
Investigation of performance metrics in
regression analysis and machine
learning-based prediction models

Vagelis Plevris Plevris¹, German Solorzano Solorzano², Nikolaos Bakas
Bakas³, Mohamed El Amine Ben Seghier Seghier⁴

¹ Qatar University
² Oslo Metropolitan University
³ RDC Informatics
⁴ Ton Duc Thang University

INFORMATION

Keywords:
Error metric
Performance metric
Evaluation
Regression model
Machine learning
Neural network
Prediction model.

DOI: 10.23967/eccomas.2022.155

Published: 25/11/2022



The 8th European Congress on Computational Methods in Applied Sciences and Engineering 

ECCOMAS Congress 2022 
5 – 9 June 2022, Oslo, Norway 

 

 
 

INVESTIGATION OF PERFORMANCE METRICS IN REGRESSION 

ANALYSIS AND MACHINE LEARNING-BASED 

PREDICTION MODELS 

VAGELIS PLEVRIS1, GERMAN SOLORZANO2,  

NIKOLAOS P. BAKAS3 AND MOHAMED EL AMINE BEN SEGHIER4 

1 Department of Civil and Architectural Engineering, Qatar University 

P.O. Box: 2713, Doha, Qatar 

e-mail: vplevris@qu.edu.qa 

2 Department of Civil Engineering and Energy Technology, OsloMet–Oslo Metropolitan University 

Pilestredet 35, Oslo 0166, Norway 

e-mail: germanso@oslomet.no 

3 Research and Development Department, RDC Informatics 

Athens, Greece 

e-mail: n.bakas@rdc.gr  

4 Faculty of Civil Engineering, Ton Duc Thang University 

Ho Chi Minh City, Vietnam 

e-mail: benseghier@tdtu.edu.vn  

 

 

Key words: Error metric, Performance metric, Evaluation, Regression model, Machine 

learning, Neural network, Prediction model. 

 

Abstract. Performance metrics (Evaluation metrics or error metrics) are crucial components of 

regression analysis and machine learning-based prediction models. A performance metric can 

be defined as a logical and mathematical construct designed to measure how close the predicted 

outcome is to the actual result. A variety of performance metrics have been described and 

proposed in the literature. Knowledge about the metrics’ properties needs to be systematized to 
simplify their design and use. In this work, we examine various regression related metrics (14 

in total) for continuous variables, including the most widely used ones, such as the (root) mean 

squared error, the mean absolute error, the Pearson correlation coefficient, and the coefficient 

of determination, among many others. We provide their mathematical formulations, as well as 

a discussion on their use, their characteristics, advantages, disadvantages, and limitations, 

through theoretical analysis and a detailed numerical example. The 10 unitless metrics are 

further investigated through a numerical analysis with Monte Carlo Simulation based on (i) 

random guessing and (ii) the addition of random noise with various noise ratios to the predicted 

values. Some of the metrics show a poor or inconsistent performance, while others exhibit good 

performance as evaluation measures of the “goodness of fit”. We highlight the importance of 
the usage of the right metrics to obtain good predictions in machine learning and regression 

models in general. 
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1 INTRODUCTION 

Regression analysis [1] is a statistical predictive modelling technique, which investigates the 

relationship between a dependent (target) and independent variable(s) (predictor). This 

technique is used for forecasting, time series modelling and finding the causal effect 

relationship between variables. Regression analysis is an important tool for modelling and 

analyzing data. There are many types or regression analysis. In Linear Regression, the nature 

of regression line is linear, and the analysis yields a predicted value for the target resulting from 

a linear combination of the predictors. Other types or regression is Logistic regression, where 

the dependent variable is binary, Polynomial Regression, where the power of independent 

variable is more than one, Stepwise Regression, Ridge Regression, Lasso Regression, 

ElasticNet Regression and others. 

Machine learning (ML) is a type of artificial intelligence (AI) technique that allows software 

applications to become more accurate at predicting outcomes without being explicitly 

programmed to do so. ML algorithms use historical data as inputs to predict new output values. 

A ML model aims at making sure that every time a sample is presented to it, the predicted 

outcome corresponds to the true outcome. Classical machine learning is often categorized by 

how an algorithm learns to become more accurate in its predictions. There are four basic 

approaches: (i) supervised learning, (ii) unsupervised learning, (iii) semi-supervised learning, 

and (iv) reinforcement learning. The type of algorithm data scientists choose to use depends on 

what type of data they want to predict. Supervised ML requires the data scientist to train the 

algorithm with both labeled inputs and desired outputs. Supervised learning algorithms are good 

for the following tasks: (i) Binary classification, (ii) Multi-class classification, (iii) Regression 

modeling, and (iv) Ensembling.  

In the present study we focus on Regression modeling, i.e. predicting values of continuous 

variables. Predictive analytics combines techniques like predictive modeling with machine 

learning to analyze past data to predict future trends. ML methods for regression include 

Decision Tree Regression, Random Forests [2], Support Vector regression Machines [3], 

Neural Network Regression, and others. An artificial neural network (ANN) is a ML predictive 

model designed to work the way a human brain does. ANNs may be used for solving problems 

the human brain is very good at, such as recognizing sounds, pictures, or text, among others. 

Neural networks have a multilayer structure: neurons in one layer transmit data to several 

neurons on the next one, and so on. Linear regression models use only input and output nodes 

to make predictions. The ANN also uses the hidden layer to make predictions more accurate. 

