
An AO-ADMM approach to constraining

PARAFAC2 on all modes∗

Marie Roald† Carla Schenker† Vince D. Calhoun‡

Tülay Adalı§ Rasmus Bro¶ Jeremy E. Cohen‖ Evrim Acar∗∗

Abstract

Analyzing multi-way measurements with variations across one mode of the
dataset is a challenge in various fields including data mining, neuroscience and
chemometrics. For example, measurements may evolve over time or have un-
aligned time profiles. The PARAFAC2 model has been successfully used to
analyze such data by allowing the underlying factor matrices in one mode (i.e.,
the evolving mode) to change across slices. The traditional approach to fit a
PARAFAC2 model is to use an alternating least squares-based algorithm, which
handles the constant cross-product constraint of the PARAFAC2 model by im-
plicitly estimating the evolving factor matrices. This approach makes imposing
regularization on these factor matrices challenging. There is currently no algo-
rithm to flexibly impose such regularization with general penalty functions and
hard constraints. In order to address this challenge and to avoid the implicit
estimation, in this paper, we propose an algorithm for fitting PARAFAC2 based
on alternating optimization with the alternating direction method of multipliers
(AO-ADMM). With numerical experiments on simulated data, we show that the
proposed PARAFAC2 AO-ADMM approach allows for flexible constraints, re-
covers the underlying patterns accurately, and is computationally efficient com-
pared to the state-of-the-art. We also apply our model to two real-world datasets
from neuroscience and chemometrics, and show that constraining the evolving
mode improves the interpretability of the extracted patterns.

1 Introduction

For many applications in different domains, measurements are obtained in the form
of sequences of matrices, which can be arranged as a third-order tensor. Tensor
decomposition, which is the higher-order extension of matrix decomposition, is a
well-known and useful tool for analysis of such multi-way data. A popular tensor

∗Funding: This work was supported in part by the Research Council of Norway through project
300489 (IKTPLUSS) and ANR JCJC project LoRAiA ANR-20-CE23-0010.

†Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital
Engineering, Oslo, Norway & Faculty of Technology, Art and Design, Oslo Metropolitan University,
Oslo, Norway (mariero@simula.no, carla@simula.no).

‡Department of Psychology, Georgia State University, Atlanta, GA, USA (vcalhoun@gsu.edu)
§Department of Computer Science and Electrical Engineering, UMBC, Baltimore, MD

(adali@umbc.edu).
¶Department of Food Science, University of Copenhagen, Copenhagen, Denmark (rb@food.ku.dk).
‖Univ Lyon, INSA-Lyon, UCBL, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220,

U1206, F-69100 Villeurbanne, France (jeremy.cohen@cnrs.fr).
∗∗Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital

Engineering, Oslo, Norway (evrim@simula.no).

1

ar
X

iv
:2

11
0.

01
27

8v
3

 [
cs

.L
G

]
 8

 J
ul

 2
02

2

This is an accepted, peer reviewed postprint-version of the following journal article that has been published in SIAM Journal on Mathematics of Data Science: An AO-ADMM Approach to
Constraining PARAFAC2 on All Modes Marie Roald, Carla Schenker, Vince D. Calhoun, Tülay Adali, Rasmus Bro, Jeremy E. Cohen, and Evrim Acar SIAM Journal on Mathematics of Data

Science 2022 4:3, 1191-1222. DOI: https://doi.org/10.1137/21M1450033.
This postprint-version is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1137/21M1450033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

�bk �1

�dk �11

�dk �22

�bk �2Xk¼ADkBk
8 k1,k2∙KBk Bk1=1

> Bk2Bk2
>

XkJk

I

K

≈
+a1

a2

Figure 1: Illustration of a two-component PARAFAC2 model for a ragged tensor.

decomposition model is the CANDECOMP/PARAFAC (CP) decomposition [2], [3],
also known as the canonical polyadic decomposition [4] which describes a tensor as
the sum of a minimum number of rank-one components, i.e., an R-component CP
model of the tensor X ∈ RI×J×K , is given by

X ≈
R∑

r=1

ar ◦ br ◦ cr, (1)

where ar,br and cr are the r-th column of the factor matrices A ∈ RI×R,B ∈ RJ×R
and C ∈ RK×R. These factor matrices can be interpreted as a collection of underlying
patterns. Following (1), each frontal slice, Xk of X can be represented as:

Xk ≈ ADkB
T, (2)

where each Dk ∈ RR×R is diagonal with diagonal entries given by the k-th row of
C. The CP model has successfully extracted meaningful patterns from data tensors
in various fields including chemometrics [5], neuroscience [6]–[8] and social network
analysis [9] (see surveys on tensor factorizations for more applications [10]–[12]).

