
The Computing Fleet: Managing Microservices-

based Applications on the Computing Continuum
Dumitru Roman, Hui Song

SINTEF AS

Oslo, Norway

{first.last}@sintef.no

Konstantinos Loupos, Thomas

Krousarlis

Inlecom Innovation

Athens, Greece

{first.last}@inlecomsystems.com

Ahmet Soylu

Oslo Metropolitan University

Oslo, Norway

ahmetsoy@oslomet.no

Abstract—In this paper we propose the concept of

“Computing Fleet” as an abstract entity representing groups of

heterogeneous, distributed, and dynamic infrastructure

elements across the Computing Continuum (covering the Edge-

Fog-Cloud computing paradigms). In the process of using fleets,

stakeholders obtain the virtual resources from the fleet, deploy

software applications to the fleet, and control the data flow,

without worrying about what devices are used in the fleet, how

they are connected, and when they may join and exit the fleet.

We propose a three-layer reference architecture for the

Computing Fleet capturing key elements for designing and

operating fleets. We discuss key aspects related to the

management of microservices-based applications on the

Computing Fleet and propose an approach for deployment and

orchestration of microservices-based applications on fleets.

Furthermore, we present a software prototype as a preliminary

evaluation of the Computing Fleet concept in a concrete Cloud-

Edge scenario related to remote patients monitoring.

Keywords—Computing Fleet, Architecture, Computing

Continuum

I. INTRODUCTION

Cloud computing has been the dominating paradigm in
recent years. A critical factor for its success is that it releases
enterprises and service providers from directly handling on-
premises computers individually and allows them to use the
Cloud as a single entity. The increasing amount of data to
process and security and critical response time requirements
are dragging computation from the Cloud to the Edge devices
closer to the data sources [1]. This forces computation tasks to
be handled directly on the individual Edge devices. This is
highly challenging as Edge devices are heterogeneous,
spatially distributed, and move continuously. As a result, “the
cost of deploying and managing an Edge computing
environment can easily exceed the purpose financial benefits”,
as estimated by Gartner1. This raises the question: Can we use
many Edge devices, along with multi-cloud resources, as a
holistic abstract entity to provide advanced computing
capacity at smart device level (Edge), from Edge-to-Fog-to-
Cloud, while being device independent and providing
advanced concepts (ad-hoc clouds, time-triggering,
decentralised intelligence, etc.)? In Cloud computing, such a
holistic entity is achieved based on computer clustering:
“Cloud OS” (OpenStack, Kubernetes) integrates all
computers in a data center as a single system (cluster) [2]. For
external users, a Cloud-native application appears to run on a
single computer, while internally, the Cloud OS ensures that
the application fully leverages the existence of many
computers for better performance. Following this direction,
we believe the question above is answered by providing “the
clusters for the Edge”. However, the traditional cluster

1 https://www.gartner.com/smarterwithgartner/what-edge-computing-

means-for-infrastructure-and-operations-leaders

concept assumes that the computers are roughly
homogeneous, connected by stable fast networks, and under a
unified management. This assumption is no longer valid in
Edge computing and today’s IoT, and therefore, the existing
cluster-oriented Cloud OSs do not work directly on the Edge.

We thus propose a novel concept, the Computing Fleet2,
as the “new cluster” in the era of Edge computing. Like a
cluster, a fleet is an abstract set of infrastructure elements
across the Computing Continuum, viewed as a single system,
regardless of their nature (e.g., IoT devices, Edge servers,
drones). Differently from cluster elements, the elements in a
fleet have unique profiles – different processing capabilities,
hardware capacities, energy requirements, network
connectivity, associate to different data sources/consumers,
and different domain roles. Moreover, a fleet is dynamic, with
devices joining and exiting, and their profiles and topology
constantly evolve. An Edge-native application runs on a fleet
as a whole and can fully leverage the infrastructure elements
across the whole continuum, considering their unique profiles,
maximizing the performance, fulfilling the required tasks, and
adapting to changes. Consequently, a fleet consists of dynamic
elements hired opportunistically based on application
requirements. To fully utilize the Computing Fleet, it is
required that next generation OSs not only go beyond the
state-of-the-art Edge management techniques (by looking at
all devices as a single system), but also extend the current
concept of OS with learning capabilities to handle the open
infrastructure. The architecture of Computing Fleet OSs is an
essential aspect that drives the implementation of such
systems.