ANN models have been applied in many problems in economics, engineering and other 

scientific fields. Particularly in structural engineering [4, 5], they have been successfully used 

for modeling masonry failure [6-12], predicting the properties of FRP-Confined Concrete 

Cylinders [13], predicting the compressive strength of concrete containing recycled aggregate 

[14, 15], modeling the corrosion rate in cables of suspension bridges [16], predicting the 

compressive strength of CRM samples [17], predicting the bond stress of corroded steel 

reinforcing bars in concrete members [18], designing reinforced concrete footings [19], 

predicting the periods of buildings [20], predicting the capacity of concrete walls [21], 

determining the nominal shear capacity of steel fiber reinforced concrete beams [22], 

optimizing large-scale 3d trusses [23], among other interesting and innovative applications. 
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In ML regression models, performance metrics are used to compare the trained model 

predictions with the actual (observed) data from the testing data set [24]. Forecasting has a long 

history of using such performance metrics to measure the deviation of forecasts from the 

observations and assess the quality of the forecasting method used [25]. In general, the higher 

the difference between the real outcome ‘r’ and the predicted outcome ‘p’, the more “off” the 
model is from being an accurate representation of the phenomenon. On the other hand, the 

closer the values, the better the performance of the system. Performance metrics for regression 

(regression-related metrics, or regression error metrics) usually involve calculating an error 

score to summarize the predictive skill of a model. The most widely used performance metrics 

for evaluating and reporting the performance of a regression model are the (root) mean squared 

error, the mean absolute error, the Pearson correlation coefficient, and the coefficient of 

determination. Other than these well-known metrics, many other exist and are being used in 

several application areas. 

It should be highlighted that performance metrics are different from loss functions. Loss 

functions show a measure of model performance, they are used to train a machine learning 

model (using some kind of optimization like Gradient Descent), and they are usually 

differentiable in the model’s parameters. Model performance metrics on the other hand, are 
used to monitor and measure the performance of a model usually after training, and don’t need 
to be differentiable. They help us evaluate the model’s accuracy and measure the performance 

of a trained model. By using different metrics for performance evaluation, one can improve the 

overall predictive power of the model. In terms of machine learning performance, it is key to 

define that when we talk about errors, we specifically refer to the difference between the actual 

target value and the predicted value. 

Botchkarev [26] analyzed various performance metrics and approaches to their classification 

and developed a new typology in an effort to advance knowledge of metrics and facilitate their 

use in machine learning regression algorithms. He proposed the classification of metrics in four 

main categories: primary metrics, extended metrics, composite metrics, and hybrid sets of 

metrics. The paper identified three key components that determine the structure and properties 

of primary metrics: method of determining point distance, method of normalization, and 

method of aggregation of point distances over a data set. In another work [27], Botchkarev 

evaluated the performance of regression machine learning models using multiple error metrics 

in Azure Machine Learning Studio. 

The objective of this paper is to review a variety of existing performance metrics and test them 

using numerical examples, in order to help improve our knowledge and understanding of the 

metrics and facilitate their use in machine learning regression, forecasting and prognostics. The 

rest of this paper is organized as follows: In section 2, the prediction error metrics and some 

relevant statistics are introduced. In section 3 a simple numerical example is presented, and the 

relevant metrics and statistics are calculated. Section 4 includes a numerical investigation of 

the various error metrics, with different scenarios simulated with Monte Carlo simulation, 

followed by section 5 where the conclusions are discussed. 
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2 PREDICTION ERROR METRICS AND RELEVANT STATISTICS 

2.1 Statistics and error metrics 

Predictions obtained by a regression model, i.e. a Neural Network or a similar prediction model 

are usually not completely accurate and need not be completely accurate, to avoid the problem 

of overfitting [28]. Normally, each prediction contains an error which has to be quantified in 

order for one to be able to compare the results obtained from different models and assess the 

performance of each model. Various metrics measuring the prediction error can be used for this 

purpose. Let p (N×1 vector) be the predicted values and r (N×1 vector) be the real values of a 

quantity calculated (or measured) and then predicted a number N of times. For example, we ask 

a ANN to predict some values, N times. N can be the number of input and output data in the 

whole data set, or in a subset of it such as the training or testing subset, or we can even use 

completely new data to make an unbiased independent assessment. 

In the next paragraphs we define and discuss several metrics that can be used for the calculation 

of the prediction error of such a model. In this paper, we study the case of continuous variables. 

In the case of categorical ones, other metrics are used, such as the confusion matrix, accuracy, 

recall, precision, false positive rate, etc. Note that the formulas given below work for 

observations which have all positive values, i.e. there are no negative values or zero values in 

the observations or their predictions. In case of negative values or zero values being part of the 

data, some formulas may need to be properly adjusted. 

The Bias Error e = ei∈[i], with [i]={1, 2, …, N}, can be expressed as the difference between the 

predicted values and the real (target) values, it can take positive, negative or zero values for 

each observation, and is stated as 

 i i ie p r= −  (1) 

The Mean Bias (MB) is the average of the bias errors. It can also take both positive, negative 

or zero values and it is given by 

 ( )
1 1

1 1N N

i i i

i i

MB e e p r p r
N N= =

= = = − = −   (2) 

Where p  and r are the mean values of p and r, respectively: 

 
1

1 N

i

i

p p
N =

=   (3) 

 
1

1 N

i

i

r r
N =

=   (4) 

Although for a perfect match between real and predicted values (i.e. having identical values), 

MB equals zero (a necessary condition), the condition MB=0 is not also a sufficient condition, 

as positive and negative errors can cancel each other out causing MB=0 in cases where the 

match is far from perfect. 