However, CP cannot describe patterns that vary across one mode without following
the strict assumption in (2). For such evolving patterns, the more general PARAFAC2
model [13] is better suited as it models the slices of a tensor by

Xk ≈ ADkB
T
k , (3)

where Dk ∈ RR×R is diagonal, A ∈ RI×R,Bk ∈ RJ×R and BT
k1Bk1 = BT

k2Bk2 for all
k1, k2 ≤ K. Thus, PARAFAC2 allows the Bk factor matrices to vary across tensor
slices, under the constraint that their cross product is constant, which is more general
than CP, where Bk1 = Bk2 . Letting Bk vary in this way also enables decomposing
ragged tensors (i.e., stacks of matrices with varying size, as illustrated in Figure 1).

Letting factor matrices evolve across one mode has proven advantageous for appli-
cations in many domains. PARAFAC2 has, for example, shown an exceptional ability
to analyze chromatographic data with unaligned elution profiles [14]. The PARAFAC2
model has also been successfully applied to resolve unaligned temporal profiles in elec-
tronic health records [15] and to retrieve information across languages from a multi-
language corpus [16]. In neuroscience, PARAFAC2 has been used to model functional
connectivity in functional Magnetic Resonance Imaging (fMRI) data [17], for tracing
time-evolving networks of brain connectivity [18] and for jointly analyzing fMRI data
from multiple tasks [19].

2

Online (also referred to as incremental or adaptive) tensor methods can also be
used to capture evolving components, e.g., through updates of the CP model [20], [21],
in particular, in the context of streaming data. While related, modelling assumptions
of online tensor methods vs. the PARAFAC2 model are different. Online methods
update the whole model, i.e., factor matrices in all modes, as new data slices arrive
at new time points, for instance through efficient stochastic gradient descent (SGD)-
based approaches [22]–[24]. On the other hand, PARAFAC2 jointly analyzes data
slices summarizing them all using a common A factor matrix (e.g., when a subjects
by voxels by time windows fMRI tensor is analyzed using PARAFAC2, the same
subject coefficients, A, are assumed for all time windows [18]) that can only change
up to a scaling across different slices while letting B factor matrices change from one
slice to another. The distinction between modelling assumptions becomes even more
clear when multi-task fMRI data (in the form of a subjects by voxels by tasks tensor)
is analyzed. PARAFAC2 assumes the same subject coefficients and different voxel-
mode (evolving) components for each task [19] whereas online tensor methods are not
suitable for the analysis of such data.

One challenge with PARAFAC2 is that the traditional alternating least squares
(ALS) approach for fitting the model handles its constant cross-product constraint
by implicitly estimating the evolving Bk factor matrices via the reparametrization
Bk = Pk∆B with PT

kPk = I [25]. This reparametrization makes it difficult to impose
constraints on the evolving Bk-matrices in a flexible way. Nevertheless, constraints
are essential to obtain uniqueness and interpretability in matrix factorizations [26].
Additionally, constraints and regularization can improve the interpretability of compo-
nents obtained from CP models [27], [28], and the non-evolving modes of PARAFAC2
models [15]. Recent studies have also demonstrated the benefits of constraining the
evolving mode of PARAFAC2 [15], [29]–[31]. One way to constrain the Bk-matrices
is by specifying a linear subspace their columns should be contained in. In [29], Hel-
wig showed that the data can be preprocessed by projecting it onto the subspace of
interest, before fitting the PARAFAC2 model and that this approach can constrain
the evolving components to be spanned by a B-spline basis, thus also constraining
them to be smooth [29]. However, a downside of this scheme is that it only sup-
ports linear constraints and that we need to know the linear subspace (e.g., the spline
knots) of the components a priori, which may be difficult in practice. Another ap-
proach to have constraints on Bk-matrices, in particular, non-negativity constraints,
is the flexible coupling approach [30]. This approach fits a non-negative coupled
matrix factorization model with a regularization term based on the PARAFAC2 con-
straint. While this approach, in theory, can be used with any constrained least squares
solvers, the algorithm in [30] uses hierarchical alternating least squares (HALS) and
supports only non-negativity constraints. Other notable approaches include LogPar
[32] using another regularization penalty based on PARAFAC2 to improve uniqueness
properties of regularized coupled non-negative matrix factorization for binary data,
and CANDELINC2 [31], which uses a scheme combining CANDELINC (Canonical
Decomposition with Linear Constraints) [33]–[35] and non-negativity constraints for
PARAFAC2. Despite these recent efforts, available methods for PARAFAC2 are still
limited in terms of the type of constraints they can impose.