In this paper, besides introducing the concept of the
Computing Fleet, we propose a reference architecture with
three layers of key system services needed to realize the fleet
concept (Section II). The reference architecture is meant to
support software architects in designing OSs for the
Computing Fleet, ultimately facilitating the development and
deployment of applications on the Computing Fleet.
Furthermore, we focus on the important aspect of application
deployment on the Computing Fleet, where we propose an
approach for the deployment and orchestration of
microservices-based applications (Section III). A software
prototype is introduced as a preliminary way to evaluate the
Computing Fleet concept, with a focus on the deployment
aspects (Section IV). Finally, we discuss related work,
summarize the paper, and provide an outlook (Section V).

II. REFERENCE ARCHITECTURE FOR FLEET COMPUTING

Like Cloud OSs that abstract many computers as a single
cluster, a Computing Fleet OS is a software system that
manages many devices and provides services for stakeholders

2 The term 'fleet' is inspired by the navy domain, where vessels of various

size and capacity operate as a single whole and follow the global combat

strategy, whilst each undertaking its own vessel-specific function.

Antonio F. Skarmeta

University of Murcia

Mucia, Spain

skarmeta@um.es

D. Roman, H. Song, K. Loupos, T. Krousarlis, A. Soylu, and A. F. Skarmeta: The Computing Fleet: Managing Microservices-based Applications on the
Computing Continuum. New and Emerging Ideas (NEMI) track at 19th IEEE International Conference on Software Architecture (ICSA 2022). To appear.
DOI: 10.1109/ICSA-C54293.2022.00015.

to use the devices together as a single fleet. The challenge is
hiding the complexity and dynamicity of devices from the
stakeholders, while exploiting the different device profiles,
connections, and contexts to optimize the resource usage. For
this purpose, we propose an architecture composed of
components wrapped as distributed agents running on Edge
devices and aggregators on selected devices.

Figure 1. Computing Fleet Reference Architecture

The agents and aggregators are the physical components
of the envisaged Computing Fleet OS, and they collaborate
during runtime to provide fleet operating services in three
layers, as shown in Figure 1:

• Infrastructure Services layer: Organizes the networked

devices across the continuum as a fleet, through device

registration and lifecycle management, network

management, monitoring and simulation. This layer

provisions virtualized resources to upper layers.

• Software Operation Services layer: Supports the

operation of software applications on a fleet. This layer is

in charge of the automatic orchestration and deployment

of microservices-based applications, the discovery of

services within and across applications, the federation of

different fleets, and the optimization of service operation.

• Data and AI Services layer: This layer builds on top of

the services to provide higher level support for building

applications on data processing, AI, and digital twins.

Various stakeholders are expected to participate in such an

ecosystem: infrastructure providers (own and maintain the

devices and their connection and provide them as

infrastructures to other stakeholders); service providers and

application developers / DevOps (create and operate software

applications in the software layer on top of the

infrastructures); data scientists (manage, share, and utilize

data and intelligence on top of the fleet infrastructures and

applications).
Example Scenario. Figure 2 illustrates the proposed layers

using a motivating example simplified from an eHealth
system in the area of remote patient monitoring, where Edge
devices / gateways are deployed at the patients' premises to
collect patients’ health-related data. The gateways collect data
from local sensors and cameras and send the processed data to
back-end services on the Cloud or local servers in nursing
institutes. The DevOps team develops and operates a series of
applications, such as the patient fall detection application.

In the infrastructure services layer, devices are combined
into a private local "Cloud" (the fleet), which provides an
overall picture of the whole system as device twins, provisions
virtual resources from the fleet, and allows the high-level
reconfiguration of the network.

In the application/software operation services layer,
microservices, e.g., for video processing, are developed. The

developers only need to deploy and/or update the entire
application into the whole fleet, and the system automatically
distributes the microservices into the devices, orchestrates
them into a running application, and keeps adapting them in
response to changes in the fleet (such as new devices
enrolled), without intervention from the developers.

In the data and AI services layer, the data and AI assets
such as the video stream and the ML function for fall detection
are managed. This can include simplified creation, tuning and
sharing of the data and the AI modules, together with the
underlying microservices. It also provides the platform for
setting up the federated learning to train the fall detection
model in a distributed way.

Figure 2. Example scenario for the Computing Fleet

In the next section, we dive deeper into the second layer
and discuss various aspects and challenges related to software
application deployment on the Computing Fleet. For the
software application architects and developers of this eHealth
application, the benefit of this layer is that they can focus on
the design and development of application functions, without
worrying about the heterogeneity and dynamicity of the Edge
infrastructure underneath the application.

