature, it is acknowledged that cross-frequency 

modulation could also appear as a different category of dependence in the brain networks. Similarly to coherence, this de- 

pendence type implies interactions within the frequency domain: spectral components in �H are modulated by components 

resonating at frequencies in �L . When the modulator �H works at a high frequency, and the modulated signal �L , this type

of dependence is named phase-amplitude coupling (PAC). Baseline PAC networks in the human brain changes since birth 

( Mariscal et al., 2019 ), and specific delta-theta PAC patterns can be altered due to anesthetic effects ( Molaee-Ardekani et al.,

2007 ). 

A common method to quantify PAC in time series was introduced in ( Tort et al., 2010 ) through the modulation index

(MI) for univariate signals. As a clarification, this metric is not the same as the homonym ”modulation index” defined for 

amplitude-modulated systems ( Oppenheim et al., 1997 , p. 591). To estimate MI, let X � be a filtered time series with its

spectrum concentrated only in the interval �. Then, its analytic signal Y � will be defined via the Hilbert transform: 

Y �( t ) = X �( t ) + j 

(
1 

πt 
∗ X �( t ) 

)
, 

where the analytic Y �(t) can be expressed using an exponential form, 

Y �( t ) = A �( t ) exp ( jφ�( t ) ) 

such that the instantaneous phase and amplitude are identified through φ�(t) and A �(t) , respectively. Now obtain Y �L 
(t)

and Y �H 
(t) for a target low-frequency range �L and a high-frequency interval �H (such as delta and gamma, respectively). 

Now, consider the joint signals T = 

(
A �L 

, φ�H 

)
. The original algorithm, described by Tort et al., suggests creating a partition

of the phase domain Q: Q = ∪ 

N 
j=1 

Q j Q j = 

[ 
2 π j−1 

N 2 π j 
N 

)
and estimate the marginal mean value in each partition 

P ( j) = E 

(
T | φ�H 

= φ
)

φ ∈ Q j 

Under the non-modulation hypothesis, P ( j) should resemble a uniform distribution P U ( j) = 1 ∀ j. MI is then introduced as

a normalized measure of the divergence between of the difference between P ( j) and the uniform alternative P U ( j) : MI =
[ log ( N ) ] −1 D KL ( P, U ) where D KL (·) is the Kullback-Leibler divergence: 

D KL ( P, Q ) = 

N ∑ 

k =1 

P ( k ) log 

(
P ( i ) 

Q ( i ) 

)
Note that in cases where no specific frequency band is known, our suggestion is to start by exploring PAC phenomena in

the data using the ”smoothed” signals (low-frequency) and their residuals (high-frequency components). We refer to ( Fried 

et al., 2012; Schettlinger et al., 2009; Fried and George, 2011 ) for a comprehensive description of time-memory efficient 

estimation methods. 

Example 7 (Phase-amplitude coupling) . Define the theta-band and gamma-band latent sources to be Z θ and Z γ , respectively.

Assume that some modulation effects are observed as a result of non-linear mixtures of the latent sources: (
X 1 (t) 
X 2 (t) 

)
= 

(
A 1 ,δ (t) A 1 ,γ (t) 
A 2 ,δ (t) A 2 ,γ (t) 

)(
Z θ (t) 
Z γ (t) 

)
+ ε 

(
t 
)

where ε 
(
t 
)
∼ N 

(
0 , �ε 

)
with a covariance matrix �ε = 0 . 1 I such that I is an identity matrix. Next, we assume that two

phase-amplitude coupling effects are observed with the following properties: 

(i.) X 1 (t) denotes an amplitude-modulation effect where the amplitude of Z θ (t) instantaneously leads to the amplitude’s 

changes in the γ -oscillations. Therefore, the mixture functions are defined as A 1 ,δ ( t ) = Z γ ( t ) + 1 and A 1 ,γ ( t ) = 2 . 

(ii.) X 2 (t) shows a modulation effect where the Z γ (t) component has a low impact on the δ-oscillations: A 2 ,δ ( t ) = 4 and

A 2 ,γ ( t ) = Z θ . 

A simulation of this process along with the modulation indexes for Z δ (t) , Z γ (t) , ε(t) and the observed components X 1 (t)

and X 2 (t) are shown in Fig. 15 . It is visually apparent that P ( j) is closer to P U ( j) in scenarios without modulation effects

( Fig. 15 .A-F). In addition, the modulated process X 2 (t) implies an alteration on the extreme values of the process, and it

could also be modeled using statistical models for extreme values ( Guerrero et al., 2021 ). 

5. Partial directed coherence and spectral causality 

All previously mentioned spectral measures of dependence (namely, coherence, partial coherence, dual-frequency co- 

herence, and evolutionary dual-frequency coherence) focus only on contemporaneous dependence and ignore the lead-lag 

relationships between oscillatory components. This notion of lead-lag is very important in neuroscience, particularly in iden- 

tifying effective connectivity between brain regions or channels. In fact, many pioneering models for brain connectivity were 

applied to functional magnetic resonance imaging data and therefore took into account the spatial structure in the brain data 

( Bowman et al. (2008) ). To address the computational issues for spatial covariance Castruccio et al. (2018) introduced a scal-

able multi-scale approach (local for voxels within a region of interest; global for regions of interest in the entire network). 
19 



H. Ombao and M. Pinto Econometrics and Statistics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; November 26, 2022;22:16 ] 

Fig. 15. Phase-amplitude coupling in Example 7 : phase-amplitude graphs P( j) and modulation indexes (MIs) for the latent sources Z δ (t) , Z γ (t) and the 

observations X 1 (t) and X 2 (t) . Note that MI values in X 1 (t) and X 2 (t) are up to five times greater than MI magnitudes of the latent sources or the noise 

ε(t) . 
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In Kang et al. (2012) , the temporal covariance structure is diagonalized (and hence sparsified) by applying a Fourier trans-

form on the voxel-specific time series while taking into account variation across subjects through a mixed-effects modeling 

framework. In a recent work, Zhao and Luo (2019) developed a method for mediation analysis in fMRI data, and ( Zhang

et al., 2016 ) proposed a variational Bayes algorithm with reduced computational costs. 

There have also been a number of statistical methods for modeling dynamic connectivity in fMRI: dynamic correlation in 

Cribben et al. (2012a) ; switching vector autoregressive (VAR) model in Balqis et al. (2017) , regime-switching factor models

in Ting et al. (2018c) and Shappell et al. (2019) ; Bayesian model of brain networks in ( Zhang et al., 2016; 2015; Mumford

and Ramsey, 2014; Kook et al., 2019; Rembach et al., 2015; Zhang et al., 2015 ); models for high dimensional networks in

Ting et al. (2018b) ; detection of dynamic community structure in ( Bassett et al., 2011 ), Ting et al. (2020) and Ting et al.

(2021a) . In Yu et al. (2016) , a Bayesian VAR model was used to assess stroke-induced changes in the functional connectivity

structure. 