 



Vagelis Plevris, German Solorzano, Nikolaos P. Bakas and Mohamed El Amine Ben Seghier 

 5 

The Mean Absolute Gross Error (MAGE) measures the average magnitude of the errors in a 

set of predictions, without considering their direction. It is the average over the test sample of 

the absolute differences between prediction and actual observation where all individual 

differences have equal weight. It takes positive or zero values and it is given by 

 
1 1

1 1N N

i i i

i i

MAGE e p r
N N= =

= = −   (5) 

The Mean Squared Error (MSE) is a popular regression-related metric having to do with the 

average squared error between the predicted and actual values. It takes positive or zero values 

and is given by 

 ( )2

1

1 N

i i

i

MSE = p r
N =

−  (6) 

One major disadvantage of MSE is that it is not robust to outliers. In case a sample has an 

associated error way larger than the one of other samples, the square of the error will be even 

larger. This, paired to the fact that MSE calculates the average of errors, makes MSE prone to 

outliers. 

The Root Mean Squared Error (RMSE) is also a frequently used measure of the differences 

between values (sample or population values) predicted by a model, or an estimator and the 

values observed. It is the square root of MSE. Unlike MSE, RMSE provides an error measure in 

the same unit as the target variable. It takes values in the range [0, +∞) and it is given by 

 ( )2

1

1 N

i i

i

RMSE = MSE p r
N =

= −  (7) 

The Centered Mean Square Difference (CMSD) is given by 

 ( ) ( ) 2

1

1 N

i i

i

CMSD p p r r
N =

= − − −    (8) 

The Centered Root Mean Square Difference (CRMSD) is the square root of CMSD, expressed 

in the same unit as the target variable, and given by 

 ( ) ( ) 2

1

1 N

i i

i

CRMSD CMSD p p r r
N =

= = − − −    (9) 

The CRMSD metric is used in a Taylor diagram [29] to express the prediction error of a model, 

as will be discussed in detail in section 2.3. 

The Mean Normalized Bias (MNB, unitless), usually expressed as a percentage, is the average 

value of the normalized bias error values, given by 

 
1 1

1 1
1

N N
i i i

i ii i

p r p
MNB

N r N r= =

 −
= = − 

 
   (10) 
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The Mean Normalized Gross Error (MNGE, unitless) is usually expressed as a percentage, 

and it is also known as “Mean Absolute Percentage Error”. By expressing the error as a 
percentage, one can have a better understanding of how off the predictions are in relative terms. 

It is given by 

 
1

1 N
i i

i i

p r
MNGE

N r=

−
=   (11) 

However, MNGE is highly sensitive in cases where some real values ri are very close to zero. 

In these cases, high values of MNGE can occur even if the corresponding prediction pi is not 

very different to the real value ri. 

The Normalized Mean Bias (NMB, unitless), usually expressed as a percentage, is given by 

 

( )
1

1

1

N

i i

i

N

i

i

p r
p

NMB
r

r

=

=

−
= = −



 (12) 

The Normalized Mean Error (NME, unitless) is given by 

 1

1

N

i i

i

N

i

i

p r
MAGE

NME
r

r

=

=

−
= =



 (13) 

The Fractional Bias (FB, unitless) is given by 

 
1 1

2 2N N
i i i

i ii i i i

p r e
FB

N p r N p r= =

−
= =

+ +   (14) 

The Fractional Gross Error (FGE, unitless) is given by 

 
1

2 N
i i

i i i

p r
FGE

N p r=

−
=

+  (15) 

The Theil’s UI (UI, unitless) [30] takes values between 0 and 1 and is given by 

 

( )2

1

2 2

1 1

1

1 1

N

i i

i

N N

i i

i i

p r
N

UI

r p
N N

=

= =

−
=

+



 
 (16) 

The Index of agreement (IOA, unitless) takes values between 0 and 1, and is given by 
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( )

( ) ( )

2

1

2 2

1 1

1 1

N

i i

i

N N

i i i i

i i

p r
N MSE

IA

p r r r p r r r

=

= =

−


= − = −
− + − − + −



 
 (17) 

The Pearson correlation coefficient (R) [31, 32] is a unitless measure of linear correlation 

between two sets of data, commonly used in linear regression. In our case the two sets of data 

are the predicted values p and their real (or accurate) values r. R is the covariance of the two 

variables, divided by the product of their standard deviations. Thus, it is essentially a 

normalized measurement of the covariance, such that the result always has a value between -1 

and 1. An R value close to 1 indicates a strong positive relationship, while a value close to -1 

indicates a strong negative relationship. Values near zero indicate no correlation. R is given by 

 
( , )

( ) ( )

Cov r p
R

Std r Std p
=


 (18) 

where Std(r) and Std(p) are the standard deviations of the variables r and p, respectively, and 

Cov(r,p) is their covariance. The standard deviation is the square root of the variance, for each 

variable. According to statistics, in case we examine the whole population (not only a sample 

of it), the observed variances and the observed covariance are given by the formulas 

 ( ) ( )2 22

1

1
( ) ( )

N

P P r i

i

Var r Std r r r
N


=

= = = −  (19) 

 ( ) ( )2 22

1

1
( ) ( )

N

P P p i

i

Var p Std p p p
N


=

= = = −  (20) 

 ( )( )
1

1
( , ) ( , )

N

P P i i

i

Cov r p Cov p r p p r r
N =

= = − −  (21) 