In this paper, we propose fitting PARAFAC2 using an alternating optimization
(AO) scheme with the alternating direction method of multipliers (ADMM) to facili-
tate the use of a wider set of constraints in all modes (both evolving and non-evolving).
Recently, Huang et al. introduced the AO-ADMM scheme for constrained CP mod-
els [36], and Schenker et al. extended this framework to regularized linearly coupled
matrix-tensor decompositions [37], [38]. AO-ADMM has been successfully used to im-

3

pose proximable constraints on the non-evolving factor matrices of the PARAFAC2
model [15], [39]. However, using that approach, evolving factor matrices are still mod-
elled implicitly by Bk = Pk∆B as in [25], with AO-ADMM being used for the CP
step of the algorithm. Thus, only linear constraints can be imposed directly on the
evolving mode, still limiting the possible constraints on the evolving factor matrices.
Unlike earlier studies, we present an AO-ADMM based framework for the PARAFAC2
model with ADMM updates that widen the possible constraints to any proximable
penalty function in all modes. With numerical experiments on both simulated and
real data, we demonstrate the performance of this framework in terms of

• Flexibility: The scheme allows for regularization of the evolving components
with any proximable penalty function.

• Efficiency: The scheme can fit non-negative PARAFAC2 models faster than
the flexible coupling with HALS approach introduced in [30].

• Accuracy: Applying suitable constraints for the evolving components can im-
prove performance compared to only constraining the non-evolving modes.

This paper extends our preliminary study [1], where we introduced and showed
the promise of AO-ADMM for constraining PARAFAC2 models using non-negativity
constraints, graph Laplacian and total variation regularization. In this paper, we pro-
vide a more detailed derivation and a theoretical discussion of both the AO-ADMM
scheme and the regularized PARAFAC2 problem. We include extensive numerical
experiments using more general simulation setups and one new constraint (unimodal
component vectors). Finally, we demonstrate the usefulness of the proposed algorith-
mic approach on two applications from neuroimaging and chemometrics.

Section 2 briefly states the notation used in this paper, and Section 3 introduces
PARAFAC2 and states some observations on the PARAFAC2 constraint and available
methods to fit PARAFAC2 models. In Section 4, we introduce the new AO-ADMM
scheme that enables regularization on all modes. Numerical experiments evaluating
the proposed scheme on seven simulation setups and two real datasets are presented
in Section 5. Finally, Section 6 discusses our results and possible future work.

2 Notation

We specify some key tensor concepts and notations here and refer to [10] for a thorough
review of the nomenclature and background theory. A tensor can be considered a
multidimensional array that extends the concept of matrices to higher dimensions.
The dimensions of a tensor are called modes, and the number of modes is referred to
as the order. Thus, vectors are first-order tensors, matrices are second-order tensors,
“cubes” of numbers are third-order tensors and so forth. Tensors with three modes
or more are often called higher-order tensors. We indicate vectors by bold lowercase
letters, e.g., v, matrices by bold uppercase letters, e.g., M, and higher-order tensors by
bold uppercase calligraphic letters, e.g., X. Furthermore, we denote the r-th column
of a matrix, X, by xr and the r-th column of a matrix Xk by [xk]r. Sets of matrices

are denoted by calligraphic letters (e.g., On,m = {P ∈ Rn×m : PTP = I}) and sets of
sets of matrices are denoted by script letters (e.g., P).

All tensors we consider in this work have three modes or less1. The Khatri-Rao
1But our work extends to any order trivially. For orders above three, the PARAFAC2 constraint

is not needed for uniqueness [14] since a fourth-order PARAFAC2 model is equivalent to a coupled
CP model. Still, the PARAFAC2 constraint can be used to enforce a constant relationship between
the components for each frontal slab (higher-order slice) of the data tensor.

4

product (column-wise Kronecker product) is denoted by �, the Hadamard product
(element-wise multiplication) is denoted by ∗, the vector outer product is denoted by
◦ and the Frobenius norm is denoted by ‖ · ‖F . The matrix inverse and transpose are
denoted by −1 and T, respectively. The number of components for tensor decomposi-
tion models is denoted by R, and I, J and K denote the number of horizontal, lateral
and frontal slices in a tensor. For ragged tensors (i.e., stacks of matrices with varying
number of columns), Jk represents the number of columns for the k-th slice.

3 PARAFAC2 & ALS

Recall that the PARAFAC2 model represents Xk as:

Xk ≈ ADkB
T
k , (4)

where the Bk ∈ RJ×R matrices follow the PARAFAC2 constraint. Specifically,
BT
k1Bk1 = BT

k2Bk2 for all k1, k2 ≤ K (henceforth, {Bk}k≤K ∈ P). If one considers
the columns of the factor matrices {Bk}k≤K as some underlying patterns or sources
underlying measurements, then PARAFAC2 allows these patterns to rotate and mir-
ror for each slice k while the cross product between these patterns stays constant.
Moreover, the constant cross-product constraint is equivalent to a constant correla-
tion constraint if the columns of the Bk matrices sum to zero (which can be ensured
using the method in [29]). PARAFAC2 has also been shown to extract meaningful
patterns, even when the data does not fully follow the PARAFAC2 constraint [14],
[18]. The next section states some further mathematical properties of this constraint.