This section will cover approaches to identify lead-lag structures in brain signals using the vector autoregressive (VAR) 

models. Modeling these lead-lag dynamics is crucial to understanding the nature of brain systems, the impact of a shock 

(such as stroke) on the dynamic configuration of such systems, and the downstream effect of such disruption on cognition 

and behavior. However, the emphasis of this section will be developing a statistical framework for investigating frequency- 

band specific lead-lag dynamics. To further elaborate, note that while the classical VAR model characterizes the effect of 

the past observation of the signal X q on a future observation on the signal X p , our emphasis here will be on modeling and

assessing the impact of the previous oscillatory activity X q,ω 1 on the future oscillations X p,ω 2 . 

5.1. Vector autoregressive (VAR) models 

A P -variate time series X is said to be a VAR model of order L (denoted VAR (L ) ) if it is weakly stationary and can

be expressed as (B ) X (t) = W (t) where 
{

W (t) 
}

is white noise with E [ W (t) ] = 0 for all time t and C ov [ W (t) ] = �W 

and

(B ) = I − 1 B − 2 B 
2 − . . . − L B 

L and 
 , 
 = 1 , . . . , L are the P × P VAR coefficient matrices. A comprehensive exposition

of VAR models, including conditions for causality and methods for estimation of the coefficient matrices { 
 } , are provided

in ( Lutkepohl, 2005 ). Note that from classical time series literature, the notion of ”causality” is different from that of Granger

causality. A time series X (t) is causal if it does not depend on future innovations, i.e., it depends only on the current or past

white noise { W (s ) , s = t, t − 1 , t − 2 , . . . } . 
Consider the two components X p and X q . From the point of view of forecasting, we say that “X q Granger-causes X p ” (we

write X q −→ X p ) if the past values of X q helps to improve prediction of the future values of X p , in particular, if the squared

error for the forecast of X p that uses the past values of X q is lower than that for the forecast that does not use the past

values of X q . Under the context of VAR models, note that 

X p (t) = 

L ∑ 


 =1 

pq,
 X q (t − 
 ) + 

∑ 

r � = q 

L ∑ 


 =1 

pr,
 X r (t − 
 ) (21) 

where pq,
 is the (p, q ) element of the matrix 
 . For X p (t) , it is the coefficient associated with the past value X q (t − 
 ) .

Thus, X q −→ X p ) if there exists some lag 
 ∗ where pq,
 ∗ � = 0 . There is a large body of work on causality, starting with

the seminal paper by Granger (1969) . This was further studied in Geweke (1982) , Geweke (1984) , Hosoya (1991) . Additional

applications for subject- and group-level analysis was also analyzed in ( Chiang et al., 2017 ). Recently, under non-stationarity,

the nature of Granger-causality could evolve over time and this was investigated in Liu et al. (2021) . Despite the fact that

the concept of causality is derived from the spectral representation, there has not been a keen focus on the interpretations

for causality based on the actual oscillatory activities. Hence, the goal in this section is to refocus the spotlight on this very

important role of the oscillations in determining causality and, in general, directionality between a pair of signals. 

5.2. Partial directed coherence 

As noted, all previously discussed measures of coherence lack the important information on directionality. The concept of 

partial directed coherence (PDC), introduced in Baccalá and Sameshima (2001) and Baccalá et al. (2013) , gives this additional 

information. Denote the VAR (L ) inverse transfer function as (ω) = I − ∑ P 

 =1 
 exp (−i 2 πω
 ) and denote pq (ω) to be the

(p, q ) element of the inverse transfer function matrix (ω) . Then the PDC, from component X q to X p , at frequency ω, is 

πpq (ω) = 

| pq (ω) | 2 ∑ 

rq | rq (ω) | 2 . 

Note that πpq (ω) lies in [0,1] and measures the amount of information flow, at frequency ω, from component X q to X p ,

relative to the total amount of information flow from X q to all components. When πpq (ω) is close to 1 then most of the ω-

information flow from X q goes directly to component X p . Note that (normalized) total PDC on a close interval � = (ω 0 , ω 1 )

can therefore be obtained by integrating the PDC on the region � : 

�pq ( �) = 

1 

ω 1 − ω 0 

∫ ω 1 

ω 
πpq (ω) dω 
0 
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Table 1 

Comparison of the connectivity metrics between channels and frequency in Example 8 : coherence (COH), partial co- 

herence (PCOH), and partial directed coherence (PDC). PDC was estimated through four different vector autoregressive 

models: VAR(2) and VAR(15) and regularized models: LASSLE(2) and LASSLE(15). 

Band Link COH PCOH PDC: VAR(2) PDC: VAR(15) PDC: LASSLE(2) PDC: LASSLE(15) 

δ X 2 ⇒ X 1 0.9996 0.9749 0.5096 0.5334 0.5097 0.5097 

0-4 X 1 ⇒ X 2 0.0000 0.0070 0.0000 0.0000 

Hertz X 3 ⇒ X 1 0.9959 0.2074 0.0001 0.0438 0.0000 0.0000 

X 1 ⇒ X 3 0.1754 0.6465 0.1878 0.4634 

X 4 ⇒ X 1 0.0257 0.0347 0.0001 0.0440 0.0000 0.0000 

X 1 ⇒ X 4 0.0061 0.3040 0.0115 0.0031 

X 3 ⇒ X 2 0.9961 0.3320 0.5774 0.5786 0.5774 0.5773 

X 2 ⇒ X 3 0.2799 0.4561 0.0900 0.1495 

X 4 ⇒ X 2 0.0259 0.0336 0.5773 0.5789 0.5773 0.5773 

X 2 ⇒ X 4 0.0061 0.4376 0.0041 0.0096 

X 4 ⇒ X 3 0.0239 0.2715 0.4152 0.4152 0.0448 0.3549 

X 3 ⇒ X 4 0.0052 0.6050 0.0000 0.0000 

X 2 ⇒ X 1 0.9857 0.9863 0.3854 0.2901 0.3854 0.3855 

X 1 ⇒ X 2 0.0000 0.0547 0.0000 0.0000 

γ X 3 ⇒ X 1 0.0280 0.0404 0.0001 0.1165 0.0000 0.0000 

30-50 X 1 ⇒ X 3 0.0009 0.3611 0.0009 0.0036 

Hertz X 4 ⇒ X 1 0.9860 0.3938 0.0000 0.1170 0.0000 0.0000 

X 1 ⇒ X 4 0.1233 0.6449 0.0599 0.0882 

X 3 ⇒ X 2 0.0232 0.0394 0.5773 0.5800 0.5774 0.5773 

X 2 ⇒ X 3 0.0012 0.4270 0.0006 0.0023 

X 4 ⇒ X 2 0.9996 0.3967 0.5774 0.5808 0.5773 0.5773 

X 2 ⇒ X 4 0.0212 0.5365 0.0216 0.0323 

X 4 ⇒ X 3 0.0236 0.0179 0.0017 0.5550 0.0003 0.0025 

X 3 ⇒ X 4 0.2119 0.3476 0.0000 0.0000 

 

 

 

 

 

 

 

 

 

 

 

Under this framework, PDC is estimated by fitting a VAR model to the data X (t) , t = 1 , . . . , T } where the optimal order

L can be selected using some objective criterion such as the Akaike information criterion (AIC) or the Bayesian-Schwartz 

information criterion (BIC). 