It can be statistically proven that in case a sample of the population is only examined (not the 

entire population), it is more precise to use (N-1) in the denominator of the above three 

formulas, to get an unbiased estimation of the variance and the covariance of the population. In 

this case, the estimated variances and the estimated covariance are given by 

 ( )22

1

1
( )

1

N

S r i

i

Var r s r r
N =

= = −
−   (22) 

 ( ) ( )2 22

1

1
( ) ( )

1

N

S S y i

i

Var p Std r s p p
N =

= = = −
−   (23) 

 ( ) ( )( )2

1

1
( , ) ( )

1

N

S S i i

i

Cov r p Std r p p r r
N =

= = − −
−   (24) 

In Eq. (18) of R, it does not matter if the population formulas (observed covariance and observed 

standard deviations) or the sample formulas (estimated covariance and estimated standard 

deviations) are used, but the three must match. The reason that we can use either version of 

these values is because the Ns or (N-1)s will “cancel” as they appear the same number of times 



Vagelis Plevris, German Solorzano, Nikolaos P. Bakas and Mohamed El Amine Ben Seghier 

 8 

in the numerator as in the denominator. Thus, the value of R does not depend on N (or N-1). 

Another property of the correlation coefficient is that it has no units. The correlation coefficient 

is a unitless measure with fixed extremes. It should also be noted that there is a special 

relationship between the quantities R, σr, σp and CRMSD, which is the basis for the construction 

of a Taylor diagram, as will be discussed in section 2.3. 

The Pearson correlation coefficient R between the two variables is also given by the formulas 

 

( )( )

( ) ( )
1

2 2

1 1

N

i i

i

N N

i i

i i

p p r r

R

p p r r

=

= =

− −
=

−  −



 
 (25) 

 1 1 1

2 2

2 2

1 1 1 1

N N N

i i i i

i i i

N N N N

i i i i

i i i i

N x p r p

R

N r r N p p

= = =

= = = =

− 
=

   −  −   
   

  

   
 (26) 

Observing Eq. (25), one can see some similarities with the formula of the angle θ between two 

vectors u and v, based on the dot product of the two vectors: 

 cos 
=
u v

u v
 (27) 

In fact, for centered data (i.e., data which have been shifted by the sample means of their 

respective variables so as to have an average of zero for each variable), the correlation 

coefficient can also be viewed as the cosine of the angle θ between the two observed vectors in 

the N-dimensional space (i.e. N observations of each variable) [33].  

Although the Pearson correlation coefficient R between two variables, in our case the predicted 

values p and the real values r, has a clear definition, this is not the case for the Coefficient of 

Determination, usually denoted as R2, which has various meanings and definitions and it is 

many times a source of confusion, especially when used in nonlinear regression models [34, 

35]. More about the Coefficient of Determination will be discussed later on, in section 2.2. 

Another unitless error metric is Variance Accounted For (VAF), also called “Explained 
Variance”, and it is given by 

 
( ) ( ) ( )

( )

2

1

2

1

1 1 1
( ) ( )

N

i i

i

N

i

i

e e
VAR p - r VAR e

VAF
VAR r VAR r

r r

=

=

−
= − = − = −

−




 (28) 

Table 1 summarizes the 14 error metrics presented above and gives details on their units, their 

ranges and their value in case of a perfect match (i.e. zero error case). MSE is not included in 

the table, as it is directly related to RMSE which is included in the table. Similarly, CMSD is 



Vagelis Plevris, German Solorzano, Nikolaos P. Bakas and Mohamed El Amine Ben Seghier 

 9 

not included in the table, but CRMSD is. Note that the ranges reported in the table are valid for 

data sets with positive values only, i.e. xi>0, pi>0, for i=1, 2, …, N. 

Table 1: Error metrics, their units, range, and perfect match (target) value. 

ID Metric Abbreviation Units Range 
Perfect match 

value 

1 Mean Bias MB Units of x, p [-∞, +∞] 0 

2 Mean Absolute Gross Error MAGE Units of x, p [0, +∞] 0 

3 Root Mean Squared Error RMSE Units of x, p [0, +∞] 0 

4 Centered Root Mean Square Difference CRMSD Units of x, p [0, +∞] 0 

5 Mean Normalized Bias MNB Unitless [-1, +∞] 0 

6 Mean Normalized Gross Error MNGE Unitless [0, +∞] 0 

7 Normalized Mean Bias NMB Unitless [-1, +∞] 0 

8 Normalized Mean Error NME Unitless [0, +∞] 0 

9 Fractional Bias FB Unitless [-2, 2] 0 

10 Fractional Gross Error FGE Unitless [0, 2] 0 

11 Theil’s UI UI Unitless [0, 1] 0 

12 Index of agreement IOA Unitless [0, 1] 1 

13 Pearson correlation coefficient R Unitless [-1, 1] 1 

14 Variance Accounted For VAF Unitless [-∞, 1] 1 

2.2 Linear Regression model and the Coefficient of Determination R2 

Linear Regression model 

Linear regression is a simple way to model the relationship between two (or more) variables. 

