
Learning Automata with Artificial Reflecting Barriers in Games with Limited
Information

Ismail Hassan
Oslo Metropolitan University

Oslo, Norway
ismail@oslomet.no

B. John Oommen
Carleton University

Ottawa, Canada
oommen@scs.carleton.ca

Anis Yazidi
Oslo Metropolitan University

Oslo, Norway
anisy@oslomet.no

Abstract
This paper deals with the problem of solving stochastic
games (which have numerous business and economic
applications), using the interesting tools of Learning
Automata (LA), the precursors to Reinforcement Learn-
ing (RL). Classical LA systems that possess proper-
ties of absorbing barriers, have been used as powerful
tools in game theory to devise solutions that converge
to the game’s Nash equilibrium under limited informa-
tion (Sastry, Phansalkar, and Thathachar 1994). Games
with limited information are intrinsically hard because
the player does not know the actions chosen of other
players, neither their outcomes. The player might not
be even aware of the fact that he/she is playing against
an opponent.
With the state-of-the-art, the numerous works in LA
applicable for solving game theoretical problems, can
merely solve the case where the game possesses a sad-
dle point in a pure strategy.
They are unable to reach mixed Nash equilibria when a
saddle point is non-existent in pure strategies. Addition-
ally, within the field of LA and RL in general, the theo-
retical and applied schemes of LA with artificial barriers
are scarce, even though incorporating artificial barriers
in LA has served as a powerful and yet under-explored
concept, since its inception in the 1980’s. More recently,
the phenomenon of introducing artificial non-absorbing
barriers was pioneered, and this renders the LA schemes
to be resilient to being trapped in absorbing barriers. In
this paper, we devise a LA with artificial barriers for
solving a general form of stochastic bimatrix games.
The problem’s complexity has been augmented with
the scenario that we consider games in which there is
no saddle point in pure strategies. By resorting to the
above-mentioned powerful concept of artificial reflect-
ing barriers, we propose a LA that converges to an opti-
mal mixed Nash equilibrium even though there may be
no saddle point when a pure strategy is invoked.

1 Introduction
Narendra and Thathachar first presented the term Learning
Automata (LA) in their 1974 survey paper (Narendra and
Thathachar 1974; 2012). LA consists of an adaptive learning
agent interacting with a stochastic Environment with incom-
plete information. Lacking prior knowledge, LA attempt to

Copyright © 2021by the authors. All rights reserved.

determine the optimal action to take by updating the action
probabilities based on the Reward/Penalty input that the LA
receives from the Environment. This process is repeated un-
til the optimal action is, finally, hopefully achieved.

Research into LA over the past four decades is exten-
sive, leading to the proposal of various types, throughout the
years. LA are mainly characterized as being Fixed Structure
Learning Automata (FSLA) or Variable Structure Learning
Automata (VSLA). In FSLA, the probability of the transi-
tion from one state to another state is fixed, and the ac-
tion probability of any action in any state is also fixed.
Early research into LA centered around FSLA, and pio-
neers such as Tsetlin, Krylov, and Krinsky (Tsetlin and oth-
ers 1973) proposed several examples of these. The research
into LA moved gradually towards VSLA. Introduced by Var-
shavskii and Vorontsova in the early 1960’s (Varshavskii and
Vorontsova 1963), VSLA have transition and output func-
tions that evolve as the learning process continues (Narendra
and Thathachar 1974; 2012; John oommen 1986). The state
transitions or the action probabilities are updated at every
time step.

1.1 LA in Game Theory
Since the primary focus of this paper is on using LA
to resolve games, it is prudent for us to give a brief
overview of the results currently available. Studies on strate-
gic games with LA have primarily focused on the traditional
LR−I scheme, which is desirable because it can yield the
Nash equilibrium in pure strategies (Sastry, Phansalkar, and
Thathachar 1994) 1. For instance, Vrancx et al. extend the
latter work of Sastry to multi-state games while establish-
ing the link between LA and replicator dynamics. However,
seminal studies game theoretical LA such as (Bloember-
gen et al. 2015; Sastry, Phansalkar, and Thathachar 1994;
Vrancx, Tuyls, and Westra 2008) only studied the traditional
absorbing LR−I scheme.