Example 8 (Connectivity network comparison) . Consider a system with four channels that can be described by the following 

sparse VAR(2) model: ⎛ ⎜ ⎝ 

X 1 (t) 
X 2 (t) 
X 3 (t) 
X 4 (t) 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

φβ, 1 
1 
2 

0 0 

0 0 1 0 

0 0 φδ, 1 0 

0 0 0 φγ , 1 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

X 1 (t − 1) 
X 2 (t − 1) 
X 3 (t − 1) 
X 4 (t − 1) 

⎞ ⎟ ⎠ 

+ 

⎛ ⎜ ⎝ 

φβ, 2 0 0 0 

0 0 0 1 

0 0 φδ, 2 0 

0 0 0 φγ , 2 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

X 1 (t − 2) 
X 2 (t − 2) 
X 3 (t − 2) 
X 4 (t − 2) 

⎞ ⎟ ⎠ 

+ ε ( t ) 

where 
(
φδ, 1 , φδ, 2 

)
, 
(
φγ , 1 , φγ , 2 

)
and 

(
φβ, 1 , φβ, 2 

)
were calculated as described in Eq. 10 with M = 1 . 049787 and ψ δ = 

2 
128 ,

ψ γ = 

40 
128 and ψ β = 

20 
128 , respectively. The noise ε ( t ) ∼ N ( 0 , �) where � is a diagonal matrix. Consequently, X 3 (t) and X 4 (t)

are independent delta and gamma components. 

In this multivariate system, direct and indirect lagged dependence links are denoted: X 3 and X 4 directly lead X 2 : X 4 (t −
2) �⇒ X 2 (t) , X 3 (t − 1) �⇒ X 2 (t) , while both indirectly affect X 1 through X 2 : X 2 (t − 1) �⇒ X 1 (t) . Previously, coherence (COH)

and partial coherence (PCOH) were applied to identify instantaneous direct dependencies. Fig. 16 and Table 1 show the 

connectivity networks that can be estimated using PDC in addition to both dependence metrics along with their magnitudes. 

It is important to note that VAR mismodeling can have a considerable affect on the dependence metrics (as can be

observed in Fig. 16 .F). However, these effects can be mitigated with regularization techniques that will be discussed in 

Section 6.3 . For a comprehensive empirical analysis of the mismodeling phenomena in connectivity, we refer to ( Stephanie,

2017 ). 

5.3. Time-varying PDC 

A natural question to ask, when one suspects non-stationarity in the signals, would be how to characterize and estimate 

PDC when it is changing over time. As noted, during the course of a trial, an experiment or even within an epoch, the brain

functional network is dynamic ( Ting et al. (2021a) ). Thus, one may characterize a time-varying PDC through a time-varying

VAR model 

t (B ) = I − I − t, 1 B − t, 2 B 

2 − . . . − t,L B 

L 

where t,
 is the VAR coefficient matrix for lag 
 at time t . The dimensionality of the parameters for at any time t for

a time-varying VAR (L ) model is P 2 L . Thus, in order to have a sufficient number of observations at any time t , the time-

varying coefficient matrices { t,
 , 
 = 1 , . . . , L } are estimated by fitting a local conditional least squares estimate to a local
22 
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Fig. 16. Connectivity networks for the system in Example 8 . Dependence metrics were obtained from six methods: coherence (COH), partial coherence 

(PCOH), partial directed coherence (PDC) estimated with an OLS-estimated VAR(2) and VAR(15) models, and PDC estimated with a regularized second- and 

fifteenth-order LASSLE models. 
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data at time { t − (
N 
2 − 1 

)
, . . . , N 2 } . In addition to borrowing information from observations within a window (to increase

the number of observations), it is also advisable to apply some regularization which will be discussed in Section 6.3 . After

obtaining estimates { ̂  t,
 } , we compute the estimate of the time-varying transfer function 

̂ (t, ω) , which then leads to a

time-varying PDC estimate 

πpq (t, ω) = 

| pq (t, ω) | 2 ∑ 

rq | rq (t, ω) | 2 . 

PDC has provided the important frequency-specific information of directionality from one component to another - which 

is already beyond what coherence, partial coherence, and dual-frequency coherence can offer. One can compare the PDC 

from X q to X p of the alpha-band vs. the gamma-band since this relative strength is a directed flow of communication that 

can vary across frequency oscillations. 

5.4. Spectral causality 

There are limitations with PDC as a measure of dependence. First, it does not indicate the phase or the physical time lag

between oscillations. While it is useful to know the direction X q �⇒ X p at frequency ω, it would be crucial to identify the

time lag τpq,ω via some relationship such as 

X p,ω (t) = A pq,ω X q,ω (t − τpq,ω ) + εp,ω (t) 

where the coefficient A pq,ω and time lag τpq,ω can vary depending on the channels and also on the frequency (or frequency

bands). Second, the classical PDC captures directionality only for the same frequency (or frequency bands). It only models 

how the past of ω-oscillation in channel X q could impact the future ω-oscillation in channel X p . This is a limitation because,

in practice, it would be more desirable to capture between-frequencies directionality (as in the dual-frequency setting). 

Under our proposed framework for modeling dependency via oscillations, we propose to study 

X p,ω 1 (t) = A pq,ω 1 X q,ω 1 (t − τpq,ω 1 ) + A pq,ω 2 X q,ω 2 (t − τpq,ω 2 ) + εp,ω 1 (t) . 

The third limitation of the classical PDC is that it captures only the linear associations between the oscillations. We overcome

the first and second limitations through the spectral vector autoregressive (Spectral-VAR) model. This current form of the 

model is linear. However, ( Pinto et al., 2021b ), introduce non-linear variants that are based on biophysical models. 

Consider the situation where the goal is to investigate the potential causality from channel X q to the gamma-oscillation 

of channel X p . As used in previous examples, we will denote the delta, theta, alpha, beta, and gamma oscillations of X q 
to be, respectively, X q,δ , X q,θ , X q,α, X q,β and X q,γ The oscillations for channel X p are denoted in a similar manner. The key

distinction here is that these oscillations are obtained from a one-sided filter X q,δ (t) = 

∑ ∞ 

j=0 C δ, j X q (t − j) . Note that the

one-sided feature is needed in order to properly capture these lead-lag relationships. 

Example 9 (Two-sided filter lead-lag distortion) . Let Z δ (t) , Z β (t) and Z γ (t) be three latent oscillatory signals with main

frequencies at 2, 15 and 30 Hertz, respectively. Now assume that two signals are observed: (
X 1 (t) 
X 2 (t) 

)
= 

(
Z δ(t) 

Z δ(t − 10) + Z β (t − 10) + Z γ (t − 10) 

)
+ 

1 

2 

(
ε 1 (t) 
ε 2 (t) 

)
where ε 1 (t) and ε 2 (t) are uncorrelated white noise with unit variance. Assume a one-sided and two-sided FIR(100) filter

and denote their output filtered signals as X (1 −sid ed ) 
k,δ

and X (2 −sid ed ) 
k,δ

for a given channel X k . Even though coherence between

the delta-filtered X 1 (t) and X 2 (t) maintains a reasonable similar magnitude, observe in ( Fig. 17 (C-D) that the lead-lag rela-

tionship is not preserved. 

