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Abstract—In this paper we propose the concept of 

“Computing Fleet” as an abstract entity representing groups of 

heterogeneous, distributed, and dynamic infrastructure 

elements across the Computing Continuum (covering the Edge-

Fog-Cloud computing paradigms). In the process of using fleets, 

stakeholders obtain the virtual resources from the fleet, deploy 

software applications to the fleet, and control the data flow, 

without worrying about what devices are used in the fleet, how 

they are connected, and when they may join and exit the fleet. 

We propose a three-layer reference architecture for the 

Computing Fleet capturing key elements for designing and 

operating fleets. We discuss key aspects related to the 

management of microservices-based applications on the 

Computing Fleet and propose an approach for deployment and 

orchestration of microservices-based applications on fleets. 

Furthermore, we present a software prototype as a preliminary 

evaluation of the Computing Fleet concept in a concrete Cloud-

Edge scenario related to remote patients monitoring. 

Keywords—Computing Fleet, Architecture, Computing 

Continuum  

I. INTRODUCTION 

Cloud computing has been the dominating paradigm in 
recent years. A critical factor for its success is that it releases 
enterprises and service providers from directly handling on-
premises computers individually and allows them to use the 
Cloud as a single entity. The increasing amount of data to 
process and security and critical response time requirements 
are dragging computation from the Cloud to the Edge devices 
closer to the data sources [1]. This forces computation tasks to 
be handled directly on the individual Edge devices. This is 
highly challenging as Edge devices are heterogeneous, 
spatially distributed, and move continuously. As a result, “the 
cost of deploying and managing an Edge computing 
environment can easily exceed the purpose financial benefits”, 
as estimated by Gartner1. This raises the question: Can we use 
many Edge devices, along with multi-cloud resources, as a 
holistic abstract entity to provide advanced computing 
capacity at smart device level (Edge), from Edge-to-Fog-to-
Cloud, while being device independent and providing 
advanced concepts (ad-hoc clouds, time-triggering, 
decentralised intelligence, etc.)? In Cloud computing, such a 
holistic entity is achieved based on computer clustering: 
“Cloud OS” (OpenStack, Kubernetes) integrates all 
computers in a data center as a single system (cluster) [2]. For 
external users, a Cloud-native application appears to run on a 
single computer, while internally, the Cloud OS ensures that 
the application fully leverages the existence of many 
computers for better performance. Following this direction, 
we believe the question above is answered by providing “the 
clusters for the Edge”. However, the traditional cluster 

1  https://www.gartner.com/smarterwithgartner/what-edge-computing-

means-for-infrastructure-and-operations-leaders  

concept assumes that the computers are roughly 
homogeneous, connected by stable fast networks, and under a 
unified management. This assumption is no longer valid in 
Edge computing and today’s IoT, and therefore, the existing 
cluster-oriented Cloud OSs do not work directly on the Edge. 

We thus propose a novel concept, the Computing Fleet2, 
as the “new cluster” in the era of Edge computing. Like a 
cluster, a fleet is an abstract set of infrastructure elements 
across the Computing Continuum, viewed as a single system, 
regardless of their nature (e.g., IoT devices, Edge servers, 
drones). Differently from cluster elements, the elements in a 
fleet have unique profiles – different processing capabilities, 
hardware capacities, energy requirements, network 
connectivity, associate to different data sources/consumers, 
and different domain roles. Moreover, a fleet is dynamic, with 
devices joining and exiting, and their profiles and topology 
constantly evolve. An Edge-native application runs on a fleet 
as a whole and can fully leverage the infrastructure elements 
across the whole continuum, considering their unique profiles, 
maximizing the performance, fulfilling the required tasks, and 
adapting to changes. Consequently, a fleet consists of dynamic 
elements hired opportunistically based on application 
requirements. To fully utilize the Computing Fleet, it is 
required that next generation OSs not only go beyond the 
state-of-the-art Edge management techniques (by looking at 
all devices as a single system), but also extend the current 
concept of OS with learning capabilities to handle the open 
infrastructure. The architecture of Computing Fleet OSs is an 
essential aspect that drives the implementation of such 
systems. 

