
ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/fdata.2022.686416

Frontiers in Big Data | www.frontiersin.org 1 May 2022 | Volume 5 | Article 686416

Edited by:

Rashid Mehmood,

King Abdulaziz University, Saudi Arabia

Reviewed by:

Nannan Wu,

Tianjin University, China

Saleh M. Altowaijri,

Northern Border University, Saudi

Arabia

*Correspondence:

Hårek Haugerud

harek.haugerud@oslomet.no

Specialty section:

This article was submitted to

Frontiers in Big Data,

a section of the journal

Frontiers in Big Data

Received: 26 March 2021

Accepted: 13 April 2022

Published: 11 May 2022

Citation:

Haugerud H, Sobhie M and Yazidi A

(2022) Tuning of Elasticsearch

Configuration: Parameter Optimization

Through Simultaneous Perturbation

Stochastic Approximation.

Front. Big Data 5:686416.

doi: 10.3389/fdata.2022.686416

Tuning of Elasticsearch
Configuration: Parameter
Optimization Through Simultaneous
Perturbation Stochastic
Approximation
Hårek Haugerud 1*, Mohamad Sobhie 1,2 and Anis Yazidi 1

1Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway, 2Department of Informatics,

University of Oslo, Oslo, Norway

Elasticsearch is currently the most popular search engine for full-text database

management systems. By default, its configuration does not change while it receives

data. However, when Elasticsearch stores a large amount of data over time, the

default configuration becomes an obstacle to improving performance. In addition,

the servers that host Elasticsearch may have limited resources, such as internal

memory and CPU. A general solution to these problems is to dynamically tune the

configuration parameters of Elasticsearch in order to improve its performance. The sheer

number of parameters involved in this configuration makes it a complex task. In this

work, we apply the Simultaneous Perturbation Stochastic Approximation method for

optimizing Elasticsearch with multiple unknown parameters. Using this algorithm, our

implementation optimizes the Elasticsearch configuration parameters by observing the

performance and automatically changing the configuration to improve performance.

The proposed solution makes it possible to change the configuration parameters of

Elasticsearch automatically without having to restart the currently running instance of

Elasticsearch. The results show a higher than 40% improvement in the combined data

insertion capacity and the system’s response time.

Keywords: Elasticsearch, configuration, Simultaneous Perturbation Stochastic Approximation, parameter tuning,

optimization

1. INTRODUCTION

The amount of data generated every day is increasing at a remarkable pace and, as of 2017, 3.8
billion people are using the internet. It was estimated that 1.7 MB of data will be created for every
person every second in 2020 (Domo, 2018). A particular kind of data is generated by servers to
maintain their status. These data are stored in files, often referred to as log files. They can include
different types of data, such as web requests from users, user activities, server events, etc. Log files
are considered a part of big data (Jacobs, 2009; Oussous et al., 2018). Due to the increase in the
number of users and machines, there are enormous amounts of data to analyze.

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.686416
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.686416&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:harek.haugerud@oslomet.no
https://doi.org/10.3389/fdata.2022.686416
https://www.frontiersin.org/articles/10.3389/fdata.2022.686416/full

Haugerud et al. Tuning of Elasticsearch Configuration

Different aspects are important when discussing big data,
one of which is searching such data. When it comes to search
methods, the time it takes to retrieve the right information
means that the quality and speed of the search engine is crucial.
The existence of big data has led to a need for good search
engines in which information can be quickly collected that is
relevant to the input searched for. Elasticsearch is a search engine
that became popular within the Development and Operations
(DevOps) field, and also among many tech companies. It can
be combined with other tools that collect logs from servers
and visualize them. Elasticsearch technology is used by large
companies like eBay, Uber, and Netflix and the company behind
this technology, Elastic, was named a visionary in a 2021 Gartner
report on application performance monitoring (De Silva and
Padraig Byrne, 2021).

The traditional way of operating development teams in
organizations has led to less efficiency and more conflicts when
new features or updates are pushed to production (König and
Steffens, 2018). There is therefore an urgent need to fill the gap
between development and operations, which has resulted in the
creation of the DevOps field, that is, a field in which operations,
development, and quality assurance teams are unified (Ebert
et al., 2016). This has made it possible to release new code into
production faster, and it has also increased the quality of software
systems (Bezemer et al., 2018).

Even though the current DevOps tools largely do not rely
on machine learning (ML), there has been some interest in
applying machine learning in DevOps tools where the quality
of software processes has been enhanced (Nogueira et al., 2018).
This has led to attention being devoted to how to increase quality
by applying optimization solutions. Elasticsearch configuration
relies on a large number of parameters, which means that
tuning the right parameters will yield better results in terms of
resource use and fast output, and hence quality. An example
of a substantial Elasticsearch deployment is the one at CERN
with more that 30 Elaticsearch clusters and four hundred nodes.
One of the lessons learned at CERN was that the behavior of
clusters can change drastically depending on the user patterns,
and that this should be closelymonitored (Saiz and Schwickerath,
2020). The many installations of Elastisearch worldwide, the
large configuration space, and the dynamic behavior of the user
patterns motivate the goal of this article, an automated and
dynamic parameter tuning of Elasticsearch in order to improve
the efficiency of the data insertion capacity and the response
time of the system. Our approach is to combine machine
learning and Elasticsearch, resulting in a dynamic algorithm
which improves the performance of Elasticsearch by tuning some
of its configuration parameters.