3.1 Observations on the PARAFAC2 constraint

The set
P = {{Bk}Kk=1 | BT

k1Bk1 = BT
k2Bk2 ∀k1, k2 ≤ K} (5)

defines the PARAFAC2 constraint, and restricts the angle between component vectors
of Bk to be constant for all k. Without this constraint, the PARAFAC2 model would
be equivalent to the rank R matrix factorization of the stacked matrix [X1, . . . ,XK]
whose parameters are not identifiable in general. The PARAFAC2 constraint ensures
unique components given enough frontal slices, Xk [25], [40], [41]. Despite its impor-
tance, the set P and its properties have received little attention in the PARAFAC2
literature.

Below, we make a few key observations on the PARAFAC2 constraint. First, as
shown by Kiers et al.[25], given a collection of matrices {Bk}Kk=1 ∈ P, there exists a
matrix ∆B ∈ RR×R and a collection {Pk}Kk=1 of orthogonal matrices such that

∀k ≤ K, Bk = Pk∆B. (6)

This means that P is related to OJ1,R × . . .×OJK ,R ×RR×R. We use this fact in the
supplementary material to prove that P is closed.

Proposition 3.1. The set P is closed.

As a direct corollary, the projection on P is well-defined and generally unique [42].
Projecting on P will be of importance in Section 4.

Second, it may also be noted that P is the set of all discretizations with K points of
elements in Ω = {OR,R∆B|∆B ∈ RR×R}2, where OR,R∆B = {Bk ∈ RR×R | ∃Pk ∈

2One may assume w.l.o.g. that Jk = R, up to dimensionality reduction of each slice Xk

5

OR,R, Bk = Pk∆B}. Studying this continuous set Ω rather than the discrete P

provides another interesting point of view. Indeed, projecting on the PARAFAC2
constraint also means finding the set OR,R∆B which is the closest to all matrices Bk.
In fact, noticing that the point-set distance satisfies

d(Bk,OR,R∆B) = min
Pk∈OR,R

‖Bk −Pk∆B‖2F = d(∆B,OR,RBk), (7)

one may rewrite the projection problem on P as the following minimization problem:

min
∆B

K∑

k=1

d(∆B,OR,RBk). (8)

Intuitively, projecting on the PARAFAC2 constraint therefore amounts to finding
the closest point ∆B to a set of curves OR,RBk. Because the projection on P is in
fact a bilevel optimization problem, this justifies the empirical use of an alternating
algorithm to compute the projection on P which is detailed in Section 4. We also hope
this geometric point of view can lead to a better understanding of the PARAFAC2
constraint. A striking example is the rank one case R = 1, where Ω simply becomes
the set of all spheres, and projecting on P amounts to projecting each Bk on the
average sphere of radius 1

K

∑
k=1 ‖Bk‖2. Some illustrations and the computations for

the rank one case are provided in the supplementary materials.

3.2 Recoverability of the evolving components

While the PARAFAC2 model has many similarities with the CP model, it comes with
some extra challenges. One notable challenge is the additional sign indeterminacy of
the PARAFAC2 model. Specifically, for any component, r, we can reverse the sign
of [dk]rr together with [bk]r, so long as the corresponding signs for all components,
s, that satisfy [bk]Tr [bk]s 6= 0 are also reversed [13], [43]. There are several ways
to handle this sign indeterminacy, e.g. by imposing non-negativity constraints on
{Dk}k≤K [13], aligning the components with the direction of the data [43] or by using
additional information [44].

Additionally, for real data matrices that are affected by noise, the recoverability
of the r-th column of Bk is directly affected by the magnitude of the r-th diagonal
entry in Dk. To see this, consider estimating Bk from noisy data X̃k = Xk +Ek with
Xk = ADkB

T
k and known A and Dk. Using the normal equation for Bk, we get

B̂
T

k = D−1k

(
ATA

)−1
AT(Xk + Ek) = BT

k + D−1k

(
ATA

)−1
ATEk. (9)

This means that the estimate of the r-th column of Bk, [b̂k]r, is affected by the noise

scaled by 1/[dk]rr (for simplicity, we omit (ATA)
−1

A, since it is constant for all k).
Thus, if an element of Dk is small compared to the noise strength ‖Ek ‖F , then the
corresponding column of Bk will be poorly estimated.

To quantify the effect of the noise on recovering a column of Bk, we define the
column-wise signal-to-noise ratio (cwSNR), defined by

cwSNRkr =
[dk]2rr

‖Ek ‖2
, (10)

with the factor matrices scaled so A and Bk have unit norm columns. We show that
the cwSNR is a good predictor on the accuracy of Bk estimates in Section 5.2.6.