As noted, under the proposed framework, one can study more complex dependence strucures. In particular, the spectral- 

AR model of order L for predicting the gamma-oscillation of X p is defined to be 

X p,γ (t) = 

L ∑ 


 =1 

{
A (p,γ ) , (p,δ) ,
 X p,δ (t − 
 ) + A (p,γ ) , (q,δ) X q,δ (t − 
 ) 

}
+ . . . 

+ 

L ∑ 


 =1 

{
A (p,γ ) , (p,γ ) ,
 X p,γ (t − 
 ) + A (p,γ ) , (q,γ ) X q,γ ( t − 
 ) + εp,γ ( t) 

}
. 

Under this set-up, we say that there is a Granger-causality relation from the past alpha-oscillatory activity in X q to the future

gamma-oscillation in X p if there exists a time lag 
 ∗ such that A (p,γ ) , (q,α) ,
 ∗ � = 0 . 

As a final remark, the usual VAR model does not address the need for frequency-specific lead-lag (or Granger-causality) 

relationships. Suppose that, from the usual VAR model, we conclude that X q �⇒ X p . This information is helpful but not

sufficiently comprehensive in the sense that it lacks the information on the specific frequency band (or bands) in X q that

Granger-cause the specific band(s) in the X p as well as the precise channel-specific and frequency bands-specific time-lag 

between these oscillations. 
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Fig. 17. Effects of an one-sided and two-sided filter in the lead-lag relationship ( Example 9 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. High-Dimensional Signals 

Most brain signals are high-dimensional in space and time. For example, fMRI data are typically recorded over 10 5 brain

voxels and across hundreds of time points sampled at a speed of one-complete image every 2 seconds (the sampling rate

is 0.50 Hertz). Therefore, fMRI data are highly dense in space, though they have poor temporal resolution. In contrast, EEG 

data are more sparse in space as the number of channels can vary from about 20 to 256, depending on the recording sys-

tem. However, the range of the number of temporal observations can be in the millions (with sampling frequency typically 

ranging from 100 − 10 0 0 Hertz). The goal now is to present two approaches to dealing with high-dimensional signals: (a.)

by creating low-dimensional signal summaries such as principal component analysis; and (b.) by including a penalization in 

estimating parameters in statistical models. 

6.1. Spectral principal components analysis 

It is often the case that different components of a P -variate signal X exhibit some level of multi-collinearity, especially 

for signals recorded at adjacent locations. It is therefore natural to seek a low-dimensional summary that captures the 

main characteristics of these signals. One way is through the classical principal component analysis (PCA) – or linear auto- 

encoder/decoder in machine learning jargon – which is described as follows. 

The auto-encoder algorithm described in ( Rumelhart et al., 1988 ) is a general approach to learning compressed (low- 

dimensional) representations of the input data, which in this particular scenario are high-dimensional brain signals. The 

algorithm consists of two parts: (a.) encoder and (b.) decoder. The encoder function F : X → Y is a mapping from the orig-

inal high-dimensional space X to a lower dimension space Y . Since F effectively summarizes the information in X then it

effectively reduces dimensionality and hence F is also called compression step. The decoder or reconstruction function, de- 

fined as D : F → X is a mapping from the encoded (low-dimensional) space to the original high-dimensional space. Consider

a time series { X (t) , t = 1 , . . . , T } generated by some process p(X ) . The optimal mapping encoder F and decoder D jointly

minimize the expected reconstruction error defined as 

L ( F , D ) = E p(X ) ‖ 

X − D (F (X )) ‖ 

2 
F (22) 

where ‖ ·‖ F is the Frobenius norm, which is defined as ‖ | E ‖ | F = 

√ 

Trace (E E ′ ) . 
Here, we will consider only the special cases where both the encoder and decoder are linear transformations of the orig-

inal signal, which can be either instantaneous mixing or filtering. For these types of functions, the solution is closely related

to principal component analysis (PCA) defined under the Frobenius norm based on the squared error of reconstruction. 

Now consider the first family of encoder-decoders: instantaneous mixture processes of the observed signal { X (t) , t =
1 , . . . , T } . Under this model, the compressed signal is obtained as Y (t) = A 

′ X (t) . Denote the dimension of Y (t) to be Q; the

dimension of X (t) to be P and Q < P . Similarly, the signal is reconstructed by the decoder ̂ X (t) = BY (t) . For identifiability

purposes, A 

′ A = I Q , and C ov Y (t) is diagonal so that the components of the compressed signal X are uncorrelated. The op-
25 
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timal low-dimensional representation maximizes the best reconstruction accuracy (or minimizes the squared error loss) via 

the following steps: 

Step 1. Obtain the eigenvalues-eigenvectors of the covariance matrix of X : �X (0) . Denote e-value and e-vector pair as 

{ (λp , v p ) } P p=1 
where λ1 > . . . , > λP and ‖ v p ‖ = 1 for all p. When �X (0) is not known, we obtain an estimator from

the observed signal { X (t) , t = 1 , . . . , T } . 
tep 2. The solution for the optimal encoder-decoder is derived as ̂ A 

′ = ̂

 B = [ v 1 , . . . , v Q ] and 

̂ Y (t) = ̂

 A X (t) . 

Under the squared reconstruction error loss function, the solution is identical to applying PCA on the input signals using 

the covariance matrix at lag zero. Indeed, the solution accounts for most of the variation of the time series (or gives the

minimum squared reconstruction error), among all instantaneous linear projections with the same dimension. 

When the goal is to obtain summaries from time series data, it is important for the encoded (compressed) and decoded

(expanded) components to capture the entire temporal dynamics (lead-lag structure) of the signal. The previous approach 

is a contemporaneous mixture and thus could miss important dynamics in the data. The second category of linear encoder- 

decoders relies on the idea of applying linear filters on { X (t) } instead of applying a merely instantaneous mixture. In con-

trast to the contemporaneous mixture, this encoder is more flexible and its lower-dimensional representation is written as 

Y (t) = 

∞ ∑ 


 = ∞ 

A 

′ (
 ) X (t − 
 ) (23) 

where A 

′ (
 ) ∈ C 

Q×P with Q < P . The components of the summarized signal, Y p (t) and Y q (t) , have zero coherency. That is,

the components Y p (t) and Y q (s ) are uncorrelated at all time points t and s , and hence also for all lags. The reconstruction

(decoder) function has the following form 

̂ X (t) = 

∞ ∑ 


 = −∞ 

B (
 ) Y (t − 
 ) (24) 

where B (
 ) ∈ C 

P×Q is the transformation coefficient matrix. 

The optimal values of A (
 ) and B (
 ) are chosen to minimize the reconstruction error defined in Eq. 22 . The solution is

obtained via principal components analysis of the spectral matrix f (ω) of the process X – rather than the lag-0 covariance

matrix. Denote the eigenvalues of the spectral matrix at frequency ω to be { λ1 (ω) > λ2 (ω) , . . . , λP (ω) } , and the correspond-

ing eigenvectors to be { v 1 (ω) , v 2 (ω) , . . . , v n (ω) } . Then, the solution is 

A (
 ) = 

∫ 1 / 2 

−1 / 2 

A (ω) exp (i 2 π
ω) dω (25) 

B (
 ) = 

∫ 1 / 2 

−1 / 2 

B (ω) exp (i 2 π
ω) dω (26) 

where B (ω) = A 

∗(ω) and A (ω) = [ v 1 (ω ) , . . . , v Q (ω )] . 