2. RELATED WORK

Tuning the configuration to achieve better performance
has always been a practice among researchers and system
administrators. Big data processing systems such as Hadoop,
Spark, and Storm all have a large number of configuration
parameters that must be tuned in order to optimize performance

and stability. Because of the vast number of parameters, it
is not feasible to obtain an optimal configuration manually
and there is a large body of research on automated parameter
tuning (Herodotou et al., 2020). A recent auto-tuning trend
involves using machine learning in order to find the optimal
configuration of a system (Zhou et al., 2022). One such approach
consists of performance tuning Apache Drill on Hadoop clusters
using evolutionary algorithms (Bløtekjær, 2018). The solution
automates the process of fine-tuning the Drill configuration,
and experimental results show that the performance of Drill
is boosted compared to the default configuration. A similar
approach uses a genetic algorithm to solve high-dimensional
challenges in Hadoop (Yildirim et al., 2015). The solution
consists of using a large population and then evolving it through
cycles of a genetic algorithm. Another algorithm that has
been used to tune the parameters of a Hadoop system is the
SPSA (Simultaneous Perturbation Stochastic Approximation)
algorithm from Kumar et al. (2016). This work shows the
effectiveness of using two system observations per iteration
in order to tune the configuration parameters. A self-tuning
approach for Apache Spark based on an artificial neural network
was proposed by Rahman et al. (2018).

It is worth mentioning that Elasticsearch is a NoSQL database
and that there has been a fair amount of research on optimizing
NoSQL databases, such as MongoDB, Cassandra, CouchD, Riak,
HBase, and Redis.

An automatic configuration-tuning framework for NoSQL
database benchmarking, ConfAdvisor, treats database
performance as a black-box function of its configuration
parameters (Chen et al., 2020). Various black-box optimization
algorithms are used, including Bayesian optimization, and the
experiments show a substantial improvement in performance.

A model agnostic optimization framework for configuration
in the cloud, called Morphling, was recently proposed (Wang
et al., 2021). The model tackles the high dimensionality problem
that Bayesian optimization approaches face by deploying a meta-
learning approach that helps reduce the sampling cost. The meta-
learning approach makes it possible to predict the performance
trends under varying workloads and thereby to reduce the search
by proposing a small set of configurations to sample from.

A similar approach to the one presented here uses genetic
algorithms to evolve the configuration of Elasticsearch (Lu et al.,
2020). Machine learning algorithms, namely random forest and
gradient boosting regression trees, were used to predict the
performance of the configuration.

The optimization of the Elasticsearch search engine is a related
research field (Coviaux, 2019). In this case, there are also a large
number of configuration parameters, and an experimental setup
for automating the configuration of Elasticsearch was devised
in Silva-Muñoz et al. (2021). Bayesian optimization cannot be
directly utilized to solve such a high dimensional black-box
optimization problem due to the curse of dimensionality. In this
perspective, Silva et al. resorted to the iRace optimization package
(López-Ibáñez et al., 2016) in order to auto-tune the parameters
of two NoSQL databases, namely Cassandra and Elasticsearch.

In Dou et al. (2020), the authors present HDConfigor, an
automatic full-stack configuration parameter tuning tool for log

Frontiers in Big Data | www.frontiersin.org 2 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

search engines. HDConfigor solves the high dimensional black-
box optimization problem by using an algorithm that introduces
a random embedding matrix to generate an embedded space.
It then performs Bayesian optimization in this low dimensional
embedded space.

In Mahgoub et al. (2020), the authors tackle the problem
of optimizing the configuration of an NoSQL database in
the cloud with the aim of minimizing the performance per
dollar under a given budget. The optimization problem is NP-
hard. Indeed, if we consider a cluster of N nodes, and I
VM configurations for each node, the search space is in the
order of IN . The authors propose a search algorithm called
OPTIMUSCLOUD, which aspires to partition the cluster into so-
called Complete-Sets. A complete-set is defined as the minimum
number of nodes that have records that cover all the records
in the database. Since the performance of a complete-set is
limited by the performance of the slowest server, it is suggested
that all nodes in the complete-set should be reconfigured to
match the fastest node speed. In a similar manner to Lu et al.
(2020), a random forest is trained to predict the performance
of the NoSQL server for different configurations of VMs
and databases.

{SOPHIA} (Mahgoub et al., 2019) present another thread
of approaches for optimizing online, i.e., during runtime, the
configuration of NoSQL databases under a time-varying load.
Please note that such optimization is different from most
approaches, which are offline. The intuition behind {SOPHIA} is
to monitor the performance of the NoSQL database and perform
a cost benefit analysis to assess the effect of the configuration
switch. A genetic algorithm is used to find a configuration
plan. Similarly, when it comes to online configuration of
NoSQL databases, Preuveneers and Joosen (2020) use adaptive
Hoeffding tree as a machine-learning algorithm to predict the
best configuration online. The authors employ middleware to
monitor the performance, detect performance degradation, and
then predict the best configuration based on the machine-
learning algorithm.

The informed reader will note that all the aforementioned
works employ some sort of search algorithm to explore the
configuration space, such as genetic algorithms or Bayesian
optimization. In addition, some of the above approaches
use supervised learning to predict the performance of a
certain configuration based on historic data. Interestingly,
due to the increasing development of machine learning,
some recent trends have emerged, such as the use of deep
reinforcement learning for auto-configuration of Apache Storm
during runtime (Li et al., 2018). Another important and
emerging trend in auto-configuration relies on the use of
generative adversarial networks (GANs) to generate robust
configurations (Bao et al., 2019). The underlying idea of
ACTGAN (Bao et al., 2019) is that “good” configurations
share some underlying common hidden patterns, which a
GAN can unveil. Experiments using different software traces
including NoSQL databases, such as Redis, Cassandra, and
HBase, demonstrate the effectiveness of a GAN when applied
to auto-configuration.