In this paper, besides introducing the concept of the 
Computing Fleet, we propose a reference architecture with 
three layers of key system services needed to realize the fleet 
concept (Section II). The reference architecture is meant to 
support software architects in designing OSs for the 
Computing Fleet, ultimately facilitating the development and 
deployment of applications on the Computing Fleet. 
Furthermore, we focus on the important aspect of application 
deployment on the Computing Fleet, where we propose an 
approach for the deployment and orchestration of 
microservices-based applications (Section III). A software 
prototype is introduced as a preliminary way to evaluate the 
Computing Fleet concept, with a focus on the deployment 
aspects (Section IV). Finally, we discuss related work, 
summarize the paper, and provide an outlook (Section V). 

II. REFERENCE ARCHITECTURE FOR FLEET COMPUTING

Like Cloud OSs that abstract many computers as a single 
cluster, a Computing Fleet OS is a software system that 
manages many devices and provides services for stakeholders 

2 The term 'fleet' is inspired by the navy domain, where vessels of various 

size and capacity operate as a single whole and follow the global combat 

strategy, whilst each undertaking its own vessel-specific function. 
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to use the devices together as a single fleet. The challenge is 
hiding the complexity and dynamicity of devices from the 
stakeholders, while exploiting the different device profiles, 
connections, and contexts to optimize the resource usage. For 
this purpose, we propose an architecture composed of 
components wrapped as distributed agents running on Edge 
devices and aggregators on selected devices.  

 
Figure 1. Computing Fleet Reference Architecture 

The agents and aggregators are the physical components 
of the envisaged Computing Fleet OS, and they collaborate 
during runtime to provide fleet operating services in three 
layers, as shown in Figure 1: 

• Infrastructure Services layer: Organizes the networked 

devices across the continuum as a fleet, through device 

registration and lifecycle management, network 

management, monitoring and simulation. This layer 

provisions virtualized resources to upper layers.  

• Software Operation Services layer: Supports the 

operation of software applications on a fleet. This layer is 

in charge of the automatic orchestration and deployment 

of microservices-based applications, the discovery of 

services within and across applications, the federation of 

different fleets, and the optimization of service operation. 

• Data and AI Services layer: This layer builds on top of 

the services to provide higher level support for building 

applications on data processing, AI, and digital twins.   

Various stakeholders are expected to participate in such an 

ecosystem: infrastructure providers (own and maintain the 

devices and their connection and provide them as 

infrastructures to other stakeholders); service providers and 

application developers / DevOps (create and operate software 

applications in the software layer on top of the 

infrastructures); data scientists (manage, share, and utilize 

data and intelligence on top of the fleet infrastructures and 

applications). 
Example Scenario. Figure 2 illustrates the proposed layers 

using a motivating example simplified from an eHealth 
system in the area of remote patient monitoring, where Edge 
devices / gateways are deployed at the patients' premises to 
collect patients’ health-related data. The gateways collect data 
from local sensors and cameras and send the processed data to  
back-end services on the Cloud or local servers in nursing 
institutes. The DevOps team develops and operates a series of 
applications, such as the patient fall detection application.  

In the infrastructure services layer, devices are combined 
into a private local "Cloud" (the fleet), which provides an 
overall picture of the whole system as device twins, provisions 
virtual resources from the fleet, and allows the high-level 
reconfiguration of the network.  

In the application/software operation services layer, 
microservices, e.g., for video processing, are developed. The 

developers only need to deploy and/or update the entire 
application into the whole fleet, and the system automatically 
distributes the microservices into the devices, orchestrates 
them into a running application, and keeps adapting them in 
response to changes in the fleet (such as new devices 
enrolled), without intervention from the developers.  

In the data and AI services layer, the data and AI assets 
such as the video stream and the ML function for fall detection 
are managed. This can include simplified creation, tuning and 
sharing of the data and the AI modules, together with the 
underlying microservices. It also provides the platform for 
setting up the federated learning to train the fall detection 
model in a distributed way.   