III. MICROSERVICE-BASED APPLICATIONS ON FLEETS

Microservices architecture has become the predominant
architectural style for developing Cloud applications, where
each application is developed, deployed, and maintained as a
collection of independent services. This architectural style is
becoming a necessity in the context of Edge computing, where
applications must make use of highly heterogenous devices.
The Computing Fleet will have to support applications in the
mainstream microservices architecture.

The example scenario in Figure 2 illustrates a sample
application comprising of six microservices, as hexagons
shown in the middle. Five are internal services (with solid
borders), of which the application developers provide
implementations. The fall-detection microservice has multiple
implementations, with the same machine learning models
optimized for ARM/x86 architectures, respectively. It uses an
external microservice, onsite-alert, to intervene the patient
when he risks falling (e.g., vibration on the smart watch).

Application developers should be able to deploy the entire
application into the whole fleet instead of deploying each
internal microservice into individual devices. Similarly, at
runtime, an application always discovers the external service
from the fleet without having to first decide from which
devices, domains, or providers to find the services.
Technically speaking, developers provide a global
specification of the application (with all microservices and
their connections) to the leading aggregator of the Computing
Fleet, generally with the help of a CI/CD tool. When receiving
the application specifications, the distributed fleet aggregators
and agents work together to place the internal microservices
into the proper devices: an aggregator decides which
microservices should be deployed on each of its associated
agents and marks this suggestion to the device twins. The
agents regularly communicate to the aggregators to pull the
deployment suggestions and then install the microservices
accordingly. Such reverse control style ensures the scalability,
flexibility, and correctness of deployment into distributed
devices with a complex and unstable connection. After
deployment, an internal service asks the nearest aggregator for
the required external services, and the aggregator may
collaborate with other aggregators to search for the service
within the whole fleet. In this context, three main challenges
need to be addressed: (i) How an agent deploys microservice
implementations on its local devices, (ii) How the aggregators
orchestrate multiple microservices to each associated devices,
and (iii) How aggregators work together to discover external
services from the whole fleet. The questions lead to a set of
application-level fleet services, as illustrated in Figure 3.

Figure 3. Fleet services for microservice applications

Software deployment on local devices: Fleet agents deploy
the microservice implementations on the local devices. The
key challenge is the existence of heterogeneous devices within
a fleet. This can be approached towards a diversity-oriented
Edge deployment using the Model-Driven Engineering
method. It requires a new deployment modeling language that
allows developers to specify the multiple functionally
identical implementations for a microservice, together with
the constraints and preferences of each variant, as part of the
application specifications. The language can be based on
existing deployment modeling languages (e.g., Kubernetes).
Based on the deployment model, the deployment engines,
distributed inside fleet agents, assess the context of itself and
its neighboring devices to decide which variant to deploy,
satisfy local constraints and approximate global goals, and
maintain the fleet's diversity. Another challenge is how to
support the devices with limited resources or Internet
connections. This can be based on Kubernetes deployment
model from containers to general artifact-platform pairs and
implement a novel hierarchical deployment engine to use
agents in powerful devices as delegates for the automatic
deployment of microservices on the associated devices.

Orchestration of internal microservices: Some fleet
aggregators contain orchestrators that work together to
translate the design-time application specification into a

runtime topology of service instances and infrastructure
elements. At the core of this orchestration, we find the
distributed knowledge base maintained by the mesh of
orchestrators, including the device twins about the
infrastructure and the current runtime topologies for existing
applications. Based on the knowledge, the orchestrators
search for the best runtime topology for the new application to
meet multiple objectives such as global performance, service
latency, and fault tolerance. This includes the proper
distribution of computation among parallel devices (e.g.,
assigning a data processing logic to those gateways that
connected to the relevant sensors) and the offloading of
computation along far/near Edge and Cloud. The orchestrators
need to continuously adjust the runtime service topology, or
search for new ones, to adapt to the changes of the fleet itself
or its environment. This will require novel techniques to
reduce the searching time, especially when abrupt changes
such as device mobility or failure incidents. The envisaged
techniques include restoring and learning from previous
searching and intermediate results, preserving alternative
solutions obtained with the help of simulation, and nature-
inspired decentralized optimization methods to approximate
the optimal compositions. Novel data sharing mechanisms
will also be needed to exchange knowledge and decisions for
the resilience of the entire fleet despite potential failures.