This dimension reduction procedure was originally described in ( Brillinger, 1964 ) and here we shall refer to this as the

“Spectral-PCA” method (SPCA). This method was extended to various nonstationary settings, including Ombao et al. (2005b) , 

where the stochastic representation of a multichannel signal was selected from a library of orthogonal localized Fourier 

waveforms (SLEX). In Ombao and Ringo Ho (2006) , the time-varying spectral PCA was developed under the context of 

the Priestley-Dahlhaus model, which was further refined in Motta and Ombao (2012) for the experimental setting where 

there are replicated multivariate nonstationary signals. In practical data analysis, the interest is on the magnitude of the 

components of the eigenvector (or eigenvectors) with the largest eigenvalues because they represent the loading or weights 

given by the components of the observed signal. We motivate this in the example below. 

Example 10 (Example on spectral PCA) . Suppose that we have latent sources that are oscillations at the delta, alpha, and

gamma bands, denoted by Z δ , Z α and Z γ , respectively. The observed signal X (t) is a mixture of the latent sources ⎛ ⎜ ⎜ ⎝ 

X 1 (t) 
X 2 (t) 
X 3 (t) 
X 4 (t) 
X 5 (t) 

⎞ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎝ 

1 0 1 

0 0 1 

1 0 1 

0 1 0 

1 1 0 

⎞ ⎟ ⎟ ⎠ 

( 

Z δ(t) 
Z α(t) 
Z γ (t) 

) 

+ 

⎛ ⎜ ⎜ ⎝ 

ε1 (t) 
ε2 (t) 
ε3 (t) 
ε4 (t) 
ε5 (t) 

⎞ ⎟ ⎟ ⎠ 

. (27) 

The first two compressed components of the instantaneous mixture (PCA) and the spectral PCA (SPCA) are shown in 

Fig. 18 . Note that all three first PCA principal components capture a mixture of the latent sources, and therefore, contain

the delta, alpha, and gamma oscillations in different proportions. This oscillation mixture is made evident from its loadings 

( Fig. 19 .A) where X 1 , . . . , X 6 . Nevertheless, the first component emphasizes the delta and gamma sources, whereas the second

component highlights the alpha and gamma bands. 
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Fig. 18. Summary signals Y (t) using PCA and SPCA ( Example 10 ). The components in the time and frequency domain are shown for both encoding algo- 

rithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the first SPCA component captures all the main spectral information of the latent oscillations 

( Fig. 18 .D). Due to the properties of SPCA, mean loadings can be evaluated as a function of the frequency, and the con-

tribution of the components can be evaluated for each frequency band (through the loadings in Fig. 19 .B-D). For instance,

consider the encoding processes on the alpha band: the main descriptive components are X 4 and X 5 , but SPCA compensates

the effects of the other signals in such a way that the sum of X 1 and X 2 (delta and gamma) will mitigate the effect of X 3 
(also delta and gamma). 

6.2. Brain connectivity analysis through low-dimensional embedding 

As noted, neuronal populations behave in a coordinated manner both during resting-state and while executing tasks 

such as learning and memory retention. One of the major challenges to modeling connectivity in brain signals is the high

dimensionality. In the case of fMRI data with V = 10 5 voxels, one would need to compute connectivity from in the order

of 10 10 pairs of voxels (or V (V − 1) / 2 pairs). To alleviate this problem, one approach in fMRI is to parcellate the entire

brain volume into distinct regions of interest (ROIs) and hence connectivity is computed between ROIs rather than between 

voxels. This approach effectively reduces the dimensionality since connectivity is computed between broad regions rather 

than at the voxel level. This is also justified by the fact that neighboring voxels tend to behave similarly and thus it would be

redundant to calculate connectivity between all pairs of voxels. Motivated by the ROI-based approach in fMRI, one procedure 

to study connectivity in EEG signals is to first create groups of channels using some anatomical information. Depending on 

the parcellation of the brain cortex, a cortical region could correspond to 15-25 EEG channels ( Wu et al., 2014b ). Within

each group, we compute the signal summaries using spectral principal components analysis. In the second step, we model 

connectivity between groups of channels by computing dependence between the summaries. More precisely, suppose that 

the P -dimensional time series X is segmented into R groups denoted by X r , r = 1 , . . . , R . In each group X r , summaries are

computed, which we denote by Y r . Thus, connectivity between groups r and r ′ will be derived from the summaries Y r and

Y r ′ 
There are many possible methods for computing summaries. When biomedical signals can be modeled as functional 

data, principal components analysis (PCA) extensions have been formulated, as it is shown in ( Kokoszka et al., 2019 ). Under

sampled time series, a naïve solution is to compute the average across all channels within a group. In fact, connectivity

analyses of functional magnetic resonance imaging (fMRI) are usually conducted by taking the time series averaged across 

voxels in pre-defined ROIs (( Fiecas et al., 2013; Gott et al., 2015 )). However, simple averaging is problematic, especially when

some of the signals are out of phase often observed in EEGs due to averaging can lead to signal cancellation. Sato et al.

( Sato et al., 2010 ) already pointed the pitfalls and suggests a data-driven approach via conventional PCA, which essentially
27 
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Fig. 19. Two-dimensional loadings of Example 10 : PCA loadings ( ̂  A ) and mean SPCA loadings ( A (ω) ) in the frequency bands: delta (0-4 Hertz), alpha (8-12 

Hertz), and gamma (30-45 Hertz). 

 

 

 

 

 

provides an instantaneous (or contemporaneous) mixing of time series. Other approaches for modeling brain connectivity 

from high-dimensional brain imaging data include Dynamic Connectivity Regression (DCR) ( Cribben et al., 2012b ), Dynamic 

Conditional Correlation (DCC) ( Lindquist et al., 2014 ), group independent component analysis (ICA) ( Calhoun et al., 2014;

Calhoun and Adalı, 2012 ), and sparse vector autoregressive (VAR) modeling ( Davis et al., 2016 ). Here, we propose to extract

summaries Y r from each group of channels via the spectral PCA method in Eqs. 23 and 24 above. 

6.3. Regularized vector autoregressive models 

Recall that connectivity measures such as coherence, partial coherence and partial directed coherence are based on the 

frequency domain but they can be motivated under the context of parametric models. In fact, PDC was developed within 

the framework of a vector autoregressive (VAR) model. Here, we discuss the challenges of fitting a VAR model when the

number of channels P and the VAR order D are large. In this setting there will be P 2 D number of VAR parameters that have

to be estimated. The goal here is to introduce some regularization in the estimation procedure. 