1The abbreviations, LR−I , as the Linear Reward-Inaction
scheme, is a fundamental and popular machine, where the corre-
sponding probability is increased linearly on receiving a “Reward”,
but is unchanged (“Inaction”) upon receiving a penalty.



Although other ergodic schemes such as the LR−P
2 were

used in games with limited information (Viswanathan and
Narendra 1974), they did not gain popularity, due to their
inability to converge to the Nash equilibrium.

LA have found numerous applications in domains which
can be perceived as being game-theoretic. These include
sensor fusion without the knowledge of the ground truth
(Yazidi et al. 2020), distributed power control in wire-
less networks and more particularly, NOMA (Rauniyar
et al. 2020), optimization of cooperative tasks (Zhang,
Wang, and Gao 2020), content placement in cooperative
caching (Yang et al. 2020), congestion control in the Inter-
net of Things (Gheisari and Tahavori 2019), QoS satisfac-
tion in autonomous mobile edge computing (Apostolopou-
los, Tsiropoulou, and Papavassiliou 2018), opportunistic
spectrum access (Cao and Cai 2018), scheduling domes-
tic shiftable loads in smart grids (Thapa et al. 2017), anti-
jamming channel selection algorithm for interference miti-
gation (Jia et al. 2017), and relay selection in vehicular ad-
hoc networks (Tian et al. 2017) etc.

We conclude this subsection by observing that all of these
papers utilize what we shall refer to as the well-acclaimed
families of LA (continuous, discretized, Pursuit etc.). How-
ever, none of them have ventured into the unexplored waters
of considering LA which possess artificial reflecting barri-
ers, as we have done in this paper.

1.2 Objectives and Contributions of this Paper
In this paper, we propose an algorithm addressing bimatrix
games which is a more general version of the zero-sum game
treated in (Lakshmivarahan and Narendra 1982; Yazidi, Sil-
vestre, and Oommen 2021). We consider a stochastic game
where the outcomes are either a Reward or a Penalty. The
Reward probabilities are given by the corresponding pay-
off matrix of each player, and unknown to the LA. The
games we work with possess limited information, where
each Player only observes the outcome of his action in the
form of a Reward or Penalty, without observing the action
chosen by the other Player. The Player might not be even
aware that he is playing against an opponent.

The novel contributions of this paper are the following:
1. While the numerous works in LA-based solutions for

game-theoretic problems merely solve the case where the
game possesses a saddle point in a pure strategy, they are
unable to reach mixed Nash equilibria when there is no
saddle point in pure strategies. This is our primary contri-
bution.

2. In the new scheme, the artificial non-absorbing barriers
render the schemes to be resilient to being trapped in
absorbing barriers. However, by resorting to the above-
mentioned phenomenon of artificial reflecting barriers,
the LA converges to an optimal mixed Nash equilibrium
even though there may be no saddle point when a pure
strategy is invoked.
2The abbreviations, LR−P , as the Linear Reward-Penalty

scheme, is a fundamental and popular machine, where the corre-
sponding probability is increased linearly on receiving a “Reward”,
and decreasing linearly upon receiving a “Penalty”.

3. By virtue of the above, the well-known legacy LR−I

scheme can be seen to be an instance of our proposed al-
gorithm for a particular choice of the barrier.

4. All of the above results have been formally proven and
experimentally verified.

All of the results mentioned above are novel, and to the best
our knowledge, pioneering.

1.3 Organization of this Paper
The remainder of this article is organized as follows. In Sec-
tion 2, we present the game model for both P−type and
S−type Environments. In Section 3, we introduce our de-
vised LR−I with artificial barriers for handling P−type En-
vironments. The experimental results related to the LR−I

are presented in Section 4. Section 5 concludes the paper.