Discovery of external services: Finding a reusable service
in the Edge is more complicated than in the Cloud. In addition
to functional matching and QoS, the context of services and
hosting infrastructure must be considered and the different
behaviors of service consumers. Two aspects are relevant in
this context: (i) Novel organization of services description
registration in the fleet. In theory, every aggregator should
maintain the real-time knowledge of all the exposed services
together with their contexts (device twins/orchestration
status). We will need to approximate this setup at an
affordable cost through a novel distributed architecture of
service registry, a new mechanism for exchanging and
synchronizing the service knowledge, and the continuous
adaptation of the distribution of service knowledge to cope
with fleet changes. (ii) Cognitive searching mechanisms:
Historical data on network between service components,
service demand, and user mobility will be used to create
accurate prediction models for rapid discovery (reducing
search space). The utility of the service discovery results will
need to be monitored by calculating a weighted combination
of solved requests, search precision, discovery latency,
network overhead, resource usage. Learning models can be
explored to increase the utility model.

Fleet federation and slicing: The deploy-orchestrate-
discover trilogy from one fleet will need to be extended to
multiple fleets, so that applications can be deployed across
fleets (e.g., a fleet of homecare devices may need to be
federated to a fleet of medical devices in the hospital to host
applications that support the collaboration between the
hospital and homecare service providers). A federated fleet
from two fleets can be created by launching a new aggregator
that connects to the two head aggregators from two existing
fleets. Similarly, a sub-fleet can be created by launching a
virtual aggregator connected to a subset of agents and
aggregators. The new virtual aggregators can provide their
endpoints to deploy applications on the federated or sliced
fleets. One direction here would be to focus on the
collaboration model between the aggregators, including
knowledge sharing, orchestration, and discovery tasks. This

will require automatically changing the networks (routing,
firewalls) according to the fleet federation and slicing.

Green meta-optimization: To solve potential conflicts
between different optimization mechanisms, applications, and
fleets, a meta-optimization module should be considered as a
coordinator and arbiter. The meta-optimization introduces
green aspects, such as energy consumption, into the overall
picture. The core of the meta-optimizer is an extended
knowledge base of available optimization approaches,
together with their effects and impacts. Aiming at green
objectives, the fleet knowledge base extends device and
service profiles with power consumption, processing capacity,
use of renewable energy sources, and others. It is built based
on prior inputs and the history of application operation. The
dynamic orchestration will then be able to consider the
feedback from meta-optimizers when choosing the
appropriate device to allocate and distribute the computational
effort. Moreover, novel scheduling and green optimization
techniques need to be introduced, such as resource allocation
that balance computation load towards more power-efficient
nodes and power management policies that put the devices in
an eco-mode if needed. In addition to runtime application
operation, architects and component suppliers can also use
such meta-optimizers, e.g., providing references on the
Lithium-Ion battery set up and the battery initial sizing and its
re/charging operations, with the prediction of the workload
and power consumption.

IV. SOFTWARE PROTOTYPE AND PRELIMINARY EVALUATION

To preliminary evaluate the Computing Fleet concept, we
implemented an initial software prototype based on the
reference architecture, focusing on the system services for
fleet deployment and orchestration as outlined in the previous
section. Following the concept of the Computing Fleet, a
sample scenario using the prototype shows how a DevOps
team can provide an entire application composed of
microservices to a single fleet, without being concerned about
how many devices exist, how to install software on different
types of devices, and whether each device is online or not. To
achieve this, the main challenge from the software
deployment point of view is the heterogeneity and dynamicity
of the fleet, which we address in this prototype. The prototype
covers two layers of the reference architecture: in the
infrastructure layer we reused the Azure IoT Hub for device
registry and lifecycle management, by maintaining a device
twin in the central Cloud for each Edge device; in the software
operation layer, we developed two open-source tools for
microservice orchestration and deployment:

• Diversity-Aware Fleet-Oriented Microservice placement
on Edge Devices (DivEnact) 3 : It takes as input the
microservices with alternative implementations and place
them into different devices considering their contexts.

• GeneSIS 4 : Provides a generic way for deploying the
microservices on different type of Edge devices,
including those that do not have full-functioned OSs or
direct internet connections.