3. EXPERIMENTAL SETUP

3.1. Objectives
The objective of this project is to optimize the configuration
of Elasticsearch using an optimization algorithm that is based
on simultaneous perturbation. The algorithm is implemented
on an Elasticsearch container cluster. The goal is to be able to
tune the configuration of the cluster by running benchmarks
and analyzing them through the algorithm, and then enhancing
the configuration on each iteration. For each iteration, the
indexing metric and response time are the factors that influence
the optimization process. The benchmark process examines the
performance of the executing Elasticsearch node by inserting
data into it and removing the data once the analysis is finished.
ESRally is an open-source tool that is used to benchmark
Elasticsearch and is available on Github (Mitterdorfer, 2022a).
The source code of the experimental setup is also available on
Github (Sobhie, 2022).

3.2. Elasticsearch Metrics
There are several factors that play a crucial part in the
performance of Elasticsearch. The metrics are context-
dependent, however, and since different systems can run
on top of Elasticsearch (Bai, 2013), more metrics will be
considered as well. The following are metrics to consider in
Elasticsearch (Subhani Shaik, 2017).

When adding an index to a node, it is necessary to use
shards. The index is subdivided into multiple pieces, and these
new pieces are called shards (Kuc and Rogozinski, 2013).
Cluster status shows information inside the cluster components,
such as running nodes and how many shards are assigned. It
also provides information about the time it takes a cluster to
allocate shards.

The node performance is dependent on the specifications
of the machine in which the node is installed. Assets like
the CPU, RAM, and operating system will affect performance.
There are a few parameters that help to optimize and assess
index performance. Indexing latency can be calculated using
the available parameters index_total and index_time_in_millis.
Another metric is the Flush latency that helps to detect problems
with disks. When there is a problem with slow disks, this flush
latency metric will increase. Querying is used when making
search requests. The number of queries written and how they
are written will influence the performance of a node. Because of
that, Query Latency and Query Load are two important metrics
to monitor.

Both Index and Search performance metrics can be
summarized as shown in Figure 1. Query Load and Query
Latency influence the performance of searching, while Index
Latency and Flush Latency affect Indexing Performance.

Writing a proper search query is the main factor influencing
search performance in Elasticsearch. Similarly, factors like data
type and how they are organized also play a role. However, to
increase the speed of the search, there are two important methods
that can be used (Subhani Shaik, 2017), custom routing, and force
merging which will be explained in the next two paragraphs.

Frontiers in Big Data | www.frontiersin.org 3 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

FIGURE 1 | Elasticsearch performance metrics.

When there are several shards in a node, Elasticsearch checks
all segments inside each shard, not all shards, just the ones that
satisfy the search request. Custom routing makes it possible to
store the chosen data on the same shard. Only one shard will
thereby be searched in order to satisfy the query. As a result,
fewer shards need to be investigated. Similarly, it is possible to
decrease the number of segments in each shard by using the Force
Merge API.

The purpose of Force Merge is to merge segments
continuously until the value of max_num_segments in a
shard is reduced to 1. However, when the number of segments
and shards is high, the force merging process will be slow. For
example, merging 10,000 segments to 5,000 segments takes less
time than merging 10,000 segments to one. This will affect the
resources required to perform the process, which will also affect
the search requests. In that case, it is recommended to schedule
Force Merging during non-busy hours.

There are many parameters to consider as regards both
searching and indexing speed in Elasticsearch. Table 1

summarizes most of the parameters that have an influence
on indexing performance, and hence search performance.

3.3. Infrastructure Overview
The infrastructure of the project consists of a server hosting
the Elastic Stack applications and several virtual machines that
send their logs to the Elastic cluster. All the applications run in
docker containers. Figure 2 shows the Elastic Stack Server, which
hosts the Elastic Stack that consists of docker containers running
Elasticsearch: Kibana, Filebeat, and Logstash.

In addition to the Elastic server, there are three virtual
machines that send their logs to the Elastic server. As seen in
Figure 3, the Elastic server is placed on a separate network and
the docker containers communicate with each other, as well with
the other virtual machines.

TABLE 1 | Elasticsearch tuning parameters.

Parameter Description

index.refresh.interval Time to wait before copying in-buffer

memory

index.number.of.replicas The number of replicas each primary

shard has

indices.memory.index.buffer.size Allocation of heap memory

indices.memory.min.index.buffer.size Allocation of heap memory

indices.memory.max.index.buffer.size Allocation of heap memory

index.translog.flush.threshold.size Make a flush after reaching specific

size

index.translog.retention.age Duration for keeping a translog file

index.translog.sync.interval How often the translog is synced to

disk

index.number.of.shards The number of primary shards per

index

index.shard.check.on.startup Shards should be checked for

corruption before opening

The docker containers of the Elastic Stack use four different
TCP ports, as shown in Figure 4 where Elasticsearch uses port
9200, Kibana port 5601, Logstash port 5044 and Beat port 5043.

In addition, the ESRally benchmarking tool is run in a docker
image, and the implementation of the algorithm is based on this
deployment of docker containers.

The main server that runs the docker containers and the
algorithm has the specifications listed in Table 2.

3.4. The Document Generator
The document generator is an application written in python that
connects to the Elasticsearch cluster and generates fake data.
The data generated are in the JSON format, the format used by
Elasticsearch, and are referred to as documents. After generating
the documents, the code collects the generated data into bulk
and sends them to the bulk API of the Elasticsearch node.
The API request inserts the generated data into the connected
Elasticsearch node. For indexing, the code generates five indexes
for five different sets of data.