6

3.3 ALS for PARAFAC2 (unregularized)

There is no closed form solution for fitting PARAFAC2 models. Instead, one has
to solve a difficult, non-convex, optimization problem. This is usually done by es-
timating the solution using alternating optimization (AO), which, instead of solving
the optimization problem directly, fixes all but one factor matrix in each step. This
single factor matrix can then be updated efficiently by solving a quadratic surrogate
problem.

We cannot easily use AO directly on Equation (4), as the PARAFAC2 constraint
leads to a non-convex optimization problem for the Bk updates. However, as discussed
in Section 3.1, the PARAFAC2 model can be reformulated as:

Xk ≈ ADk∆B
TPT

k , (11)

where ∆B ∈ RR×R and Pk ∈ OJk,R. This problem can be solved efficiently using an
alternating least squares procedure. In this case, the Pk updates are performed by
solving an orthogonal Procrustes problem, resulting in Algorithm 1 [25].

Algorithm 1: PARAFAC2 ALS [25]

Result: A, {Pk}k≤K ,∆B, {Dk}k≤K
1 Initialize A, ∆B and {Dk}k≤K
2 while stopping conditions are not met and max no. iterations not exceeded

do
3 for k ← 1 to K do

4 Compute a rank R trucated SVD: UkSkV
T
k = XT

kADk∆B
T

5 Pk ← UkV
T
k

6 Tk ← XkPk

7 end
8 Estimate A,∆B and {Dk}k≤K by running a few iterations (e.g., 5) of

ALS to fit an R-component CP model to the tensor T with frontal slices
given by Tk.

9 end

3.4 Constrained PARAFAC2 with flexible coupling

The ALS formulation of PARAFAC2 does not lend itself for constraining or regu-
larizing the Bk components. Currently the only way to impose non-negativity on
these components is with the flexible coupling approach by Cohen and Bro [30]. This
approach works by fitting a coupled matrix factorization with a regularization term
that penalizes the distance between {Bk}k≤K and a point on a curve OR,R∆B whose
coordinates are also parameters to estimate, yielding the following optimization prob-
lem:

min
A,{Dk}k≤K ,{Bk}k≤K ,∆B,{Pk}k≤K

[
K∑

k=1

∥∥∥Xk −ADkB
T
k

∥∥∥
2

F
+ µt ‖Bk −Pk∆B ‖2F

]

subject to PT
kPk = I ∀k ≤ K,

A ≥ 0,

Bk,Dk ≥ 0 ∀k ≤ K,
(12)

7

which can be solved with HALS [45], also known as column-wise updates [46], [47].
To ensure that the components satisfy the PARAFAC2 constraint, the regularization
parameter, µt, is adaptively selected and increased after every iteration. The word
“flexible” in the name of this approach stems from the fact that the Bk matrices
are not directly parametrized by Pk∆B, but instead encouraged to be close to this
product through a “flexible coupling”. While the trick of gradually increasing the
regularization strength to obtain models that follow the PARAFAC2 constraint could,
in theory, be used with any constrained least squares solver, the algorithm in [30] uses
HALS and supports only non-negativity constraints. Furthermore, to the best of our
knowledge, this formulation has only ever been used with non-negativity constraints.

4 PARAFAC2 AO-ADMM

Consider the regularized PARAFAC2 problem:

min
A,{Bk,Dk}k≤K

[
f
(
A, {Bk}k≤K , {Dk}k≤K

)
+ gA (A) +

K∑

k=1

{gBk (Bk) + gDk
(Dk)}

]

subject to {Bk}k≤K ∈ P,

(13)
where f is the sum of squared errors data fidelity function, given by

f
(
A, {Bk}k≤K , {Dk}k≤K

)
=

K∑

k=1

∥∥∥ADkB
T
k −Xk

∥∥∥
2

F
, (14)

and gA, gBk , gDk
are proximable regularization penalties.

As mentioned above, we cannot easily solve Equation (13) using the formulation
in Equation (11), since it would require solving a regularized least squares problem
with orthogonality constraints. Thus, we instead propose to solve Equation (13) with
a scheme based on ADMM, solving each subproblem approximately. Specifically, we
use an AO-ADMM algorithm.

AO-ADMM has been used for fitting constrained CP models [36] and coupled
matrix and tensor factorizations [37], [38]. It has also been used for fitting PARAFAC2
models, by using AO-ADMM to update A,∆B and C (corresponding to using AO-
ADMM instead of ALS to fit the CP model in Line 8 of Algorithm 1) [15]. However,
with such a scheme, the Bk matrices can only be constrained linearly.

We instead propose to use AO-ADMM to solve Equation (13) without reparametriza-
tion, thus allowing for proximal regularization of all factor matrices including {Bk}k≤K .
For this, we introduce an algorithm for projecting onto P, which makes it feasible to
use ADMM for solving regularized least squares problems with the PARAFAC2 con-
straint, and obtain the PARAFAC2 AO-ADMM algorithm described in Algorithm 2.