We evaluate the fleet deployment prototype on the remote
patient monitoring (RPM) system (introduced in Section II).
The set-up includes 200 gateways (Raspberry Pi compatible
devices), each of them connected to a set of medical sensors
(via Bluetooth), and some of them connected to lower-end

3 https://gitlab.com/enact/divenact
4 https://gitlab.com/enact/GeneSIS

sensors or actuators (without Bluetooth support via
microcontrollers). The gateways connect to backend services
hosted in Azure via 4G. In this prototype, Edge devices are
limited to gateways and microcontrollers that are used to
connect sensors. Lower-end devices such as medical sensors
are not included, since they do not allow deployment of
general-purpose software. The testing scenario introduces a
new access control mechanism into the RPM fleet. The
scenario answers the following two questions:

1. Can we deploy the application with alternative
microservices on the fleet in a single action, without
handling individually the heterogeneous devices in the
fleet?

2. Can we handle the dynamicity of the fleet in an automatic
way, so that developers do not need to follow up the
change of the fleet after deployment?

The scenario requires new hardware to be distributed and
installed on the patient’s side, i.e., a micro-controller board
(Arduino Uno) connected to the RPM gateway via a USB port,
and alternatively a remote Bluetooth-connected button that the
patient must wear as a necklace. The software part includes
three microservices: (M1) C code running on the Arduino
board to listen to the remote button; (M2) Python code in
Docker container to listen to button events via Bluetooth; and
(M3) an updated version of gateway software to bind the
button events with the authorization and authorization service
in the Cloud.

Figure 4. Fleet deployment of context-aware access control feature

Figure 4 shows how the fleet deployment bundle is used
to realize this scenario. In the diagram, the corner-folded
boxes represent the input artefacts, and the rounded rectangles
are the activities. The arrows represent the causal links
between activities, i.e., the target activities happen as a result
of the source one. The vertical spatial relationship between
activities roughly indicates their temporal relation, i.e., the
activities placed higher in the diagram happens before the
lower ones. The complete scenario can be seen in a screenshot
video5, and in the rest of this section, we briefly explain the
main steps.

The DevOps team develops the code for the alternative
microservice implementations, together with the deployment
models in GeneSIS (for different types of the devices) and
provides an application architecture model describing the
relation between microservices and between microservices
and the devices. Furthermore, they provide additional
constraints that M1 and M2 should only be placed to gateways
that are attached with Arduino buttons and Bluetooth buttons,
respectively. For patients who did not choose to install any
buttons, all the three services should not be deployed. Once

5 https://www.youtube.com/watch?v=a22YP4TB-To

the DevOps team release the code on GitHub, the fleet
deployment action will be automatically triggered. At this
moment, the developers do not need to know which patients
have installed which types of buttons.

The deployment actions trigger the tools to perform actual
fleet deployment work in two different places: the Cloud and
the Edge gateways. The central Cloud service will first decide
which gateways should be provisioned with the new software,
based on the context of the devices. The assignment decision
will be noted on the device twins of the relevant patients. The
DivEnact agents on the gateways keeps checking the status of
their device twins, and once a new deployment is updated in
the device twin, the gateway will launch local deployment, by
downloading the relevant deployment models, and utilize the
GeneSIS engine to install the binary code or the container,
depending on the implementation. The whole assignment and
deployment process is automatic, without interaction from the
developers, and therefore, the developers are shielded from
the heterogeneity of the fleet.

Fleet assignment does not impact all the Edge devices at
the same time: The DivEnact agent will keep monitoring the
contexts of the device and update the device twin. The central
DivEnact service will re-evaluate the assignment in a pre-
defined interval (5 minutes in this case) and trigger device
deployment if needed. From the patient's point of view, if they
plug an Arduino button into their gateway, the microservices
M1 and M3 will be automatically deployed in 2-7 minutes
(local deployment takes in average 2 minutes in our
experimental setup), and they can immediately start using the
new access control feature, without waiting for the next
deployment action triggered by the DevOps team. The whole
process does not need interaction with the DevOps team, and
therefore they are shielded from the dynamicity of the fleet.