2 The Game Model
In this section, we formalize the game model that is be-
ing investigated. Let P (t) = [p1(t) p2(t)]

⊺ denote the
mixed strategy of Player A at time instant t, where p1(t)
accounts for the probability of adopting strategy 1 and, con-
versely, p2(t) stands for the probability of adopting strategy
2. Thus, P (t) describes the distribution over the strategies
of Player A. Similarly, we can define the mixed strategy of
Player B at time t as Q(t) = [q1(t) q2(t)]

⊺. The exten-
sion to more than two actions per Player is straightforward
following the method analogous to what was used by Pa-
pavassilopoulos (Papavassilopoulos 1989), which extended
the work of Lakshmivarahan and Narendra (Lakshmivara-
han and Narendra 1982).

Let αA(t) ∈ {1, 2} be the action chosen by Player A at
time instant t and αB(t) ∈ {1, 2} be the one chosen by
Player B, following the probability distributions P (t) and
Q(t), respectively. The pair (αA(t), αB(t)) constitutes the
joint action at time t, and are pure strategies. Specifically,
if (αA(t), αB(t)) = (i, j), the probability of Reward for
Player A is determined by rij while that of Player B is de-
termined by cij . With regard to notation, in this case, Player
A is the row Player, while Player B is the column Player.

When we are operating in the P -type mode, the game is
defined by two payoff matrices, R and C, describing the Re-
ward probabilities of Players A and B respectively, where:

R =

(
r11 r12
r21 r22

)
, and (1) C =

(
c11 c12
c21 c22

)
, (2)

where the entries of both matrices are probabilities.
In the case where the Environment is a S-model type,

the latter two matrices are deterministic and describe the
feedback as a scalar in the interval [0, 1]. For instance, if
we operate in the S-type Environment, the feedback when
both Players choose their respective first actions will be the
scalar c11 for Player A and not a Bernoulli-distributed feed-
back as in the case of a P -type Environment. It is possible
to also consider the cij’s as stochastic continuous variables
whose means are cij , and with specific instantaneous real-
izations. However, for the sake of simplicity we consider C
and R as being deterministic. The asymptotic convergence
proofs for the S−type Environment are valid independent



of whether C and R are deterministic, or whether they are
obtained from a distribution whose supports are in the inter-
val [0, 1], and whose means are defined by the matrices. The
extension of our scheme to S-model type has been omitted
from this paper due to number of page limitation.

We now resort to some fundamental principles of Strate-
gic Game Theory. Indeed, independent of the type of the
Environment (i.e., whether it is of a P−type or S−type), we
can distinguish three cases when it concerns their equilibria:

• Case 1:
If (r11 − r21)(r12 − r22) < 0, (c11 − c12)(c21 − c22) < 0
and (r11 − r21)(c11 − c12) < 0, there is a single mixed
equilibrium.

• Case 2:
If (r11−r21)(r12−r22) > 0 or (c11−c12)(c21−c22) > 0,
there is only a single pure equilibrium since there is at
least a single Player who has a dominant strategy.

• Case 3:
If (r11 − r21)(r12 − r22) < 0, (c11 − c12)(c21 − c22) <
0 and (r11 − r21)(c11 − c12) > 0, there are two pure
equilibria and one mixed equilibrium.

In strategic games, Nash equilibria are equivalently re-
ferred to as the game’s “saddle points”. Since the outcome
for a given joint action is stochastic, the game is of stochastic
genre.

3 Game Theoretical LA Scheme based on the
LR−I with Artificial Barriers

In this section, we shall present our LR−I scheme that pos-
sesses artificial reflecting barriers, specifically devised for
P -type Environments.

3.1 Non-Absorbing Artificial Barriers

What is unknown in the field of LA is a scheme which is
originally absorbing, but which can be rendered ergodic. In
many cases, this can be achieved by making the scheme be-
have according to the absorbing scheme’s rule in the interior
of the probability simplex, and by then forcing the probabil-
ity back inside the simplex whenever the scheme approaches
an absorbing barrier. In other words, the absorbing barrier
is rendered to be “artificially reflecting”. Such a scheme is
novel in the field of LA and its advantage is that it avoids
being absorbed in non-desirable absorbing barriers.