In the following sections, we describe how each step of this algorithm is conducted
in detail. First, we summarize ADMM in Section 4.1 and AO-ADMM in Section 4.2.
Then, Section 4.3 and Section 4.4, describes ADMM update steps for lines 3 and 4-5
of Algorithm 2, respectively. Section 4.5 outlines stopping conditions and a heuristic
to compute appropriate feasibility penalty parameters. Finally, Section 4.6 discusses
the computational complexity for each step of the algorithm and Section 4.7 lists some
proximable penalties (with more details in Section SM3) and notes some important
considerations when using penalty-based regularization.

8

Algorithm 2: AO-ADMM for PARAFAC2

Result: A, {Bk,Dk}k≤K
1 Initialize A,ZA,µA,Bk,ZBk ,µZBk

,∆B,Pk,µ∆Bk
,Dk,ZDk

, and µDk

2 while stopping conditions are not met and max no. iterations not exceeded
do

3 Update
{

Bk,ZBk ,Pk,µZBk
,µ∆Bk

}
k≤K

and ∆B using Algorithm 4

4 Update A,ZA and µA using Algorithm 6

5 Update
{
Dk,ZDk

,µDk

}
k≤K using Algorithm 7

6 end

4.1 Summary of ADMM

ADMM solves optimization problems in the form:

min
x,y

[f(x) + g(y)]

subject to Mx + Ny = c,
(15)

where M and N are known matrices and c is a known vector. For ADMM, we first
formulate the augmented Lagrange dual problem of Equation (15):

max
ν

[
min
x,y

[
f(x) + g(y) + νT (Mx + Ny − c) +

ρ

2
‖Mx + Ny − c ‖22

]]
, (16)

where ρ is a penalty parameter that defines the penalty for infeasible solutions. Then,
we solve the saddle-point problem Equation (16) with AO on x and y and gradient
ascent on ν. Defining the scaled dual-variable, µ = ν/ρ, we obtain Algorithm 3.

One benefit is that whenever M or N are identity matrices, then the corresponding
update step reduces to evaluating the scaled proximal operator (shown for g):

prox g
ρ
(−(Mx− c + µ)) = arg min

y

[
g(y) +

ρ

2
‖y + Mx− c + µ ‖22

]
, (17)

which can be evaluated efficiently for a large family of functions. The update steps
for gA, gBk , and gDk

in Equation (13) can always be reduced to this form, enabling
any proximable regularization on all modes. See Section 4.7 for details on proximal
operators and examples of proximable penalties. For a thorough review of ADMM,
we refer to [48].

Algorithm 3: ADMM [48]

Result: x,y,µ
1 Initialize x, y and µ
2 while stopping conditions are not met and max no. iterations not exceeded

do

3 x← arg minx

[
f(x) + ρ

2 ‖Mx + Ny − c + µ ‖22
]

4 y← arg miny

[
g(y) + ρ

2 ‖Mx + Ny − c + µ ‖22
]

5 µ←Mx + Ny − c + µ

6 end

9

4.2 Overview of AO-ADMM

Consider now a problem in the form

min
x,y

[f(x,y) + gx(x) + gy(y)] , (18)

where the proximal operator for f is costly to evaluate, but the proximal operators of
fx(y) = f(x,y), fy(x) = f(x,y), gx and gy are easy to evaluate. In that case, we can
use an AO-scheme, where we fix y and update x with several iterations of ADMM,
and vice versa. Such a scheme is called an AO-ADMM scheme [36].

There are, to the best of our knowledge, no convergence guarantees for AO-
ADMM. For AO, it is known that if fy(x) + gx(x) and fx(y) + gy(y) always have
unique minima and these minima are attained for each iteration, then all limit points
of the algorithm are stationary points (see Proposition 2.7.1 in [49] or the discussion of
convergence in [36]). Thus, if we impose a strictly convex regularization penalty (e.g.,
a ridge penalty), the AO-ADMM algorithm would provably converge to a stationary
point given infinitely many ADMM iterations for each block update. While we often
have convex regularization for updating the A- and C-matrix, the PARAFAC2 con-
straint for the Bk-matrices is not convex, which makes it hard to conclude about the
convergence of the ADMM updates for {Bk}k≤K , and therefore also the AO-ADMM
algorithm. Still, in our experience, the AO-ADMM algorithm converges in most cases.