The classic method for estimating the VAR parameters is via the least squares estimator (or conditional likelihood for 

Gaussian signals), which is generally unbiased. However, the least-squares estimators (LSE) are problematic because of the 

high computational demand and that it does not possess specificity for coefficients whose true values are zero. In many ap-
28 



H. Ombao and M. Pinto Econometrics and Statistics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; November 26, 2022;22:16 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plications, brain networks are high-dimensional structures that are assumed to be sparse but interconnected. To address the 

problem of high dimensional parameter space, a common estimation approach is by penalized regression ( Tibshirani (1996) , 

Fu (1998) , Zhao et al. (2009) , Hesterberg et al. (2008) ), and a specific method is the LASSO (least absolute shrinkage and

selection operator). Compared to the LSE approach, the LASSO has a lower computational cost ( Mairal and Yu (2012) ) and

has higher specificity of zero-coefficients. However, the main limitation of the LASSO (and, in general, most regularization 

methods) is the bias of the non-zero coefficients’ estimators. Thus, it could lead to misleading results when investigating the 

true strength of brain connectivity. By leveraging the strengths of each of the LSE and the LASSO, Hu et al. ( Hu et al., 2019 )

proposes a (hybrid) two-step estimation procedure: the LASSLE method. This approach suggest a two-phase estimation pro- 

cess. In the first stage, the LASSO is applied to identify coefficients whose estimates are set to 0. In the second stage, the

coefficients that survived the thresholding from the first stage are re-estimated via LSE. LASSLE was shown to have inherent 

low-bias for non-zero estimates, high specificity for zero-estimates, and significantly lower mean squared error (MSE) in the 

simulation study. 

An example of the impact of using regularized models in connectivity estimation was visually shown in Fig. 16 E-F (from

Example 8 ). 

7. Modeling dependence in non-stationary brain signals 

Contrary to common intuition, the brain is active and dynamic even during resting period ( Menon and Krishnamurthy, 

2019 ). Brain signals from various modalities, such as magnetoencephalograms, electroencephalograms, local field potentials, 

near-infrared optical signals, and functional magnetic resonance imaging, all show statistical properties that evolve dur- 

ing rest period and also in various task-related settings (memory, somatosensory, audio-visual). Such time-evolving char- 

acteristics are also observed across species: laboratory rats, macaque monkeys, and humans. These changes are seen in 

the variance, auto-correlation, cross-correlation, coherence, partial coherence, partial directed coherence, or graph-network 

properties ( Chiang et al., 2016 ). It is worth noting that in some experimental settings, changes in the cross-channel depen-

dence may be more pronounced than changes within a channel (e.g., auto-spectrum and variance). This phenomenon was 

observed in ( Fiecas and Ombao, 2016 ), where changes in cross-coherence were observed and prominent than changes in the

auto-spectrum in a macaque monkey local field potentials and correlated with the learning task. 

In this section, an overview of the different approaches to analyzing non-stationary signals will be discussed. The first 

class of approaches gives stochastic representations using the Fourier waveforms or some multi-scale orthonormal basis 

such as wavelets, wavelet packets, and the smoothed localized complex exponentials (SLEX). In the second class of methods, 

the signals are segmented into quasi-stationary blocks, and the time-varying spectral properties such as the auto-spectra, 

coherence, and partial coherence are computed within each time block. This class of approaches produces a specific tiling 

of the time-frequency plane. The third class of approaches assumes that the dynamic brain activity fluctuates or switches 

between a finite number of ”states”. Each state is uniquely defined by a vector autoregressive model or a stochastic block

model and thus gives a unique characterization of the brain functional network. This class of models depicts brain responses 

to a stimulus (or background activity during resting state) as switching between these states. 

7.1. Stochastic representations 

Priestley-Dahlhaus model. The major theme in this paper is the characterization of brain signals as mixtures of ran- 

domly oscillating waveforms. So far, the emphasis has been on stochastic representations in terms of the Fourier waveforms. 

As already noted, the Cramér representation of a P -dimensional stationary time series X t 

X (t) = 

∫ 0 . 50 

−0 . 50 

A (ω ) exp (i 2 πω t) dZ (ω ) 

where A (ω) is a P × P the transfer function matrix and { dZ (ω) } is a random increment process with E dZ (ω) = 0 and

C ov [ d Z (ω) , d Z (ω 

′ )] = I δ(ω − ω) where δ is the Dirac-delta function. To illustrate the role of the transfer function, define

A pq (ω) to be the (p, q ) element of A (ω) ; and dZ p (ω) to be the p-th element of the random vector dZ (ω) . The spectral

matrix is f (ω) = A (ω) A ∗ (ω) . The univariate time series at channels p and q can be written as 

X p (t) = 

P ∑ 

r=1 

∫ 0 . 50 

−0 . 50 

A pr (ω ) exp (i 2 πω t) dZ r (ω ) and X q (t) = 

P ∑ 

r=1 

∫ 0 . 50 

−0 . 50 

A qr (ω ) exp (i 2 πω t) dZ r (ω ) . 

They are coherent at frequency ω if there exists some r where A pr (ω) � = 0 and A qr (ω) � = 0 . In this case, A p (ω ) A 

∗
q (ω ) � = 0

(where A r (ω) is the r-th row of the transfer function matrix A (ω) . Under stationarity, spectral cross-dependence between

signals (e.g., coherence) is constant over time. For brain signals, dependence between channels varies across time. A model 

for non-stationary time series is the time-dependent generalization of the Cramér representation which we refer in this 

paper as the Priestly-Dahlhaus model ( Priestley (1965) and Dahlhaus (1997) ). For a time series of length T , the Dahlhaus-

Priestley model uses a time-dependent transfer function which gives a representation 

X (t) = 

∫ 0 . 50 

−0 . 50 

A (t/T , ω) exp (i 2 πω t) dZ (ω ) . 
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where the transfer function A ( t T , ω) is defined on rescaled time t 
T ∈ (0 , 1) and frequency ω ∈ (−0 . 50 , 0 . 50) . Under this

model, the mixture changes over time because the random coefficient vector A ( t T , ω) dZ (ω) also changes with time. The

time-varying spectrum is f (u, ω) = A (u, ω) A ∗ (u, ω) and, consequently, the time-varying coherence between channels p and

q is 

ρpq (u, ω) = 

| f pq (u, ω) | 2 
f pp (u, ω) f qq (u, ω) 

. 

To estimate the time-varying spectrum at a particular rescaled time u ∈ (0 , 1) , local observations around this time point

are used to form local periodograms, which are then smoothed over frequency. Alternatively, one can fit a localized semi- 

parametric estimator as shown in Fiecas et al. (2011) . Note that a change-point detection extension was introduced in

( Górecki et al., 2018 ). 

Locally stationary wavelet process. An alternative to the Priestley-Dahlhaus model is the locally stationary wavelet pro- 

cess (LSW) proposed in Nason et al. (20 0 0) , which uses the wavelets as building blocks. Under the LSW model, a scale- and

time-dependent wavelet spectrum is defined. The original LSW model is univariate and has been extended to the multi- 

variate setting in Park et al. (2014) as follows. A time series X (t) , t = 1 , 2 , . . . , T is a multivariate LSW process if it has the

representation 

X (t) = 

∑ 

j 

∑ 

k 

V j ( 
k 

T 
) ψ j,t−k Z jk 

where { ψ j,t−k } is a set of discrete non-decimated wavelets; V j ( 
k 
T ) is the transfer function matrix which is lower-triangular;

and Z jk are uncorrelated zero mean with covariance matrix equals to the identity matrix. Note that Z jk in the multivariate

LSW is the analog of dZ (ω) in the Fourier-based stochastic representation. The classification procedure for the LSW model 

was developed in Fryzlewicz and Ombao (2009) for univariate time series and in Park et al. (2018) for multivariate time

series. Given training data (signals with known group membership), these methods extract the wavelet scale-shift features 

or projections that separate the different classes of signals. These features are then used to classify a test signal. These

wavelet-based classification methods are demonstrated to be asymptotically consistent, i.e., the probability of misclassifica- 

tion decreases to zero as the length of the test signal increases. The SLEX model. There are other time-localized bases that

are also well-suited for representing non-stationary time series. In particular, the SLEX (smooth localized complex exponen- 

tials) waveforms are ideal for a comprehensive analysis that is a time-dependent generalization of Fourier-based methods. 