  
Figure 2. Example scenario for the Computing Fleet 

In the next section, we dive deeper into the second layer 
and discuss various aspects and challenges related to software 
application deployment on the Computing Fleet. For the 
software application architects and developers of this eHealth 
application, the benefit of this layer is that they can focus on 
the design and development of application functions, without 
worrying about the heterogeneity and dynamicity of the Edge 
infrastructure underneath the application. 

III. MICROSERVICE-BASED APPLICATIONS ON FLEETS 

Microservices architecture has become the predominant 
architectural style for developing Cloud applications, where 
each application is developed, deployed, and maintained as a 
collection of independent services. This architectural style is 
becoming a necessity in the context of Edge computing, where 
applications must make use of highly heterogenous devices. 
The Computing Fleet will have to support applications in the 
mainstream microservices architecture.  

The example scenario in Figure 2 illustrates a sample 
application comprising of six microservices, as hexagons 
shown in the middle. Five are internal services (with solid 
borders), of which the application developers provide 
implementations. The fall-detection microservice has multiple 
implementations, with the same machine learning models 
optimized for ARM/x86 architectures, respectively. It uses an 
external microservice, onsite-alert, to intervene the patient 
when he risks falling (e.g., vibration on the smart watch). 



Application developers should be able to deploy the entire 
application into the whole fleet instead of deploying each 
internal microservice into individual devices. Similarly, at 
runtime, an application always discovers the external service 
from the fleet without having to first decide from which 
devices, domains, or providers to find the services. 
Technically speaking, developers provide a global 
specification of the application (with all microservices and 
their connections) to the leading aggregator of the Computing 
Fleet, generally with the help of a CI/CD tool. When receiving 
the application specifications, the distributed fleet aggregators 
and agents work together to place the internal microservices 
into the proper devices: an aggregator decides which 
microservices should be deployed on each of its associated 
agents and marks this suggestion to the device twins. The 
agents regularly communicate to the aggregators to pull the 
deployment suggestions and then install the microservices 
accordingly. Such reverse control style ensures the scalability, 
flexibility, and correctness of deployment into distributed 
devices with a complex and unstable connection. After 
deployment, an internal service asks the nearest aggregator for 
the required external services, and the aggregator may 
collaborate with other aggregators to search for the service 
within the whole fleet. In this context, three main challenges 
need to be addressed: (i) How an agent deploys microservice 
implementations on its local devices, (ii) How the aggregators 
orchestrate multiple microservices to each associated devices, 
and (iii) How aggregators work together to discover external 
services from the whole fleet. The questions lead to a set of 
application-level fleet services, as illustrated in Figure 3. 

 
Figure 3. Fleet services for microservice applications 

Software deployment on local devices: Fleet agents deploy 
the microservice implementations on the local devices. The 
key challenge is the existence of heterogeneous devices within 
a fleet. This can be approached towards a diversity-oriented 
Edge deployment using the Model-Driven Engineering 
method. It requires a new deployment modeling language that 
allows developers to specify the multiple functionally 
identical implementations for a microservice, together with 
the constraints and preferences of each variant, as part of the 
application specifications. The language can be based on 
existing deployment modeling languages (e.g., Kubernetes). 
Based on the deployment model, the deployment engines, 
distributed inside fleet agents, assess the context of itself and 
its neighboring devices to decide which variant to deploy, 
satisfy local constraints and approximate global goals, and 
maintain the fleet's diversity. Another challenge is how to 
support the devices with limited resources or Internet 
connections. This can be based on Kubernetes deployment 
model from containers to general artifact-platform pairs and 
implement a novel hierarchical deployment engine to use 
agents in powerful devices as delegates for the automatic 
deployment of microservices on the associated devices.   