4.3 An ADMM scheme for {Bk}k≤K in Algorithm 2

Our main contribution is introducing an ADMM scheme to solve the non-convex
optimization problem

min
{Bk}k≤K

[
K∑

k=1

fBk (Bk) + gBk (Bk)

]

subject to {Bk}k≤K ∈ P,

(19)

where fBk (Bk) = ‖ADkB
T
k −Xk ‖2F . We introduce the following splitting scheme

min
{Bk}k≤K

[
K∑

k=1

{fBk (Bk) + gBk (ZBk)}+ ιP

(
{YBk}k≤K

)]

subject to Bk = ZBk ∀k ≤ K,
Bk = YBk ∀k ≤ K,

(20)

where ιP ({YBk}k≤K) = 0 if {YBk}k≤K ∈ P, and∞ otherwise. This splitting scheme
is in the standard form for problems that are solvable with ADMM, which we can
utilize to obtain Algorithm 4. Next, we describe each line in this algorithm in detail.

Two main lines in Algorithm 4 need to be derived: the update rules for {Bk}k≤K
in Line 3 and the update rules for {YBk}k≤K in Line 6. The proximal operator for
gBk in Line 4 is specified by the regularization function. The update rule for Bk

requires us to solve a least squares problem, which has a closed form solution:

Bk ←
(
XT
kADk +

ρBk

2

(
ZBk − µZBk

+ YBk − µ∆Bk

))(
DkA

TADk + ρBkI
)−1

.

(21)
while the update rules for {YBk}k≤K require an efficient way to estimate proxιP .

10

Algorithm 4: ADMM updates for the Bk-matrices

Result: Bk,ZBk ,YBk ,µZBk
,µ∆Bk

1 while stopping conditions are not met and max no. iterations not exceeded
do

2 for k ← 1 to K do

3 Bk
Equation (21)←−−−−−−−−− arg min

Bk



fBk (Bk) +

ρBk

2

∥∥∥Bk − ZBk + µZBk

∥∥∥
2

+
ρBk

2

∥∥Bk −YBk + µ∆Bk

∥∥2




4 ZBk ← prox gB
ρBk

(
Bk + µZBk

)

5 end

6 {YBk}k≤K
Alg. 5←−−−− proxιP

({
Bk + µ∆Bk

}
k≤K

)

7 for k ← 1 to K do
8 µZBk

← Bk − ZBk + µZBk

9 µ∆Bk
← Bk −YBk + µ∆Bk

10 end

11 end

Evaluating proxιP is equivalent to evaluating a projection onto P, which we esti-
mate using the parametrization of P discussed in Section 3.1, yielding:

min
∆B,{Pk}k≤K

[
K∑

k=1

ρBk

2

∥∥Bk −Pk∆B + µ∆Bk

∥∥2
]

subject to PT
kPk = I ∀k ≤ K.

(22)

This equation can be approximated efficiently with an AO scheme, where the orthog-
onal Procrustes problem for each Pk is solved independently. With this, we obtain
Algorithm 5. In our experience, one iteration in Algorithm 5 for each ADMM iteration
in Algorithm 4 is sufficient.

Algorithm 5: Approximate projection onto P

Result: {Pk}k≤K ,∆B

1 while stopping conditions are not met and max no. iterations not exceeded
do

2 for k ← 1 to K do

3 Compute “economy style” SVD:
(
Bk + µ∆Bk

)
∆B

T = U(k)Σ(k)V(k)T

4 Pk ← U(k)V(k)T

5 end

6 ∆B ← 1∑K
k=1 ρBk

∑K
k=1 ρBkP

T
k

(
Bk + µ∆Bk

)

7 end

4.4 ADMM updates for A and {Dk}k≤K in Algorithm 2

ADMM updates for A and {Dk}k≤K can be obtained in multiple ways. Here, we
introduce ADMM schemes based on the coupled matrix decomposition interpretation

11

of PARAFAC2 (CMF-based updates). However, by assuming primal feasibility in
Equation (20) (i.e., Bk = Pk∆B), we can use CP-based updates for A and {Dk}k≤K
[15]. For discussions and comparisons with the CP-based scheme, see Section SM5.

For the CMF-based update steps, we want to solve the optimization problems

min
A

[fA (A) + gA (A)] and min
Dk

[fDk
(Dk) + gDk

(Dk)] , (23)

for updating A and {Dk}k≤K , respectively. fA and fDk
are the sum of squared

errors data fidelity function for A and {Dk}k≤K , respectively, and gA and gDk
are

regularization penalties. We apply ADMM directly to these optimization problems.
The proximal operators for the data fidelity functions consist of solving least

squares problems. The proximal operator with respect to A, is given by

prox fA
ρA

(M) =

(
K∑

k=1

XkΓk +
ρA

2
M

)(
K∑

k=1

ΓT
kΓk +

ρA

2
I

)−1
, (24)

where Γk = BkDk. To compute prox fDk
ρDk

(v), we consider the vectorized problem:

prox fDk
ρDk

(v) = arg min
ck:

[∥∥ (A�Bk) cTk: − vec (Xk)
∥∥2
F

+
ρDk

2

∥∥ cTk: − v
∥∥2
F

]
, (25)

where cTk: is a vector containing the diagonal entries of Dk. Then, we use (A �
Bk)T(A�Bk) = (ATA ∗BT

kBk) to obtain

prox fDk
ρDk

(v) =
(
ATA ∗BT

kBk +
ρDk

2
I
)−1 (

Diag
(
ATXkBk

)
+
ρDk

2
v
)
, (26)

where Diag
(
ATXkBk

)
is the vector containing the diagonal entries of ATXkBk.