Interestingly, and apart from the above, by countering the
absorbing barriers, the scheme can migrate stochastically to-
wards a desirable mixed strategy. Also, as we will see later
in the paper, even if the optimal strategy corresponds to an
absorbing barrier, the scheme will approach it. Thus, the
scheme converges to mixed strategies whenever they corre-
spond to optimal strategies while approaching the absorbing
states whenever they are the optimal strategies. Our newly-
devised scheme that boasts these properties, is explained in
the next section.

3.2 Non-Absorbing Game Playing
We now present the design of our proposed LA scheme to-
gether with some theoretical results demonstrating that it can
converge to the saddle points of the game even if the saddle
point is a mixed Nash equilibrium. Our solution represents a
new variant of the LR−I scheme, which is made ergodic by
modifying the update rule in a general form.

We introduce a quantity, pmax, which represents the high-
est values that any probability can take, as the artificial bar-
rier. This is a real value close to 1. Similarly, we introduce a
quantity, pmin = 1− pmax which corresponds to the lowest
value any action probability can take. In order to enforce the
constraint that the probability of any action for both Play-
ers remains within the interval [pmin, pmax] one should start
by choosing initial values of p1(0) and q1(0) in the same
interval, and further resorting to strategically designed up-
date rules that ensure that the modifications at each iteration,
keep the probabilities within the same interval.

If the outcome from the Environment is a Reward at a
time t for action i ∈ {1, 2}, the update rule is given by:

pi(t+ 1) = pi(t) + θ(pmax − pi(t))

ps(t+ 1) = ps(t) + θ(pmin − ps(t)) for s ̸= i.
(3)

where θ is a learning parameter. Following the Inaction Prin-
ciple of the LR−I , whenever the Player receives a Penalty,
its action probabilities are kept unchanged, and thus:

pi(t+ 1) = pi(t)

ps(t+ 1) = ps(t) for s ̸= i.
(4)

The update rules for the mixed strategy q(t + 1) are de-
fined in a similar fashion. We shall now move to the theoret-
ical analysis of the convergence properties of our proposed
algorithm for solving a strategic game. To do this, we as-
sume that the optimal Nash equilibrium of the game, which
is unknown to the LA, is the pair (popt, qopt).

3.3 Proof Methodology
Before we proceed with a sketch of the formal proof, we
shall describe the steps involved in the theoretical analy-
sis. The proof invokes Norman’s classical results (Norman
1972), which have been used to prove various convergence
results for LA. However, the use of these results in LA-based
game theory has been, to date, limited.

The first involves the existence and location of the po-
sitions where the Pure/Mixed equilibria could converge to.
This is done in Theorem 1. It then involves a demonstra-
tion that the trajectory of the updating scheme does, indeed,
move towards these equilibria. This is achieved by consider-
ing the “gradients”, or rather the matrix of derivatives of the
corresponding game matrices.

We shall first distinguish the details of the equilibrium
condition, according to the entries in the payoff matrices R
and C for Case 1, given below.

Case 1: Only One Mixed Nash Equilibrium Case The
first case depicts the situation where there is no saddle point
in pure strategies. In other words, the only Nash equilibrium



is a mixed one. Based on the fundamentals of Game Theory,
the location of the optimal mixed strategy in the probability
space can be shown to be the following:

popt =
c22 − c21

L′ , qopt =
r22 − r12

L
,

where:
L = (r11 + r22)− (r12 + r21), and
L′ = (c11 + c22)− (c12 + c21).
This can be further sub-divided into two sub-cases:

r11 > r21, r12 < r22; c11 < c12, c21 > c22, and (5)

r11 < r21, r12 > r22; c11 > c12, c21 < c22. (6)

Let the vector X(t) = [p1(t) q1(t)]
⊺. We resort to the

notation ∆X(t) = X(t + 1) − X(t), and for denoting
the conditional expected value operator, we use the notation
E[·|·]. Using these notations, we prove the following theo-
rem.