Orchestration of internal microservices: Some fleet 
aggregators contain orchestrators that work together to 
translate the design-time application specification into a 

runtime topology of service instances and infrastructure 
elements. At the core of this orchestration, we find the 
distributed knowledge base maintained by the mesh of 
orchestrators, including the device twins about the 
infrastructure and the current runtime topologies for existing 
applications. Based on the knowledge, the orchestrators 
search for the best runtime topology for the new application to 
meet multiple objectives such as global performance, service 
latency, and fault tolerance. This includes the proper 
distribution of computation among parallel devices (e.g., 
assigning a data processing logic to those gateways that 
connected to the relevant sensors) and the offloading of 
computation along far/near Edge and Cloud. The orchestrators 
need to continuously adjust the runtime service topology, or 
search for new ones, to adapt to the changes of the fleet itself 
or its environment. This will require novel techniques to 
reduce the searching time, especially when abrupt changes 
such as device mobility or failure incidents. The envisaged 
techniques include restoring and learning from previous 
searching and intermediate results, preserving alternative 
solutions obtained with the help of simulation, and nature-
inspired decentralized optimization methods to approximate 
the optimal compositions. Novel data sharing mechanisms 
will also be needed to exchange knowledge and decisions for 
the resilience of the entire fleet despite potential failures.  

Discovery of external services: Finding a reusable service 
in the Edge is more complicated than in the Cloud. In addition 
to functional matching and QoS, the context of services and 
hosting infrastructure must be considered and the different 
behaviors of service consumers. Two aspects are relevant in 
this context: (i) Novel organization of services description 
registration in the fleet. In theory, every aggregator should 
maintain the real-time knowledge of all the exposed services 
together with their contexts (device twins/orchestration 
status). We will need to approximate this setup at an 
affordable cost through a novel distributed architecture of 
service registry, a new mechanism for exchanging and 
synchronizing the service knowledge, and the continuous 
adaptation of the distribution of service knowledge to cope 
with fleet changes. (ii) Cognitive searching mechanisms: 
Historical data on network between service components, 
service demand, and user mobility will be used to create 
accurate prediction models for rapid discovery (reducing 
search space). The utility of the service discovery results will 
need to be monitored by calculating a weighted combination 
of solved requests, search precision, discovery latency, 
network overhead, resource usage. Learning models can be 
explored to increase the utility model. 

Fleet federation and slicing: The deploy-orchestrate-
discover trilogy from one fleet will need to be extended to 
multiple fleets, so that applications can be deployed across 
fleets (e.g., a fleet of homecare devices may need to be 
federated to a fleet of medical devices in the hospital to host 
applications that support the collaboration between the 
hospital and homecare service providers). A federated fleet 
from two fleets can be created by launching a new aggregator 
that connects to the two head aggregators from two existing 
fleets. Similarly, a sub-fleet can be created by launching a 
virtual aggregator connected to a subset of agents and 
aggregators. The new virtual aggregators can provide their 
endpoints to deploy applications on the federated or sliced 
fleets. One direction here would be to focus on the 
collaboration model between the aggregators, including 
knowledge sharing, orchestration, and discovery tasks. This 



will require automatically changing the networks (routing, 
firewalls) according to the fleet federation and slicing.  

Green meta-optimization: To solve potential conflicts 
between different optimization mechanisms, applications, and 
fleets, a meta-optimization module should be considered as a 
coordinator and arbiter. The meta-optimization introduces 
green aspects, such as energy consumption, into the overall 
picture. The core of the meta-optimizer is an extended 
knowledge base of available optimization approaches, 
together with their effects and impacts. Aiming at green 
objectives, the fleet knowledge base extends device and 
service profiles with power consumption, processing capacity, 
use of renewable energy sources, and others. It is built based 
on prior inputs and the history of application operation. The 
dynamic orchestration will then be able to consider the 
feedback from meta-optimizers when choosing the 
appropriate device to allocate and distribute the computational 
effort. Moreover, novel scheduling and green optimization 
techniques need to be introduced, such as resource allocation 
that balance computation load towards more power-efficient 
nodes and power management policies that put the devices in 
an eco-mode if needed. In addition to runtime application 
operation, architects and component suppliers can also use 
such meta-optimizers, e.g., providing references on the 
Lithium-Ion battery set up and the battery initial sizing and its 
re/charging operations, with the prediction of the workload 
and power consumption. 