3.5. The Optimizer Algorithm
The optimizer algorithm implements the concept of SPSA
(Simultaneous Perturbation Stochastic Approximation)
(Spall et al., 1992) in order to tune the configuration of
Elasticsearch. The number of parameters to tune is the
same for all the experiments. However, the initial values
of each parameter will vary. In the algorithm, the initial
parameters will have random values, and there will be a
variable for each parameter that defines the next step size of
that parameter.

Once the initial parameters have been assigned a random
value, the algorithm will update the Elasticsearch cluster using
an API from Elasticsearch, which allows the settings of a node
or a cluster to be updated. The updating task is simply an HTTP
request containing information about the parameter that is to be
updated and the values.

ESRally produces a JSON file as output. The output is useful
for gaining an overview of the current performance of the

Frontiers in Big Data | www.frontiersin.org 4 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

FIGURE 2 | The four docker containers running inside the Elastic Stack Server.

FIGURE 3 | Three log servers sending their logfiles to the Elastic Stack Server.

Elasticsearch node. With the statistics included in the JSON file,
we can retrieve the mean throughput of indexing and latency
of operations.

FIGURE 4 | The Elastic Stack applications and their port numbers.

Elasticsearch configuration includes several parameters.
However, the implemented algorithm uses the four parameters
listed in Table 3. A detailed description of the parameters can be
found in the official documentation of Elasticsearch.

3.6. The SPSA Algorithm
The objective function of the algorithm uses the ESRally
output to obtain the indexing throughput and latency time of
other operations. The objective function formula for a given

Frontiers in Big Data | www.frontiersin.org 5 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

TABLE 2 | Elastic stack server specification.

Operating system Linux Ubuntu16.04 xenial

CPU E5530 @ 2.40GHz

RAM 23 Gb

Disk space 439G

Hardware architecture x86 64

Processor Intel(R) Xeon(R)

TABLE 3 | The selected elasticsearch parameters.

Parameter

translog.sync.interval

indices.recovery.max.bytes.per.sec

index.flush.threshold.size

index.referesh.interval

configuration θ is given by:

f (θ) =
Indexing

Response Time
(1)

where Indexing is themean indexing throughput, i.e., the number
of indexed documents, and ResponseTime is the mean latency
time of operations, i.e., the latency of different search queries
types being performed on the Elasticsearch cluster.

The goal of the SPSA algorithm in this article is to maximize
the objective function f (θ) by updating the configuration
parameters θ of the Elasticsearch over time. In order to optimize
the configuration we resort to a modified version of the
Simultaneous Perturbation Stochastic Approximation algorithm
(Kumar et al., 2017). The implemented algorithm in this project
is presented in Algorithm 1. It starts with initial parameters
θ0 = θ , then, for each iteration n, the algorithm will generate
a perturbation vector 1n which will be used to test a pair of
“perturbed” configurations θn + 1n and θn − 1n. Both the
performance of configuration θn + 1n and that of θn − 1n will
be evaluated. Let θ+n denote θn + 1n and let θ−n denote θn − 1n.

Depending on the sign of (f (θ+n) − f (θ−n)) each parameter
value will get either increased or decreased in the same direction,
as in a gradient ascent method. In fact, each parameter i
is updated in the same direction of the “best” perturbated
configuration either θn + 1n or θn − 1n. The magnitude of
the change to δn(i) for each parameter i is proportional to the
magnitude of the relative differenceDPn between f (θn+1n) and
f (θn −1n), and it is at least δmin(i). The step size is expressed by:

δn(i) = δmin(i)(1+ DP) (2)

Thus we use the sign of f (θ+n) − f (θ−n), as well as the “sign” of
the perturbation for each parameter i based on 1n(i) to obtain
the direction of update for each parameter. Intuitively, if 1n(i) is
positive, and f (θ+n) > f (θ−n) then θn(i) will increase. Similarly,
if 1n(i) is negative, and f (θ+n) > f (θ−n) then θn(i) will decrease.
To avoid that the value of any parameter i gets outside the range

Algorithm 1 :Modified Simultaneous Perturbation Stochastic
Approximation.

1: Initial parameters θ ∈ R

2: Initial Step Size for each parameter 1

3: for n = 0, 1, 2, . . . ,N do

4: Generate perturbation vector 1n ∈ R

5: Compute f (θn + 1n)
6: Compute f (θn − 1n)
7: Calculate,DPn, the relative difference between f (θn+1n)

and f (θn − 1n) given by

DPn = 2
|f (θn−1 + 1n)− f (θn−1 − 1n)|

f (θn−1 + 1n)+ f (θn−1 − 1n)

8: Calculate new step size δn(i) for each parameter i as

δn(i) = sign(1n(i))δmin(i)(1+ DPn)

9: Update the value of each parameter i for the next iteration
n+ 1 following a gradient ascent-like update given by

θn+1(i) = 5[θn(i)+ δn(i)sign(f (θ
+
n)− f (θ−n))]

where 5 is a projection that confines each parameter
θn+1(i) within the minimum and maximum values.