V. RELATED WORK, SUMMARY, AND OUTLOOK

Relevant related work for the Computing Fleet come
primarily from the domain of Edge application management.
Hao et al. [3] proposed a layered system architecture to
organize many Edge devices to support applications, with the
focus on workflows. Recent approaches on service placement
in Fog and Edge [4] focus on the planning of optimal locations
to run the application services, while simplifying the problem
of deploying services to the devices. Automatic deployment
support for heterogeneous IoT and Edge devices is rare, and
in existing approaches (e.g., [5]), the coverage of devices with
constrained resources or missing direct connection to the
Internet is not addressed. They also lack the support of
dynamicity of the Edge fleet. In summary, according to a
recent survey [6], most of the existing approaches on
managing Edge applications follow the direction of dividing
applications into components (workflows or services) and
assisting designer and developers in placing the components.
The Computing Fleet concept follows the same direction,
however, goes further to shield the architects and developers
from the heterogeneity, distribution, and dynamicity of
devices, and allows deployment of the entire application on a
single entity, the fleet. Some Cloud vendors provide
management support for a large set of IoT and Edge devices
as a single fleet, such as the Azure IoT Edge [7] and AWS
Greengrass [8]. These manage the dynamicity of the devices
by tracking the lifecycle of devices and maintaining their
runtime contexts. However, currently these commercial

management services for Edge devices only provide basic
support on service placement and deployment. A relevant
concept in this context is the Edge Operating System [9],
which aims at providing a softwarization platform for
orchestrating and deploying network management services on
Edge devices. In contrast to this Edge OS, the Computing
Fleet considers applications that comprise general-purpose
and business-oriented software services.

In summary, we introduced the concept of Computing
Fleet as an abstract entity for representing groups of
heterogeneous, distributed, and dynamic infrastructure
elements across the Computing Continuum and proposed an
associated reference architecture. We discussed key aspects
related to management of microservices-based applications on
the Computing Fleet and propose an approach for deployment
of microservices-based applications. We presented a
prototype to preliminary evaluate the proposed approach in a
concrete Cloud-Edge scenario, which shows the feasibility of
the approach in hiding the heterogeneity and dynamicity of
fleets to the application developers.

Since the Computing Fleet concept is new, how it will
actually be implemented and realized in practice is an open
issue. We particularly investigated the application layer in this
paper, however, all the other layers of the architecture require
novel approaches and solutions in order to enable a fully-
fledged architecture for the Computing Fleet. As part of future
work, we plan to discuss various aspects and technology
choices for all the architectural layers and develop a proof-of-
concept for all the layers of the proposed architecture, in
addition to identifying use cases from different domains for an
overarching validation of the Computing Fleet concept.

Acknowledgments. This work received partial funding from
the projects EC H2020 DataCloud (Grant nr. 101016835) and
NFR BigDataMine (Grant nr. 309691) and FLEET (Grant nr.
309700).

REFERENCES

[1] D. Kimovski, R. Mathá, J. Hammer, N. Mehran and H. P. R.

Hellwagner, "Cloud, Fog or Edge: Where to Compute?," IEEE Internet

Computing, 2021.

[2] O. Sefraoui, M. Aissaoui and M. Eleuldj, "OpenStack: toward an open-

source solution for cloud computing," International Journal of

Computer Applications, vol. 55, no. 3, pp. 38-42, 2012.

[3] Z. Hao, E. Novak, S. Yi and Q. Li, "Challenges and software

architecture for fog computing," IEEE Internet Computing, vol. 21, no.

2, pp. 44-53, 2017.

[4] F. A. Salaht, F. Desprez and A. Lebre, "An overview of service

placement problem in fog and edge computing," ACM Computing

Surveys (CSUR), pp. 1-35, 2020.

[5] P. Nguyen, N. Ferry, G. Erdogan, H. Song, S. Lavirotte, J.-Y. Tigli and

A. Solberg, "Advances in deployment and orchestration approaches for

IoT-a systematic review," in 2019 IEEE International Congress on

Internet of Things, 2019.

[6] R. Mahmud, K. Ramamohanarao and R. Buyya, "Application

management in fog computing environments: A taxonomy, review and

future directions.," ACM Computing Surveys (CSUR), vol. 53, no. 4, pp.

1-43, 2020.

[7] D. Jensen, Beginning Azure IoT Edge Computing: Extending the Cloud

to the Intelligent Edge, Apress, 2019.

[8] A. Kurniawan, Learning AWS IoT: Effectively manage connected

devices on the AWS cloud using services such as AWS Greengrass,

AWS button, predictive analytics and machine learning, Packt

Publishing Ltd, 2018.

[9] A. Manzalini and N. Crespi, "An edge operating system enabling

anything-as-a-service," IEEE Communications Magazine, vol. 54, no.

3, pp. 62-67, 2016.