IV. SOFTWARE PROTOTYPE AND PRELIMINARY EVALUATION 

To preliminary evaluate the Computing Fleet concept, we 
implemented an initial software prototype based on the 
reference architecture, focusing on the system services for 
fleet deployment and orchestration as outlined in the previous 
section. Following the concept of the Computing Fleet, a 
sample scenario using the prototype shows how a DevOps 
team can provide an entire application composed of 
microservices to a single fleet, without being concerned about 
how many devices exist, how to install software on different 
types of devices, and whether each device is online or not. To 
achieve this, the main challenge from the software 
deployment point of view is the heterogeneity and dynamicity 
of the fleet, which we address in this prototype. The prototype 
covers two layers of the reference architecture: in the 
infrastructure layer we reused the Azure IoT Hub for device 
registry and lifecycle management, by maintaining a device 
twin in the central Cloud for each Edge device; in the software 
operation layer, we developed two open-source tools for 
microservice orchestration and deployment: 

• Diversity-Aware Fleet-Oriented Microservice placement 
on Edge Devices (DivEnact) 3 : It takes as input the 
microservices with alternative implementations and place 
them into different devices considering their contexts. 

• GeneSIS 4 : Provides a generic way for deploying the 
microservices on different type of Edge devices, 
including those that do not have full-functioned OSs or 
direct internet connections. 

We evaluate the fleet deployment prototype on the remote 
patient monitoring (RPM) system (introduced in Section II). 
The set-up includes 200 gateways (Raspberry Pi compatible 
devices), each of them connected to a set of medical sensors 
(via Bluetooth), and some of them connected to lower-end 

 
3 https://gitlab.com/enact/divenact  
4 https://gitlab.com/enact/GeneSIS  

sensors or actuators (without Bluetooth support via 
microcontrollers). The gateways connect to backend services 
hosted in Azure via 4G. In this prototype, Edge devices are 
limited to gateways and microcontrollers that are used to 
connect sensors. Lower-end devices such as medical sensors 
are not included, since they do not allow deployment of 
general-purpose software. The testing scenario introduces a 
new access control mechanism into the RPM fleet. The 
scenario answers the following two questions: 

1. Can we deploy the application with alternative 
microservices on the fleet in a single action, without 
handling individually the heterogeneous devices in the 
fleet? 

2. Can we handle the dynamicity of the fleet in an automatic 
way, so that developers do not need to follow up the 
change of the fleet after deployment? 

The scenario requires new hardware to be distributed and 
installed on the patient’s side, i.e., a micro-controller board 
(Arduino Uno) connected to the RPM gateway via a USB port, 
and alternatively a remote Bluetooth-connected button that the 
patient must wear as a necklace. The software part includes 
three microservices: (M1) C code running on the Arduino 
board to listen to the remote button; (M2) Python code in 
Docker container to listen to button events via Bluetooth; and 
(M3) an updated version of gateway software to bind the 
button events with the authorization and authorization service 
in the Cloud.  

  
Figure 4. Fleet deployment of context-aware access control feature 

Figure 4 shows how the fleet deployment bundle is used 
to realize this scenario. In the diagram, the corner-folded 
boxes represent the input artefacts, and the rounded rectangles 
are the activities. The arrows represent the causal links 
between activities, i.e., the target activities happen as a result 
of the source one. The vertical spatial relationship between 
activities roughly indicates their temporal relation, i.e., the 
activities placed higher in the diagram happens before the 
lower ones. The complete scenario can be seen in a screenshot 
video5, and in the rest of this section, we briefly explain the 
main steps. 

The DevOps team develops the code for the alternative 
microservice implementations, together with the deployment 
models in GeneSIS (for different types of the devices) and 
provides an application architecture model describing the 
relation between microservices and between microservices 
and the devices. Furthermore, they provide additional 
constraints that M1 and M2 should only be placed to gateways 
that are attached with Arduino buttons and Bluetooth buttons, 
respectively. For patients who did not choose to install any 
buttons, all the three services should not be deployed. Once 

5 https://www.youtube.com/watch?v=a22YP4TB-To  



the DevOps team release the code on GitHub, the fleet 
deployment action will be automatically triggered. At this 
moment, the developers do not need to know which patients 
have installed which types of buttons. 