10: end for

[δmin(i), δmax(i)], which is the user defined range, we resort to
a projection 5 that confines each parameter θn+1(i) within the
minimum and maximum values. The projection can be also
expressed using maximum, Max(.,.), and minimum, Min(.,.),
operators as:

θn+1(i) = Min[Max(δmin(i), θn+δn(i)sign(f (θ
+
n)−f (θ−n)), δmax(i)]

(3)

3.7. Optimizer Data Flow
The optimizing algorithm can be presented in a data flow
diagram, as shown in Figure 5. The data flow diagram starts
with Initial Set of Parameters with Step Size Values, that is,
the parameters that will be tuned by the algorithm. For each
parameter, there is a step size that will be updated for each
iteration. Then Calculate the negative and positive paths of each
variable, where θ

+ presents a set of values to add to each
parameter from the selected set of parameters, and θ

− are the
negative values of these values. After that, Update Elasticsearch
settings with both θ

+ and θ
−, then Obtain performance for

configuration θ
+ and θ

− and relative difference, if the iteration
is not the last one, then check which objective function value
is better than it, θ

+ or θ
−; the best value will then be updated

in either the stage Update set of parameters as in θ
+ with new

step size value or the θ
− one as seen in the data flow diagram

(Figure 5). Then the new set of parameters will be used to update
the Elasticsearch settings as before. If the iterations are finished,

Frontiers in Big Data | www.frontiersin.org 6 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

FIGURE 5 | Optimizer algorithm data flow.

then update Elasticsearch with the best set of parameters from the
previous iterations.

4. RESULTS

For each of the tests performed, there is an indexing operation
where new data are inserted in the Elasticsearch cluster in order
to test the performance of the indexing task. After this, several
types of operations will be performed on these indexed data, each
with several types of search queries. All of the tests have a list of
specifications as shown in the following list:

1. The number of documents: The number of data inserted in
Elasticsearch, a document is represented by a JSON object.

2. Bulk Size: How many documents to index per request
3. The number of types of Operations: Performing different types

of search queries such as aggregations, range, match all, etc.
4. The number of iterations per operation: keep repeating an

operation a specific number of times.

There are three different sets of documents: Taxi rides data,
GeoNames Data and HTTP Log Data. All the three data sets
used are from the rally-tracks (Mitterdorfer, 2022b) of the
Elasticsearch benchmarking tool Rally and are publicly available.
As an example of the three types, the GeoNames data represent
geographical information about specific areas, and a typical
sample is shown in Listing 1. Such data include country code,
population, timezone, etc. The total number of data-fields in the
GeoNames documents is 11.

Frontiers in Big Data | www.frontiersin.org 7 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

TABLE 4 | Meta-data for the three sets of documents.

Taxi-rides Geo Names HTTP Log

Bulk size 165,346,692 11,396,505 2,708,746

Types of operations 6 22 10

Data fields 18 11 5

In the Table 4, the meta-data for each of the three different sets
of data is shown.

Listing 1 | Example of GeoNames Document

{
‘ ‘ geonameid ’ ’ : 3039805 ,
‘ ‘ name ’ ’ : ‘ ‘ Montaup ’ ’ ,
‘ ‘ a s c i i name ’ ’ : ‘ ‘ Montaup ’ ’ ,
‘ ‘ f e a t u r e _ c l a s s ’ ’ : ‘ ‘ L ’ ’ ,
‘ ‘ f e a t u r e _ c od e ’ ’ : ‘ ‘AREA ’ ’ ,
‘ ‘ count ry_code ’ ’ : ‘ ‘AD’ ’ ,
‘ ‘ admin1_code ’ ’ : ‘ ‘ 0 2 ’ ’ ,
‘ ‘ popu l a t i on ’ ’ : 0 ,
‘ ‘ dem ’ ’ : ‘ ‘ 2 2 4 3 ’ ’ ,
‘ ‘ t imezone ’ ’ : ‘ ‘ Europe / Andorra ’ ’ ,
‘ ‘ l o c a t i o n ’ ’ : [1 . 5 8 1 5 6 , 4 2 . 5 8 3 2 8]
}

The following subsections present the results of the objective
function from running 100 iterations on each of these three data
sets. For each iteration, there are two objective function results,
and the direction of the tuning will follow the one with the
best result.

4.1. Taxi Rides Data
The Taxi Rides documents contain data such as pickup location,
pickup dateline, passenger account, improvement surcharge, etc.
There are a huge number of documents in this data set, 165
million, and each document contains 18 data fields. Figure 6
shows the tuning performance of the algorithm run using the
Taxi Rides data. For each of the iterations, a positive and a
negative direction is tested when changing the parameters and
the objective function calculated for these two choices. The red
line connecting the red dots of the graph shows the best direction
for the given iteration, that is, the set of parameters that yields
the largest value of the objective function. The path chosen by
the SPSA algorithm is thus shown by the red line. The blue
dots show the worst direction and hence always represent a
lower value. In the first iteration, the objective function value
of the best direction was 19,547, while the value for the other
direction was 15,018. The set of parameters leading to the
largest value was then chosen by the SPSA algorithm, and these
parameters were used when considering a new choice between
two directions in the next iteration. In iteration 2, the value of the
best direction increased to 24,040, yielding the best configuration
so far, while the other direction, as shown by the second blue
dot, was as low as 13,869. However, in iteration 3, the best
value decreased to 12,525, which was the lowest value in all

the one hundred iterations of the experiment, except for some
of the worst direction values. The goal of the experiment was
to move around in the configuration space in this way and
seek the best configuration parameters in terms of achieving
the highest possible value of the objective function. The largest
value occurred in iteration 78, where the objective function
reached a peak value of 26,619. This means that the set of
parameters used in iteration 78 produced the best performance
of all the parameter sets tested in the experiment, making
it the optimal choice based on these 100 iterations of the
SPSA algorithm.