The SLEX waveforms are time-localized versions of the Fourier waveforms and they are constructed by applying a projec- 

tion operator ( Ombao et al. (2005a) ). The starting point is to build the SLEX library which is a collection of many bases.

These bases consist of functions defined on a dyadic support on rescaled time. In Fig. 20 , see the plot of a specific SLEX

waveform with support on the second quarter of the rescaled time and with approximately 2 complete cycles within that 

block. In this example, a tree is grown to level J = 2 (i.e., the finest blocks have support with width 

1 
2 2 

). There are 5 bases

in this library and each basis corresponds to a specific dyadic segmentation of [0,1]. One particular basis is represented by

the magenta-colored blocks which are denoted by B (2 , 0) , B (2 , 1) , B (1 , 1) . This basis also corresponds to the specific seg-

mentation [0 , 1 4 ) ∪ [ 1 4 , 
1 
2 ) ∪ [ 1 2 , 1] . Define B to be a set of indices ( j, b) that make up one particular basis. In this particular

example, B = { (2 , 0) , (2 , 1) , (1 , 1) } . Denote an SLEX waveform with support on block B ( j, b) oscillating at frequency ω is

denoted as � j,b,ω (t) . Then the SLEX model corresponding to this particular basis B is 

X (t) = 

∑ 

( j,b) ∈B 

∫ 0 . 50 

−0 . 50 

� j,b (ω) ψ j,b,ω (t) dZ j,b (ω) (28) 

where � j,b (ω) is the SLEX transfer function defined on time block B ( j, b) and { dZ j,b (ω) } is an increment random process

that is orthonormal across time blocks ( j, b) and frequencies ω. For a given SLEX basis, the time-dependent SLEX spectral

matrix is 

f s (t/T , ω) = � j,b (ω)�∗
j,b (ω) 

for t in the time block B ( j, b) . Thus, the SLEX auto-spectra and the SLEX-coherence are defined in a similar way as the

classical Fourier approach. 

The main advantage of the SLEX methods for analyzing non-stationary signals is the flexibility offered by the library of 

bases – which is a collection of many possible bases. Depending on the particular problem of interest, a ”best” basis can 

be selected from this collection of bases using the Coifman and Wickerhauser best basis algorithm. Each basis in the SLEX

library gives rise to a unique segmentation and hence a unique SLEX model (or SLEX representation of the signal). To select

the best basis for signal representation, Ombao et al. (2001a) , developed penalized Kullback-Leibler criterion. This criterion 

jointly minimizes: (i.) the error of discrepancy between the empirical time-varying SLEX spectrum and the candidate true 

SLEX spectrum, and (ii.) the complexity in the SLEX model measured by the number of blocks for each candidate basis. For

the problem of modeling high dimensional time series, ( Ombao et al., 2005a ) developed a procedure for model selection

and dimension reduction through the SLEX principal components analysis. In some applications, the goal is to discriminate 

between classes of signals and to classify the test signal. Under the SLEX framework, there is a rich set of time-frequency

features derived from the many potential bases. The SLEX method for discrimination selects the basis that gives the maximal 
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Fig. 20. Top: SLEX waveform (real and imaginary parts) with local support at dyadic block B (2 , 1) . Bottom: SLEX library with level J = 2 . The SLEX library 

consists of a finite number of bases and each basis gives a dyadic segmentation of the time axis. The set of magenta-colored blocks represent one particular 

basis with time blocks B (2 , 0) B (2 , 1) , B (1 , 1) which corresponds to the segmentation on rescaled time: 
[
0 , 1 

4 

)
∪ bigl[ 1 

4 
, 1 

2 

)
∪ 

[
1 
2 
, 1 

]
. 

 

 

 

 

 

 

 

 

 

 

discrepancy between classes of signals (e.g., signals from healthy controls vs. disease groups). A classification procedure for 

univariate signals was proposed in ( Huang et al., 2004 ) and for multivariate signals in Böhm et al. (2010) . The SLEX method

for classification is also demonstrated to be consistent, i.e., the probability of misclassification converges to zero as the 

length of the test signal increases. 

7.2. Methods for change-points analysis 

One broad class of methods for analyzing non-stationary signals identifies the change-points and consequently segments 

the signals into quasi-stationary time blocks. There are many change-points methods and the most relevant to brain signal 

analysis are discussed here. 

One line of segmentation methods is based on dyadic segmentation. In Adak (1998) , a procedure for dyadic segmentation

of a non-stationary univariate signal is proposed. A signal is split dyadically up to some specified level J so that at each

level j there are exactly 2 j . Each block at level j (mother block) is split into two blocks (children blocks). Starting from

the deepest level of the tree, the spectra at the adjoining children blocks are estimated and then compared. When they are

similar (based on some discrepancy metric), then these children blocks are combined to form one mother block. Otherwise, 

they are kept as distinct blocks. A large discrepancy between the spectral estimates suggest that there is a change-point. 

The Adak method also imposes a penalty for complexity in order to prevent a stationary block from unnecessarily splitting 

into two. The SLEX methods in ( Ombao et al., 2005a ) and Ombao et al. (2001a) can also be viewed as dyadic segmentation

methods even though the segmentation is merely a by-product of the best model (or best SLEX basis) selected from the

penalized Kullback-Leibler criterion. Another method based on a similar dyadic division is presented in ( Pinto-Orellana and 

Hammer, 2020b ) and ( Pinto et al., 2021a ): the dyadic aggregated autoregressive model (DASAR). In this representation, where

each dyadic block at level j is modeled using an aggregated autoregressive model (with degrees of freedom in the number of

maximum components and the maximum order of each autoregressive component). Rules for its tree expansion are similar 

to SLEX. By construction, DASAR blocks represents one resonating component through two parameters: central frequency 

and bandwidth (exponential of the negative root modulus M in Eq. 10 ). This compact representation shows notable relevance 

for classification purposes ( Pinto-Orellana and Hammer, 2020b ) and frequency tracking ( Pinto et al., 2021a ). 

For completeness, we also enumerate the other interesting change-point methods that have been either applied to brain 

signals or are potentially useful in analyzing brain signals: binary segmentation for transformed autoregressive conditionally 

heteroscedastic models in Fryzlewicz and Subba-Rao (2014) ; group lasso in Chan et al. (2014) ; score-type test statistics for
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Fig. 21. Spectral estimation of a linearly frequency evolving signal using four representation methods: short-time Fourier transform, wavelet transform, 

SLEX and DASAR. 