The equation in case of two variables has the general form p̂ a b r= +  , where p̂  is the 

dependent variable (the outcome of the linear regression model) and r is the independent 

variable. In other words, given the ri values which are the real (target) values and the pi values 

which are the predictions of our original model, p̂  is the best prediction made by another 

model, the linear regression model. When the independent variable r is plotted on the horizontal 

axis, and p̂ is plotted on the vertical axis, then b is the slope of the line and a is the p̂ -intercept, 

as follows: 

 

2

1 1 1 1

2

2

1 1

N N N N

i i i i i

i i i i

N N

i i

i i

p r r r p

a

N r r

= = = =

= =

        −         
       =

 −  
 

   

 
 (29) 
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1 1 1

2

2

1 1

N N N

i i i i

i i i

N N

i i

i i

N r p r p

b

N r r

= = =

= =

      −      
     =

 −  
 

  

 
 (30) 

The equation of the linear model has the form 

 ˆ
i ip a b r= +   (31) 

For this linear regression model, we define the following three variables, RSS, ESS and TSS, as 

follows 

 ( )2

1

ˆ
N

i i

i

RSS p p
=

= −  (32) 

 ( )2

1

ˆ
N

i

i

ESS p p
=

= −  (33) 

 ( )2 2

1

N

i p

i

TSS p p N 
=

= − =   (34) 

where RSS is the Residual Sum of Squares, ESS is the Explained Sum of Squares and TSS is 

the Total Sum of Squares, which is also equal to the sum of ESS and RSS: 

 TSS ESS RSS= +  (35) 

 

Coefficient of Determination R2 in linear regression 

Using the linear model, the Coefficient of Determination (R2) can be defined in terms of RSS 

and TSS as 

 

( )

( )

2

2 1

2

1

ˆ
1 1

N

i i

i

N

i

i

p p
RSS

R
TSS

p p

=

=

−
= − = −

−




 (36) 

or equivalently in terms of ESS and TSS as  

 

( )

( )

2

2 1

2

1

ˆ
N

i

i

N

i

i

p p
ESS

R
TSS

p p

=

=

−
= =

−




 (37) 

ESS is the squared error that can be explained by the linear model and TSS is the total squared 

error. Using Eq. (37) we can conclude that the Coefficient of Determination (R2) is the ratio of 

the variance that can be explained by the linear model, to the total variance. Therefore, the 

higher the R2 value, the more useful the linear model is.  
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When using the above formulas and the linear model, it can be proven that R2 is in fact the 

square of the Pearson correlation coefficient R and that R2 takes values in the range [0, 1] 

(between 0 and 100%). It is important to note the assumption of linear relationship for all the 

above statistics and formulas to work fine. 

Coefficient of Determination in nonlinear regression 

Things about the Coefficient of Determination get quite complicated when using nonlinear 

regression models or other nonlinear models, such as ANN-based predictions. In particular, in 

these cases, if R2 is calculated as the ratio of the variance explained by the model to the total 

variance, as for example Eqs (36) and (37) suggest, then weird statistics arise, and these 

underlying assumptions are incorrect. In such cases, explained variance (ESS) plus error 

variance (RSS) do not add up to the total variance (TSS). As a result, the calculated Coefficient 

of Determination isn’t necessarily between 0 and 100% and it can even take negative values! 

In these cases, a negative Coefficient of Determination is not a mathematical impossibility. It 

simply means that the chosen model fits the data very poorly. 

This problem completely undermines R2 in the context of nonlinear regression and has been 

highlighted by a number of researchers [34-37]. Kvålseth [35] presents 8 different formulas for 

the definition of R2 that appear throughout the literature, highlighting their differences, the 

confusion caused and some common mistakes in their use. The author presents the properties 

that R2 should have as a measure of “goodness of fit”, and he states that none of the eight 
alternative formulas provided for R2 possesses all of these properties, although some come 

close. 

Many times, in nonlinear regression (i.e. when the model used is not the linear regression 

model), the following formula, which is “equivalent” to the one of Eq. (36) of the linear model, 

is used for the calculation of the Coefficient of Determination: 

 

( )

( )

2

1

2

1

1

N

i i

i

N

i

i

r p

RSquared

r r

=

=

−
= −

−




 (38) 

In the above formula, we intentionally use the term RSquared to differentiate it from R2 (the 

square of the Pearson correlation coefficient R) given by the previous formulas. Although Eq. 

(38) uses the concept of the ratio of the “variance that can be explained by the model” to the 
“total variance”, the value it yields is not the square of the Pearson correlation coefficient R and 

it can take negative values. Actually, the range of Eq. (38) is (-∞, 1]. RSquared is a widely used 

measure in the industry to measure the performance of regression models, but there are serious 

problems with its use that can misguide machine learning engineers and researchers. In general, 

in nonlinear modeling, one always needs to make a certain choice for the definition for the 

Coefficient of Determination and state it very clearly, to avoid confusion and 

misunderstandings. 

According to Spiess and Neumeyer [36] “Researchers should be aware that R2 is inappropriate 

when used for demonstrating the performance or validity of a certain nonlinear model. It should 

ideally be removed from scientific literature dealing with nonlinear model fitting or at least be 
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supplemented with other methods such as AIC or BIC or used in context to other models in 

question”. 
Adjusted R2 

One of the drawbacks of the Coefficient of Determination (in either its R2 or RSquared form) 

is that if more features are added to a model, its value increases. This happens even though the 

features added to the model are not intrinsically predictive. For this reason, the Adjusted R2 was 

introduced, as a modified version of R2 that has been adjusted for the number of predictors in 

the model. The Adjusted R2 is always less or equal to R2 as it adjusts for the increasing predictors 

and only shows improvement if there is a real improvement. It is given by the formula 

 ( )2 21
1 1

1

N
R R

N k

−
= − −

− −
 (39) 

Where N is the number of data points (observations) and k is the number of features 

(independent variables) in the model. 