The 200 data points correspond to the same number of
configurations of Elasticsearch. The average value of the objective
function for all the 200 data points could be a measure of a typical
value you would get if you selected a random configuration
of all the parameters, just like for the value of the first
iteration. However, the algorithm searches for the configurations
that yield the largest value of the objective function, so the
average is more likely to be somewhat higher than a completely
random choice of parameters. In any case, the optimal value
for the objective function found by the algorithm gives an
indication of how successful the algorithm is. In the case of
taxi rides data, the average value of the objective function for
all the data points is 18,751 and the peak value is 26,619, a
42% improvement compared to the average value of all the
tested configurations.

4.2. GeoNames Data
A typical document containing geographical data was shown in
Listing 1. These data are from the GeoNames database, which is
a freely accessible database of geographical data. Figure 7 shows
the tuning performance of 100 iterations of the SPSA algorithm
applied to documents containing GeoNames data.

As in Figure 6, the red line shows the path in the configuration
space of the selected best direction of the algorithm, while the
blue dots show the other direction leading to a lower value for
the objective function.

The starting value of the objective function was 46,800,
while it ended with a value of 47,432. The lowest performance
was in iteration 33, with the value of 33,920. On the
other hand, in iterations 31, 68, and 49, the values of
the objective function reached the large values of 62,659,
63,690, and 61,740. The highest value reached was 67,200
in iteration 17, the best performance of the system during
the test.

In the case of GeoNames data, the average value of the
objective function for all the 200 data points is 44,759 and the
peak value found by the SPSA algorithm is 67,200, which is
a 50% improvement compared to the average value of all the
tested configurations.

4.3. HTTP Log Data
Figure 8 shows the tuning performance of the algorithm applied
to HTTP logs. In the first iteration, the objective function value
was 11,926. It then increased to 12,358 in iteration 4, which was
the second-largest value in this test. The tuning process reached

Frontiers in Big Data | www.frontiersin.org 8 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

FIGURE 6 | Tuning iterations—taxi rides data. The gray line connects the best choices that give the largest value of the objective function for each of the 100 iterations.

FIGURE 7 | Tuning iterations—GeoNames. The gray line connects the best choices that give the largest value of the objective function for each of the 100 iterations.

Frontiers in Big Data | www.frontiersin.org 9 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

FIGURE 8 | Tuning process—HTTP logs data. The gray line connects the best choices that give the largest value of the objective function for each of the 100

iterations.

its best value in iteration 42 with the value 13,996. The lowest
value, 7,126, was recorded at iteration 67. Finally, in the last
iteration, the objective function value was 10,300, which was
approximately the average of the best values. The set of parameter
values in iteration 42 is the best set in terms of high performance
in comparison with all the other iterations.

In the case of HTTP data, the average value of the objective
function for all the 200 data points is 9853 while the peak value
found by the SPSA algorithm is 13,996, a 42% improvement
compared to the average value for all the tested configurations,
as in the case of the taxi rides data.

5. DISCUSSION AND CONCLUSION

The goal of this article was to create an SPSA algorithm
that would automate parameter tuning of Elasticsearch and
improve its performance. We were able to change the
Elasticsearch configuration dynamically without resetting the
node, thereby enabling us to continuously search for the
best parameter setting while at the same time carrying out
the work.

In the implemented algorithm, the SPSA algorithm iterates
several times to test the current performance of the system.
In each iteration, the algorithm observes the system by
applying a set of parameters, which are a representation
of parameter combination values. These values are updated
for every iteration, and the updates are dependent on

the previous iteration in which the system performance
was observed.

It is difficult to find the correct set of parameters manually in
order to tune the performance when the Elasticsearch node stores
a lot of data and responds to many queries. Therefore, using
optimization solutions such as our SPSA algorithm improves
the process of choosing the set of parameters that will result in
good performance.

Performing several experiments on the designed system
resulted in efficient tuning of the Elasticsearh parameters.
Overall, the Elasticsearch configuration and the implemented
algorithm yielded the best combined values for low latency
of operations and a high number of inserted documents. The
actual experiments showed that, in the three cases with different
document types, the algorithm resulted in an improvement
in the objective function of between 42 and 50 percent
compared to what could be expected if the parameters had not
been tuned.

The implemented SPSA algorithm ensures dynamic tuning
of the Elasticsearch nodes. It keeps performing tests on the
node while observing its performance. The best solution is
saved, and once all tests are done, the Elasticsearch node
is updated with the best solution without any need to reset
the node. The authors of the article introducing the SPSA
algorithm claims that it is extremely useful in cases when
the dimensionality is high and the observations are costly
(Kumar et al., 2016). The experimental results of this work

Frontiers in Big Data | www.frontiersin.org 10 May 2022 | Volume 5 | Article 686416

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

confirms that the SPSA algorithm is efficient for a different but
similar case where the number of configuration parameters is a
bit smaller.

In general, configuring Elasticsearch has to be done manually
by specifying which parameters need to be changed to
achive better performance. This is impractical when data are
continuously inserted. The patterns of the incoming data might
change at any time and this could also lead to a change of the
optimal parameter configuration. The proposed solution ensures
automatic reconfiguration by continously testing different
sets of parameters and updating the configuration with the
best solution.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

HH, MS, and AY contributed to the conception and design of
the study. MS organized and performed the experiments under
the supervision of HH and AY. HH wrote the first draft of the
manuscript. All authors contributed tomanuscript revision, read,
and approved the submitted version.