The deployment actions trigger the tools to perform actual 
fleet deployment work in two different places: the Cloud and 
the Edge gateways. The central Cloud service will first decide 
which gateways should be provisioned with the new software, 
based on the context of the devices.  The assignment decision 
will be noted on the device twins of the relevant patients. The 
DivEnact agents on the gateways keeps checking the status of 
their device twins, and once a new deployment is updated in 
the device twin, the gateway will launch local deployment, by 
downloading the relevant deployment models, and utilize the 
GeneSIS engine to install the binary code or the container, 
depending on the implementation. The whole assignment and 
deployment process is automatic, without interaction from the 
developers, and therefore, the developers are shielded from 
the heterogeneity of the fleet.  

Fleet assignment does not impact all the Edge devices at 
the same time: The DivEnact agent will keep monitoring the 
contexts of the device and update the device twin. The central 
DivEnact service will re-evaluate the assignment in a pre-
defined interval (5 minutes in this case) and trigger device 
deployment if needed. From the patient's point of view, if they 
plug an Arduino button into their gateway, the microservices 
M1 and M3 will be automatically deployed in 2-7 minutes 
(local deployment takes in average 2 minutes in our 
experimental setup), and they can immediately start using the 
new access control feature, without waiting for the next 
deployment action triggered by the DevOps team. The whole 
process does not need interaction with the DevOps team, and 
therefore they are shielded from the dynamicity of the fleet. 

V. RELATED WORK, SUMMARY, AND OUTLOOK 

Relevant related work for the Computing Fleet come 
primarily from the domain of Edge application management. 
Hao et al. [3] proposed a layered system architecture to 
organize many Edge devices to support applications, with the 
focus on workflows. Recent approaches on service placement 
in Fog and Edge [4] focus on the planning of optimal locations 
to run the application services, while simplifying the problem 
of deploying services to the devices. Automatic deployment 
support for heterogeneous IoT and Edge devices is rare, and 
in existing approaches (e.g., [5]), the coverage of devices with 
constrained resources or missing direct connection to the 
Internet is not addressed. They also lack the support of 
dynamicity of the Edge fleet. In summary, according to a 
recent survey [6], most of the existing approaches on 
managing Edge applications follow the direction of dividing 
applications into components (workflows or services) and 
assisting designer and developers in placing the components. 
The Computing Fleet concept follows the same direction, 
however, goes further to shield the architects and developers 
from the heterogeneity, distribution, and dynamicity of 
devices, and allows deployment of the entire application on a 
single entity, the fleet. Some Cloud vendors provide 
management support for a large set of IoT and Edge devices 
as a single fleet, such as the Azure IoT Edge [7] and AWS 
Greengrass [8]. These manage the dynamicity of the devices 
by tracking the lifecycle of devices and maintaining their 
runtime contexts. However, currently these commercial 

management services for Edge devices only provide basic 
support on service placement and deployment. A relevant 
concept in this context is the Edge Operating System [9], 
which aims at providing a softwarization platform for 
orchestrating and deploying network management services on 
Edge devices. In contrast to this Edge OS, the Computing 
Fleet considers applications that comprise general-purpose 
and business-oriented software services. 

In summary, we introduced the concept of Computing 
Fleet as an abstract entity for representing groups of 
heterogeneous, distributed, and dynamic infrastructure 
elements across the Computing Continuum and proposed an 
associated reference architecture. We discussed key aspects 
related to management of microservices-based applications on 
the Computing Fleet and propose an approach for deployment 
of microservices-based applications. We presented a 
prototype to preliminary evaluate the proposed approach in a 
concrete Cloud-Edge scenario, which shows the feasibility of 
the approach in hiding the heterogeneity and dynamicity of 
fleets to the application developers. 

Since the Computing Fleet concept is new, how it will 
actually be implemented and realized in practice is an open 
issue. We particularly investigated the application layer in this 
paper, however, all the other layers of the architecture require 
novel approaches and solutions in order to enable a fully-
fledged architecture for the Computing Fleet. As part of future 
work, we plan to discuss various aspects and technology 
choices for all the architectural layers and develop a proof-of-
concept for all the layers of the proposed architecture, in 
addition to identifying use cases from different domains for an 
overarching validation of the Computing Fleet concept. 
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