 

 

 

 

 

VAR-based models in Kirch et al. (2015) ; test of non-stationarity based on the discrete Fourier transform in Subba-Rao and

Jentsch (2015) ; and the frequency-specific change-point detection (FreSpeD) Schröder and Ombao (2019) . 

Example 11 (Non-stationary signal with linearly frequency evolution) . Consider a non-stationary time series X(t) that has a 

continuously-evolving frequency, for example, a chirp signal, with a frequency starting at ω 0 and increasing with increment 

�ω Hertz each second 

C(t) = 2 sin 

(
2 π

(
ω 0 + �ωt 

)
t 
)
+ ε(t) 

where ε(t) ∼ N (0 , 1) . 

These types of signals have been observed in seismic events ( Flandrin, 2018 , p.10-11), and also during epileptic episodes

as Schiff et al. observed ( Schiff et al., 20 0 0 ). Fig. 21 shows the spectral estimations obtained through short-time Fourier

transform, wavelet transform, SLEX and DASAR. Note that the four of them were capable of detecting the time-evolving 

resonator. 

Example 12 (Time-frequency EEG representation) . Recall the ADHD-EEG dataset described in Section 2 . In Fig. 22 , we show

the time-varying spectral response of the signals at left and right frontal channels (F3 and F4) in the frequency interval

10–30 Hertz (beta band). Note that the power at the 10-Hertz and 20-Hertz components are changing over time: 20-Hertz 

oscillations appear stronger at 8-12 seconds and 16-21 seconds with higher magnitudes in the left hemisphere of the brain. 

7.3. Switching processes and community detection 

Another class of models characterizes changes in brain connectivity networks via a Markov-switching between distinct 

brain states. Many approaches that use the sliding window or fit some time-varying coefficient models are usually incapable 
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Fig. 22. Time-frequence representation of 32-second EEG recordings from channels on the frontal left (F3) and right (F4) hemisphere using short-time 

Fourier transform, wavelet transform, SLEX and DASAR. 

 

 

 

of capturing abrupt changes. To deal wit high dimensionality of brain signals, a Markov-switching dynamic factor model 

was proposed in ( Ting et al., 2018a ). This model captures dynamic connectivity states multivariate brain signals driven by

lower-dimensional latent factors. A regime-switching vector autoregressive (SVAR) factor process was used to measure the 

dynamic directed connectivity. There is also an emerging line of models for brain connectivity that are based on stochas- 

tic block models. Indeed there is accumulating evidence that suggests that functional connectivity patterns are dynamically 

evolving over multiple time scales during rest and while performing a cognitive task. However, functional connectivity tends 

to be temporally clustered into a finite number of connectivity states. These are distinct connectivity patterns that recur over 

the course of the experiment. Recent work in ( Ting et al., 2021a ) characterizes dynamic functional connectivity - specifically

the state-driven changes in community organization of brain networks. A key contribution is that the approach takes into 

account variation across individuals. Many key innovations are being developed in this line of modeling, and they are an- 

ticipated to set the trend given the ability of these methods to handle high dimensionality datasets while providing results 

that are easily interpretable. 

7.4. Time-varying dependence between filtered signals 

Previously described methods for analyzing frequency-specific dependence between channels X p (t) and X q (t) can be 

extended to the non-stationary setting where this dependence can evolve over time. Recall that X p,ω (t) and X q,ω (t) are

the ω-oscillations derived from the two channels. Thus, the time-varying correlation between these oscillations is defined 

to be 

ρpq,ω (t ∗) = C or ( X p,ω (t ∗) , X q,ω (t ∗) ) . 
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The natural approach for estimating ρpq,ω (t ∗) is to form a sliding window and then compute the local correlation within

each window. This approach is motivated by a time-dependent generalization of the mixture model in Eqs. 2, 3 and 3.4 , ⎛ ⎜ ⎝ 

X 1 (t) 
X 2 (t) 
. . . 

X P (t) 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

A 11 (t) A 12 (t) . . . A 1 K (t) 
A 21 (t) A 22 (t) . . . A 2 K (t) 

. . . 

A P1 (t) A P2 (t) . . . A PK (t) 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

Z 1 (t) 
Z 2 (t) 
. . . 

Z K (t) 

⎞ ⎟ ⎠ 

. (29) 

The above model specifies the mixture matrix to have components A pq (t) that change with time. The time-varying mix- 

ture model in Eq. 7.4 can be further generalized by allowing for temporal delay A pq (t) B d pq , which will be captured by the

backshift operator B d pq . 

8. R package ECOSTASpecDepRef and data reproducibility 

An R package (ECOSTASpecDepRef) was developed to provide a reference implementation for the algorithms discussed in 

the current paper, as well as the procedures for replicating the results shown in Examples 1 –10 . The source code is available

at the repository https://github.com/biostatistics-kaust/ecosta- spectral- dependence . 

9. Conclusion 

This paper presents a general framework to modeling dependence in multivariate signals through the oscillatory activi- 

ties extracted from each channel. Under this framework, classical notions of dependence can be derived: coherence, partial 

coherence, and dual-frequency coherence. This framework opens up the possibility of exploring more complex measures of 

dependence. The unifying theme is to explore the strength of dependence and possible lead-lag dynamics through filtering. 

The proposed framework is sufficiently comprehensive given its capability to model and study both linear and non-linear 

dependence in both contemporaneous and lagged configurations. 

There are numerous open problems in analyzing time series from designed experiments, with the spectral dependence 

approach, that were not addressed in this paper due to space constraints. Among them, we mention the following possible 

experimental scenarios: (i.) There could be well-defined labeled groups, with their own dependence characteristics, accord- 

ing to disease (controls vs. ADHD), stimulus types (reading vs. math), cognitive load (easy vs. difficult). (ii.) There could be

several participants within each group, and consequently, the models should account for the cross-subject variation of the 

brain’s functional response within groups. (iii.) There could be repeated expositions (or trials) to the same stimulus, and the 

model should be able to extract the common information across responses while simultaneously modeling trial-wise vari- 

ations of brain response. (iv.) There could be different temporal scales in the experiment, and the model should take into

account transient responses (i.e., within a trial or epoch), long-term responses (across the trials in an experiment) while 

considering the developmental changes in the human brain on longitudinal scales. 

Statistical models should also allow for assessing differences in the fixed effects (e.g., control vs. disease) while also 

accounting for between-subject variation. A candidate approach can be performed via mixed-effects models, such as the 

framework proposed in Gorrostieta et al. (2012) and ( Chiang et al., 2017 ), or fully Bayesian approaches, as the methods

proposed in Yu et al. (2016) and ( Warnick et al., 2018 ). In addition to the need for formal statistical models, there is also

a need to develop new approaches for studying possible non-linear dependence through high-dimensional models. These 

methods should leverage advances in dimensionality reduction, statistical/machine learning, and optimization in order to 

examine these complex dependence structures from high-dimensional models. There are also open problems on inference. 

Some of the inference on these dependence measures may be explicitly addressed under the context of mixed effects models 

or Bayesian hierarchical models. Some of these might be more suited under resampling-based procedures which will be 

developed in our future work. 
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