REFERENCES

Bai, J. (2013). “Feasibility analysis of big log data real time search based

on hbase and elasticsearch,” in 2013 Ninth International Conference

on Natural Computation (ICNC) (Shenyang: IEEE), 1166–1170.

doi: 10.1109/ICNC.2013.6818154

Bao, L., Liu, X., Wang, F., and Fang, B. (2019). “ActGAN: automatic configuration

tuning for software systems with generative adversarial networks,” in

2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE) (San Diego, CA: IEEE), 465–476. doi: 10.1109/ASE.2019.

00051

Bezemer, C.-P., Eismann, S., Ferme, V., Grohmann, J., Heinrich, R., Jamshidi, P.,

et al. (2018). How is performance addressed in DevOps? a survey on industrial

practices. arXiv[Preprint].arXiv:1808.06915. doi: 10.1145/3297663.3309672

Bløtekjær, R. (2018). Performance tuning apache drill on hadoop clusters with

evolutionary algorithms (Master’s thesis). University of Oslo, Oslo, Norway.

Available online at: https://www.duo.uio.no/bitstream/handle/10852/64907/5/

main.pdf

Chen, P., Huo, Z., Li, X., Dou, H., and Zhu, C. (2020). “Confadvisor:

an automatic configuration tuning framework for NoSQL database

benchmarking with a black-box approach,” in International Symposium

on Benchmarking, Measuring and Optimization (Atlanta: Springer), 106–124.

doi: 10.1007/978-3-030-71058-3_7

Coviaux, Q. (2019).Optimization of the search engine elasticsearch (Master’s thesis).

Universitat Politécnica de Catalunya, Barcelona, Spain.

De Silva, F., and Padraig Byrne, J. C. (2021). Magic Quadrant for Application

Performance Monitoring. Available online at: https://www.gartner.com/en/

documents/4000354

Domo (2018). Data Never Sleeps 6.0. Available online at: https://www.domo.com/

learn/infographic/data-never-sleeps-6

Dou, H., Chen, P., and Zheng, Z. (2020). Hdconfigor: automatically tuning high

dimensional configuration parameters for log search engines. IEEE Access 8,

80638–80653. doi: 10.1109/ACCESS.2020.2990735

Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. (2016). Devops. IEEE Softw.

33, 94–100. doi: 10.1109/MS.2016.68

Herodotou, H., Chen, Y., and Lu, J. (2020). A survey on automatic parameter

tuning for big data processing systems. ACM Comput. Surv. 53, 1–37.

doi: 10.1145/3381027

Jacobs, A. (2009). The pathologies of big data. Commun. ACM 52, 36–44.

doi: 10.1145/1536616.1536632

König, L., and Steffens, A. (2018). “Towards a quality model for DevOps,” in

Continuous Software Engineering & Full-Scale Software Engineering (Aachen:

RWTH Aachen University), 37.

Kuc, R., and Rogozinski, M. (2013). Elasticsearch Server. Birmingham: Packt

Publishing Ltd.

Kumar, S., Padakandla, S., Chandrashekar, L., Parihar, P., Gopinath, K.,

and Bhatnagar, S. (2017). “Scalable performance tuning of hadoop

mapreduce: a noisy gradient approach,” in 2017 IEEE 10th International

Conference on Cloud Computing (CLOUD) (Honolulu: IEEE), 375–382.

doi: 10.1109/CLOUD.2017.55

Kumar, S., Padakandla, S., Parihar, P., Gopinath, K., Bhatnagar, S., et al. (2016).

A review of elastic search: Performance metrics and challenges. Int. J. Recent

Innov. Trends Comput. Commun. 5, 222. doi: 10.17762/ijritcc.v5i11.1304

Li, T., Xu, Z., Tang, J., and Wang, Y. (2018). Model-free control for

distributed stream data processing using deep reinforcement learning.

arXiv[Preprint].arXiv:1803.01016. doi: 10.14778/3199517.3199521

López-Ibá nez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., and Stützle,

T. (2016). The irace package: Iterated racing for automatic algorithm

configuration. Operat. Res. Perspect. 3, 43–58. doi: 10.1016/j.orp.2016.09.002

Lu, Z., Chen, C., Xin, J., and Yu, Z. (2020). “On the auto-tuning of

elastic-search based on machine learning,” in 2020 International

Conference on Control, Robotics and Intelligent System (Xiamen), 150–156.

doi: 10.1145/3437802.3437828

Mahgoub, A., Medoff, A. M., Kumar, R., Mitra, S., Klimovic, A., Chaterji, S.,

et al. (2020). “{OPTIMUSCLOUD}: heterogeneous configuration optimization

for distributed databases in the cloud,” in 2020 USENIX Annual Technical

Conference (USENIX ATC 20) (Berkeley, CA), 189–203.

Mahgoub, A., Wood, P., Medoff, A., Mitra, S., Meyer, F., Chaterji, S., et al. (2019).

“{SOPHIA}: online reconfiguration of clustered {NoSQL} databases for {Time−

Varying} workloads,” in 2019 USENIX Annual Technical Conference (USENIX

ATC 19) (Renton), 223–240.