2.3 Taylor diagram 

Taylor diagrams are mathematical diagrams designed to graphically indicate which of several 

approximate representations (or models) of a system, process, or phenomenon is most realistic. 

A Taylor diagram [29] combines three statistical quantities, namely the CRMSD, the Pearson 

correlation coefficient and the Standard Deviations in a single diagram that is easy to read and 

interpret. The Taylor diagram can be used to summarize the relative merits of a collection of 

different models or to track changes in performance as a model is modified. The CRMSD metric 

is used in a Taylor diagram to express the prediction error of a model. The following equation 

is the basis of the Taylor diagram: 

 
2 2 2 2r p r pCRMSD R   = + −  (40) 

Every prediction vector (set), such as p, can depicted as a single point in the Taylor diagram, 

which shows the following: 

• Its CRMSD error metric with reference to the real values 

• Its standard deviation σp and its relationship to the standard deviation of the real values, 

σr 

• Its correlation with the real values, R. 

 

The diagram also demonstrates the real values set as the “ground truth” reference point in its 
horizontal axis. It also shows the corresponding values for the real data, i.e. obviously zero for 

the error, σr for the standard deviation and R = 1 for the correlation with itself. In this diagram 

the distance between each model and the reference point (labeled “REF”) is a measure of how 

realistically each model reproduces observations. The Taylor diagram will be explained in 

detail through a numerical example in section 3.6. 
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3 SIMPLE NUMERICAL EXAMPLE 

3.1 Data sets 

In this section we consider and examine a simple numerical example as a scenario where the 

“real” or “observed” (target) data r is a 10×1 vector and the predicted data p (as a regression 

model output) is another 10×1 vector, as shown in Table 2 and depicted in Figure 1. 

Table 2: “Real” (target) values and model-predicted values for the numerical example. 

Data ID Real value, ri Predicted value, pi 

1 287 311 

2 40 55 

3 68 60 

4 256 302 

5 115 87 

6 190 152 

7 300 297 

8 222 235 

9 145 165 

10 172 136 

 

 

Figure 1: “Real” (target) values and model-predicted values for the numerical example. 

3.2 Statistical quantities of the two sets 

Table 3 shows some basic statistical quantities for the two data sets.  
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Table 3: Statistical quantities of the “Real” (target) values and model-predicted values. 

Statistical quantity Symbol Real value, r Predicted value, p 

Minimum Min 40 55 

Maximum Max 300 311 

Range Range 260 256 

Mean Mean 179.5 180 

Median Median 181 158.5 

Variance 

(Population) 
VarP = σ2 σr

2 = 7114.45 σp
2 = 9037.8 

Standard Deviation 

(Population) 
StdP = σ σr = 84.34720 σp = 95.06734 

Variance 

(Sample) 
VarS = s2 sr

2 = 7904.94444 sp
2 = 10042 

Standard Deviation 

(Sample) 
StdS = s sr = 88.90975 sp = 100.20978 

 

3.3 Error metrics values 

Table 4 shows the 14 calculated error metrics for the prediction p of the real data r. 

Table 4: Error metrics values. 

ID Error metric Value (Target) ID Error metric Value (Target) 

1 MB 0.5 (0) 8 NME 0.12869 (0) 

2 MAGE 23.1 (0) 9 FB -0.01214 (0) 

3 RMSE 26.61391 (0) 10 FGE 0.16151 (0) 

4 CRMSD 26.60921 (0) 11 UI 0.06622 (0) 

5 MNB 0.00544 (0) 12 IOA 0.97766 (1) 

6 MNGE 0.16152 (0) 13 R 0.96302 (1) 

7 NMB 0.00279 (0) 14 VAF 0.90048 (1) 

 

3.4 Linear regression model 

By applying Eqs (29) and (30) to our data set, we obtain a = -14.83122 and b = 1.085410678 

for the linear regression model, i.e. 1ˆ 14.83122 .085410678p r+−=  , which means that the 

linear regression line crosses the vertical axis at p=b=1.085410678 and the horizontal axis at 

r=-b/a=0.073184196. Table 5 shows the predictions of the linear model among related other 

statistical quantities. 
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Table 5: Predictions of the linear model and other statistical quantities. 

Data 

ID 

Real 

value, ri 

Predicted 

value, pi 
( )2

ip p−  

Linear model 

prediction, 

ˆ
ip  

ˆ
i ip p−  ( )2ˆ

i ip p−  ˆ
ip p−  ( )2ˆ

ip p−  

1 287 311 17161 296.68165 -14.31835 205.01521 116.68165 13614.60696 

2 40 55 15625 28.58521 -26.41479 697.74111 
-151.41479 

22926.43852 

3 68 60 14400 58.97671 -1.02329 1.04712 
-121.02329 

14646.63687 

4 256 302 14884 263.03392 -38.96608 1518.35563 
83.03392 

6894.63135 

5 115 87 8649 109.99101 22.99101 528.58660 
-70.00899 

4901.25851 

6 190 152 784 191.39681 39.39681 1552.10881 
11.39681 

129.88733 

7 300 297 13689 310.79199 13.79199 190.21890 
130.79199 

17106.54379 

8 222 235 3025 226.12995 -8.87005 78.67772 
46.12995 

2127.97264 

9 145 165 225 142.55333 -22.44667 503.85292 
-37.44667 

1402.25297 

10 172 136 1936 171.85942 35.85942 1285.89800 
-8.14058 

66.26904 

SUM:   
90378 

= TSS   

6561.50201 

= RSS 

 83816.49799

= ESS 

 

We see that the values of RSS, ESS and TSS satisfy the equality of Eq. (35). Also, R2 can be 

calculated by either ESS/TSS = 83816.49799/90378 = 0.92740 or by 1-RSS/TSS = 1-

6561.50201/90378 = 0.92740. The linear regression model is presented in Figure 2 as a line. 