Theorem 1. Consider a two-Player game with payoff ma-
trices as in Eq. (1) and Eq. (2), and a learning algorithm
defined by Eq. (3) and Eq. (4) for both Players A and B,
with learning rate θ. Then, E[∆X(t)|X(t)] = θW (x) and
for every ϵ > 0, there exists a unique stationary point
X∗ = [p∗1 q∗1 ]

⊺ satisfying:

1. W (X∗) = 0;
2. |X∗ −Xopt| < ϵ.

The proofs of the theorems reported in this paper as well
as some other additional theoretical results are omitted here
due to space limitations and will be published in an extended
version of the current article. A preprint of the extended ver-
sion (Hassan, Oommen, and Yazidi 2022) is available on
arXiv.

The next theorem states that the expected value of ∆X(t)
has a negative definite gradient.

Theorem 2. The matrix of partial derivatives, ∂W (X∗)
∂x is

negative definite.

Theorem 3. We consider the update equations given by the
LR−I scheme. For a sufficiently small pmin approaching 0,
and as θ → 0 and as time goes to infinity:

[E(p1(t)) E(q1(t))]→
[
p∗opt q∗opt

]
,

where
[
p∗opt q∗opt

]
is the game’s Nash equilibrium.

4 Experimental results
To verify the theoretical properties of the proposed learn-
ing algorithm, we conducted several simulations. By using
different instances of the payoff matrices R and C, we can
experimentally cover the three cases referred to in Section 3.
Although the experiments were done for numerous game
settings, in the interest of being concise and space, we re-
port here only a few of these results for case 1 where the
only Nash equilibrium that the game admits is a mixed one.
Results for case 2 and case 3 are omitted due to page limita-
tions. Experimental results which were not included in this
paper show that the scheme possesses plausible convergence
properties even in the case where there is a single saddle

pmax θ = 0.001 θ = 0.0001
0.990 1.77× 10−2 2.03× 10−2

0.991 1.71× 10−2 1.69× 10−2

0.992 1.33× 10−2 1.54× 10−2

0.993 1.32× 10−2 1.52× 10−2

0.994 1.18× 10−2 1.02× 10−2

0.995 1.17× 10−2 7.86× 10−3

0.996 8.50× 10−3 6.37× 10−3

0.997 5.57× 10−3 4.43× 10−3

0.998 5.27× 10−3 3.34× 10−3

Table 1: Error for different values of θ and pmax, when popt =
0.6667 and qopt = 0.3333 for the game specified by the R and C
matrices given by Eq. ( 7) and Eq. ( 8) respectively.

point in pure strategies, and that our proposed LA will ap-
proach the optimal pure equilibrium, which corresponds to
case 2. In case 3, we observed that depending on the initial
conditions, our LA converges to one of the two pure equilib-
ria which is usually the one closest to the starting point.

4.1 Convergence in Case 1
We will now consider the case of the game which possesses
only a single mixed Nash equilibrium, implying that there
is no saddle point in pure strategies. The game matrices for
which we report the results are R and C given by:

R =

(
0.2 0.6
0.4 0.5

)
, (7) C =

(
0.4 0.25
0.3 0.6

)
, (8)

which admits popt = 0.6667 and qopt = 0.3333.
We ran our simulation for 5 × 106 iterations, and present

the error in Table 1 for different values of pmax and θ, as the
difference between Xopt and the experimental mean over
time of X(t) after convergence3. The high value for the
number of iterations was chosen in order to eliminate the
Monte Carlo error. A significant observation is that the error
monotonically decreases as pmax goes towards 1 (i.e., when
pmin → 0). For instance, for pmax = 0.998 and θ = 0.001,
the proposed scheme yields an error of 5.27×10−3, and fur-
ther reducing θ to 0.0001 leads to an error of 3.34× 10−3.

The time-based behavior of the scheme is illustrated in
Figure 1. It displays the trajectory of the mixed strategies for
both Players (given by X(t)) for an ensemble of 1,000 runs
using θ = 0.01 and pmax = 0.99. The trajectory of the en-
semble enables us to notice the mean evolution of the mixed
strategies. The spiral pattern results from one of the Players
adjusting to the strategy used by the other before the former
learns by readjusting its strategy. The process is repeated,
thus leading to more minor corrections until the Players at-
tain to the Nash equilibrium. The process can be visualized
in Figure 2 presenting the time evolution of the strategies
of both Players for a single experiment with pmax = 0.99

3The mean is taken over the last 10% of the total number of
iterations, which is a valid methodology since we are dealing with
an ergodic Markov process, where the true time average is the same
as the true ensemble average.