Mitterdorfer, D. (2022a). Esrally Benchmarking. Available online at: https://github.

com/elastic/rally

Mitterdorfer, D. (2022b). Esrally-Tracks. Available online at: https://github.com/

elastic/rally-tracks

Nogueira, A. F., Ribeiro, J. C., Zenha-Rela, M., and Craske, A. (2018). “Improving

la redoute’s ci/cd pipeline and DevOps processes by applying machine

learning techniques,” in 2018 11th International Conference on the Quality

of Information and Communications Technology (QUATIC) (Coimbra: IEEE),

282–286. doi: 10.1109/QUATIC.2018.00050

Oussous, A., Benjelloun, F.-Z., Lahcen, A. A., and Belfkih, S. (2018). Big data

technologies: a survey. J. King Saud Univ. Comput. Inform. Sci. 30, 431–448.

doi: 10.1016/j.jksuci.2017.06.001

Preuveneers, D., and Joosen, W. (2020). “Automated configuration of NoSQL

performance and scalability tactics for data-intensive applications,” in

Informatics, Vol. 7 (Basel: Multidisciplinary Digital Publishing Institute), 29.

doi: 10.3390/informatics7030029

Rahman, M. A., Hossen, J., and Venkataseshaiah, C. (2018). “SMBSP: a self-

tuning approach using machine learning to improve performance of spark

in big data processing,” in 2018 7th International Conference on Computer

and Communication Engineering (ICCCE) (Kuala Lumpur: IEEE), 274–279.

doi: 10.1109/ICCCE.2018.8539328

Saiz, P., and Schwickerath, U. (2020). “Large elasticsearch cluster management,” in

EPJ Web of Conferences (Adelaide), 07021. doi: 10.1051/epjconf/202024507021

Silva- Muñoz, M., Calderon, G., Franzin, A., and Bersini, H. (2021). “Determining

a consistent experimental setup for benchmarking and optimizing databases,”

in Proceedings of the Genetic and Evolutionary Computation Conference

Companion (Lille), 1614–1621. doi: 10.1145/3449726.3463180

Sobhie, M. (2022). Elasticsearch SPSA Source Code. Available online at: https://

github.com/haugerud/elasticsearchSPSA

Frontiers in Big Data | www.frontiersin.org 11 May 2022 | Volume 5 | Article 686416

https://doi.org/10.1109/ICNC.2013.6818154
https://doi.org/10.1109/ASE.2019.00051
https://doi.org/10.1145/3297663.3309672
https://www.duo.uio.no/bitstream/handle/10852/64907/5/main.pdf
https://www.duo.uio.no/bitstream/handle/10852/64907/5/main.pdf
https://doi.org/10.1007/978-3-030-71058-3_7
https://www.gartner.com/en/documents/4000354
https://www.gartner.com/en/documents/4000354
https://www.domo.com/learn/infographic/data-never-sleeps-6
https://www.domo.com/learn/infographic/data-never-sleeps-6
https://doi.org/10.1109/ACCESS.2020.2990735
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1145/3381027
https://doi.org/10.1145/1536616.1536632
https://doi.org/10.1109/CLOUD.2017.55
https://doi.org/10.17762/ijritcc.v5i11.1304
https://doi.org/10.14778/3199517.3199521
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1145/3437802.3437828
https://github.com/elastic/rally
https://github.com/elastic/rally
https://github.com/elastic/rally-tracks
https://github.com/elastic/rally-tracks
https://doi.org/10.1109/QUATIC.2018.00050
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.3390/informatics7030029
https://doi.org/10.1109/ICCCE.2018.8539328
https://doi.org/10.1051/epjconf/202024507021
https://doi.org/10.1145/3449726.3463180
https://github.com/haugerud/elasticsearchSPSA
https://github.com/haugerud/elasticsearchSPSA
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Haugerud et al. Tuning of Elasticsearch Configuration

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous

perturbation gradient approximation. IEEE Trans. Automat. Control 37,

332–341. doi: 10.1109/9.119632

Subhani Shaik, N. N. M. R. (2017). A review of elastic search: performance metrics

and challenges. Int. J. Recent Innovat. Trends Comput. Commun. 5, 222–229.

Available online at: https://ijritcc.org/index.php/ijritcc/article/view/1304

Wang, L., Yang, L., Yu, Y., Wang, W., Li, B., Sun, X., et al. (2021). “Morphling:

fast, near-optimal auto-configuration for cloud-native model serving,” in

Proceedings of the ACM Symposium on Cloud Computing (Seattle), 639–653.

doi: 10.1145/3472883.3486987

Yildirim, G., Hallac, İ. R., Aydin, G., and Tatar, Y. (2015). “Running

genetic algorithms on hadoop for solving high dimensional optimization

problems,” in 2015 9th International Conference on Application of Information

and Communication Technologies (AICT) (Rostov-on-Don: IEEE), 12–16.

doi: 10.1109/ICAICT.2015.7338506

Zhou, X., Chai, C., Li, G., and Sun, J. (2022). Database meets artificial

intelligence: a survey. IEEE Trans. Knowledge Data Eng. 34, 1096–1116.

doi: 10.1109/TKDE.2020.2994641

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Haugerud, Sobhie and Yazidi. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 12 May 2022 | Volume 5 | Article 686416

https://doi.org/10.1109/9.119632
https://ijritcc.org/index.php/ijritcc/article/view/1304
https://doi.org/10.1145/3472883.3486987
https://doi.org/10.1109/ICAICT.2015.7338506
https://doi.org/10.1109/TKDE.2020.2994641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Tuning of Elasticsearch Configuration: Parameter Optimization Through Simultaneous Perturbation Stochastic Approximation
	1. Introduction
	2. Related Work
	3. Experimental Setup
	3.1. Objectives
	3.2. Elasticsearch Metrics
	3.3. Infrastructure Overview
	3.4. The Document Generator
	3.5. The Optimizer Algorithm
	3.6. The SPSA Algorithm
	3.7. Optimizer Data Flow

	4. Results
	4.1. Taxi Rides Data
	4.2. GeoNames Data
	4.3. HTTP Log Data

	5. Discussion and conclusion
	Data Availability Statement
	Author Contributions
	References