 

Figure 2: “Real” values, predicted values and the linear regression model. 

Taking the square root of R2 (square root of 0.92740), we find 0.96302 which is indeed the 

calculated value of the Pearson Correlation Coefficient R for the model, as shown in Table 4. 

Using the linear model, all formulas work correctly, and the calculated Coefficient of 

Determination (R2) is indeed the square of R. 
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3.5 Direct calculation of the Coefficient of Determination for the model 

We will now apply the formula of Eq. (38) for the predictive model itself, without going through 

the linear model first. In this case, for our example, we have: 

 ( )2

1

7083
N

i i

i

p r
=

− =  (41) 

 ( )2

1

71144.5
N

i

i

r r
=

− =  (42) 
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 (43) 

We see that this new value of RSquared is different from the one calculated before using the 

linear model (R2=0.92740). As mentioned before, this formula can also give negative results 

for RSquared in specific cases. For example, if one changes only the 7th element of the p vector 

from p7=297 to the new value of 40, then the above formula will give a value of RSquared=1-

74674/71144.5 = -0.04961, while R using the linear model will then be R=0.57904 (and thus 

R2=0.33528). It is clear that a definition of the formula used for the calculation of R2 must 

always be given, to avoid confusion, misunderstanding and inaccuracies. 

3.6 Taylor diagram 

In this example case, the standard deviation of the real data is σr = 84.34720, the standard 

deviation of the predicted values is σp = 95.06734, while the Centered Root Mean Square 

Difference (CRMSD) error for the prediction model is 26.60921 and the Pearson correlation 

coefficient (R) is 0.96302. The Taylor diagram is presented in Figure 3. The values used for 

plotting the diagram for the reference point (“REF”) and the prediction “Model” point are 
shown in Table 6. The reference point (“REF”, ground truth values) always has zero error in 
comparison to itself (CRMSD=0) and perfect correlation with itself (R=1), but it still has its 

own standard deviation value which is depicted in the horizontal axis. 

Table 6: Taylor diagram values. 

Taylor parameter REF point Prediction Model point 

Standard deviation, σ 84.34720 95.06734 

CRMSD 0 26.60921 

R 1 0.96302 
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Figure 3: Taylor diagram for the numerical example. 

4 NUMERICAL INVESTIGATION OF THE ERROR METRICS 

4.1 Random guessing 

First, we investigate the performance of the various error metrics in assessing a prediction 

which is based on pure random guessing. It is obvious that a good metric should give a low 

score when asked to assess the result of random guessing on the real values. To do this 

numerical test, we use the Monte Carlo Simulation (MCS) method [28]. We generate a vector 

r of 100 elements (100×1) having random values in the range [10, 100], following uniform 

distribution. Then we generate a vector p of “predictions” with 100 elements (100×1) having 
again random values in the range [10, 100]. As a result, the prediction is based on random 

guessing on the same interval as the one of the original data. We perform 1000 Monte Carlo 

simulations, and we examine the distributions of the values of the 10 normalized (unitless) 

metrics that have been presented, i.e. MNB, MNGE, NMB, NME, FB, FGE, UI, IOA, R, and 

VAF. Of these, the first 7 (MNB, MNGE, NMB, NME, FB, FGE and UI) will take the value of 

0 for a perfect match, while the next 3 (IOA, R and VAF) will take the value of 1 for a perfect 

match. An example of this model (i.e. as one Monte Carlo simulation) is depicted in Figure 4 
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where the predictions p (100 elements) are completely random numbers in the interval [10, 

100]. This causes the spread in the diagram on the right. 

 

Figure 4: “Real” (target) values and randomly generated model-predicted values. 

In statistical analysis, we must be very careful when trying to interpret statistical results and 

assess their significance as many times, the metrics we use can be random variables themselves 

[38]. In the case of this test example, the distributions of the metrics’ values are presented as 

histograms in Figure 5. We see that NMB (3rd on the top row) and FB (5th on the top row) take 

values close to 0 in many of the cases, which means that these metrics falsely identify random 

guessing as giving a good prediction. This indicates poor performance for these two metrics in 

this test example. The other 8 metrics have values which are far away from the “perfect match” 
value of either 0 (for the first seven) or 1 (for the last three). 

 

 

Figure 5: Histograms of the 10 error metric values for a prediction based on random guessing. 
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Figure 6 presents the obtained values of the 10 metrics as mean or median values over 1000 

simulations. Again, we see that NMB and FB have values close to zero, that falsely indicate 

good prediction performance. 

 

Figure 6: Mean and median values of the 10 unitless error metrics for a prediction based on random guessing, 

over 1000 Monte Carlo simulations. 

4.2 Scenarios with random noise 

In this investigation, we introduce some noise (error) in the prediction. We use again the Monte 

Carlo Simulation (MCS) method [28] with 1000 samples. 

First random noise scenario 

We generate a vector r of 100 elements (100×1) having random values in the range [10, 100]. 