Figure 1: Trajectory of [p1(t), q1(t)]⊺ for the R and C matrices
given by Eq. ( 7) and Eq. ( 8) respectively. Here popt = 0.6667 and
qopt = 0.3333, and the parameters are pmax = 0.99 and θ = 0.01.

and θ = 0.00001 over 3 × 107 steps. We observe an oscil-
latory behavior that vanishes as the Players play for more
iterations. It is worth noting that a larger value of θ will
cause more steady state error (as specified in Theorem 1),
but it will also disrupt this behavior as the Players take larger
updates whenever they receive a Reward. Furthermore, de-
creasing θ results in a smaller convergence error, but also
negatively affects the convergence speed, since more itera-
tions are required to achieve convergence. Figure 3 depicts
the trajectories of the probabilities p1 and q1 for the same
settings as those in Figure 2.

Figure 2: Time Evolution X(t) for for the R and C matrices
given by Eq. ( 7) and Eq. ( 8) respectively. Here popt = 0.6667
and qopt = 0.3333, and the parameters pmax = 0.99 and θ =
0.00001.

Now, we turn our attention to the analysis of the deter-
ministic Ordinary Differential Equation (ODE) correspond-
ing to our LA with the reflecting barriers. The trajectory of
the ODE can be seen to conform with our intuition, and the
results of the LA run is given in Figure 3. Its plot is given in
Figure 4. The two ODEs are given by:

dp1
dt

=W1(X)

=p1(pmax − p1)D
A
1 (q1)

+(1− p1)(pmin − p1)D
A
2 (q1), and

dq1
dt

=W1(X)

=p1(pmax − p1)D
A
1 (q1)

+(1− p1)(pmin − p1)D
A
2 (q1).

and where DA
1 and DA

2 are:

DA
1 (q1) = q1r11 + (1− q1)r12

DA
2 (q1) = q1r21 + (1− q1)r22.

Observe that to obtain the ODE for a particular example,
we need to merely replace the entries of R and C in the ODE
by their specific values. Thus, we need to only know R and
C to plot the trajectories of the ODE, and of course pmax.

Figure 3: Trajectory of X(t) for the example studied in Figure 2,
where popt = 0.6667 and qopt = 0.3333, using pmax = 0.99 and
θ = 0.00001.

Figure 4: Trajectory of the ODE for Case 1 for pmax = 0.99.

5 Conclusion
In this paper, we propose a LA with artificially non-
absorbing that is able to solve game theoretical problems.
The scheme is able to converge to the game’s Nash equi-
librium under limited information that has clear advantages
over the well-known LA solution for game theoretical due to
Sastry et al. (Sastry, Phansalkar, and Thathachar 1994) and
revisited by Vranx et al. (Vrancx, Tuyls, and Westra 2008).



Our scheme is an ergodic one and illustrates a design by
which an inherently absorbing scheme, in our case, Linear
Reward-Inaction (LR−I ), is rendered ergodic. Interestingly,
while being able to solve the mixed Nash equilibrium case,
our scheme maintains the plausible properties of the origi-
nal LR−I as it is able to converge to a near-optimal to the
pure strategies in the probability simplex whenever a sad-
dle point exists for pure strategies. As a future work, we
would like to extend our scheme to Stackelberg games which
are often employed in security and that assume that the de-
fender deploys a mixed strategy that can be fully observed
by the attacker who will optimally reply to it. The extension
would be interesting but far from being obvious. Further-
more, we aim to extend our scheme to a continuous strategy
space by drawing inspiration from the Continuous Action
LA (CALA) used by de Jong and Tuyls to solve the Ulti-
matum Game and the Nash Bargaining Game (de Jong and
Tuyls 2011).
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