Then we generate a vector p of “predictions” with 100 elements (100×1). This p vector is based 

on r, with the introduction of some artificial “noise” (error) according to the following formula 
[39] for each element of p: 

 ( )1i ip r NR =  +   (44) 

where pi is the i-th component of the prediction vector, ri is the i-th component of the real 

(target) vector, NR (noise ratio) is the percentage of noise added to the predicted data, and ξ is 
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a uniformly distributed random number in the range [-1, 1]. In our case, the noise ratio NR takes 

values from 0% to 100% with 10% increments. A value NR=0 means that there is no noise, i.e. 

no error in the prediction and as a result, pi = ri. A value NR=10%=0.1 means that the prediction, 

pi will be a random number uniformly distributed in the range [0.9ri, 1.1ri], while a value 

NR=100%=1 means that the prediction, pi will be a random number uniformly distributed in 

the range [0, 2ri]. The results of the investigation are presented in Figure 7 for all the ten unitless 

error metrics. 

 

Figure 7: Scenario 1: Mean values of the 10 error metrics for various Noise Ratios (NR). 

 

We see that the first 7 metrics start from zero, correctly indicating no error for the case NR=0. 

The last 3 metrics (IOA, R and VAF) start from the value of 1, indicating again no error for the 

case NR=0. The various error metrics take different paths in general, with the exception of two 

pairs: 

(i) MNB and NMB exhibit a similar poor performance and their mean values almost 

coincide, being close to zero for all ranges of NR, which does not make much sense for 

the metrics. As a result, these two metrics fail to predict the error for all NR scenarios. 

The MNB mean values range from -9.8650E-4 to 0.0023 and the NMB mean values 

range from -0.0027 to 0.0024. 

(ii) The other two metrics that exhibit similar performance with each other, are MNGE and 

NME with their mean values almost coinciding, but not being close to zero, which is 

interesting. If we look closer at the data, we will see that the individual values of MNGE 
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and NME are not the same for every simulation, but their mean values among 1000 

simulations are very close to each other and as a result the two curves almost coincide. 

The mean of both metrics starts at zero (for NR=0) and ends to the value of 0.4999 for 

MNGE and 0.5 for NME (for NR=1). 

The mean of the VAF metric exhibits a big variability along the NR values, starting at 1 (for 

NR=0) and ending to the value of -0.8358 (for NR=1). Similarly, the R value drops from 1 (for 

NR=0) to the value of 0.5911 (for NR=1). It is interesting that the R value is still quite high, at 

0.5911 even in the case of NR=100%, which shows us that R values can sometimes be 

misleading.  

Second random noise scenario 

It is interesting to examine another scenario, where noise is added again using a similar pattern, 

with the difference being that it is applied uniformly to the whole vector r, instead of its 

individual elements. We generate a vector r of 100 elements (100×1) having random values in 

the range [10, 100]. Then we generate a vector p of “predictions” with 100 elements (100×1), 
based on the formula 

 ( )1 NR =  + p r  (45) 

Now, the prediction vector p is simply a multiple of r, as a whole. This is a theoretical case 

which is rarely expected to occur in practice, and it corresponds to a prediction model which 

systematically overestimates or underestimates all the values by the same factor. For example, 

all predicted values are x% larger (or smaller) than the real values, or similar. It is interesting 

to see the behavior of the different error metrics in this case and compare the results to the ones 

of the first scenario. Applying the same methodology as before, we end up to the diagram of 

Figure 8. 

In this 2nd Scenario, the patterns we see for the mean curves of MNB (and the similar NMB), 

MNGE (and the similar NME), FB, FGE, UI, and IOA are similar to the ones of Scenario 1, 

with only small differences. Yet R exhibits a completely different pattern, as in Scenario 2 it 

has a constant value of 1 for all NR cases. This makes sense and it is because in all simulated 

cases, the predictions p are exact multiples or the real values r. So, in every case, the correlation 

is perfect and R=1, although there is an error. This can be considered as a limitation of the R 

value as a performance metric for predictions, as a perfect prediction requires R=1 (a necessary 

condition), but R=1 itself does not guarantee a perfect prediction (not a sufficient condition) 

simply because R is in fact not an error metric but a correlation coefficient which tells us if a 

linear relationship exists between the real and the predicted values. Interestingly, VAF shows a 

different pattern in Scenario 2, in comparison to Scenario 1. The end point of the mean VAF 

curve is now 0.68325 compared to -0.83582 for Scenario 1. 
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Figure 8: Scenario 2: Mean values of the 10 error metrics for various Noise Ratios (NR). 

 

5 CONCLUSIONS 

In this article, we examined some of the most popular regression related metrics used for 

evaluating the performance of regression and machine learning models and we highlighted the 

importance of the usage of the metrics to obtain good predictions. 14 error metrics were 

presented theoretically and using a simple numerical example. Based on three of these metrics, 

the Taylor diagram can be constructed which visualizes the standard deviation, the Pearson 

Correlation Coefficient, and the Centered Root Mean Square Difference metrics in a single 

elegant diagram. We examined the concept of the Coefficient of Determination (R2) both in the 

linear regression model and in the more general case and we highlighted its limitations and how 

it can become a source of confusion. Ten of the examined metrics are unitless (MB, MAGE, 

RMSE, CRMSD, MNB, MNGE, NMB, NME, FB, FGE, UI, IOA, R, and VAF). These unitless 

metrics were further investigated through an analysis with Monte Carlo Simulation based on (i) 

random guessing and (ii) the addition of random noise with various noise ratios to the predicted 

values. Some of the metrics showed a poor performance, while others exhibit a good 

performance as evaluation measures of the “goodness of fit”. 
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