Algorithm 6: CMF-based ADMM updates for the A-matrix

Result: A,ZA,µA

1 while stopping conditions are not met and max no. iterations not exceeded
do

2 A
Equation (24)←−−−−−−−−− prox fA

ρA

(ZA − µA)

3 ZA ← prox gA
ρA

(A + µA)

4 µA ← µA + A− ZA

5 end

4.5 Stopping conditions and feasibility penalties

For the inner ADMM loops (Algorithms 4, 6, and 7), we follow [48] and use stopping
conditions based on the primal and dual residuals:

∥∥x(t,q) − z(t,q)
∥∥

∥∥x(t,q)
∥∥ ≤ ε, and

∥∥ z(t,q) − z(t,q−1)
∥∥

∥∥ z(t,q)
∥∥ ≤ ε. (27)

In our case, z is replaced with an auxiliary factor matrix (e.g., ZBk or YBk) and x
is replaced with the corresponding factor matrix (e.g., Bk). The (t, q) superscript

12

Algorithm 7: CMF-based ADMM updates for the Dk-matrices (C-matrix)

Result: Dk,ZDk
,µDk

1 while stopping conditions are not met and max no. iterations not exceeded
do

2 for k ← 1 to K do

3 Dk
Equation (26)←−−−−−−−−− prox fDk

ρDk

(
ZDk

− µDk

)

4 ZDk
← prox gDk

ρDk

(
Dk + µDk

)

5 µDk
← µDk

+ Dk − ZDk

6 end

7 end

represents the current outer and inner iteration number, respectively. For stopping
the inner loops, we require that either all stopping conditions are fulfilled, or that
a predefined number of iterations have been performed. In our experience, a low
number (e.g., five) of inner iterations is sufficient.

For the outer loop, in Algorithm 2 we have two types of stopping conditions: loss
decrease conditions and feasibility conditions. We stop once both the regularized sum
of squared error and the relative feasibility gaps are below a given threshold, or their
relative decrease is below a given threshold. That is, we ensure that

f (t) + g(t) < εabs or
∣∣∣f (t−1) + g(t−1) − f (t) − g(t)

∣∣∣ < εrel
(
f (t−1) + g(t−1)

)
,

where f (t) is the sum of squared errors after t outer iterations and g(t) is the sum of
all regularization penalties after t outer iterations, are satisfied. We also ensure that

r(t)z =
∥∥∥x(t) − z(t)

∥∥∥ < εabs or |r(t)z − r(t−1)z | < εrelr(t−1)z ,

is satisfied for all auxiliary variables z. After exiting the AO-ADMM algorithm, it is
important to verify that all primal feasibility gaps are sufficiently small. Otherwise,
we may end up with components that violate the constraints.

In order to select the penalty parameters, we used the heuristic in [36], [37], setting

ρA =
1

R
Tr

(
K∑

k=1

DkB
T
kBkDk

)

ρBk =
1

R
Tr
(
DkA

TADk

)
,

ρDk
=

1

R
Tr
(
ATA ∗BT

kBk

)
,

(28)

For convex regularization penalties, the ADMM-subproblems are guaranteed to con-
verge with any ρ. However, for non-convex regularization penalties (e.g., the ιP in
the Bk updates) the value of ρ can affect ADMM’s convergence properties [48].

4.6 Computational complexity of the AO-ADMM update steps

The computational complexities for the AO-ADMM update steps are given in Ta-
ble 13. To minimize the computational complexity, we compute parts of the right-
hand side as well as the Cholesky factorization of the left hand side of all normal

3for the computational complexities of the CP-based updates, see supplementary Table SM1

13

Table 1: Computational complexities for the different AO-ADMM update steps. I,
J and K denote the tensor size, R denotes the number of components and Q the
number of iterations.

Computational complexity

A O(IJKR+ JKR2 +R3 + IR2Q)
{Dk}k≤K O(IJKR+ IR2 + JKR2 +KR3 +KR2Q)

{Bk}k≤K O(IJKR+ IR2 +KR3 + JKR2Q)

Table 2: Some proximable regularization penalties

Structure Penalty Proximal operator

Non-negativity ιR+
proxιR+

(x) = max(0, x)

Graph Laplacian regularization xTLx proxxTLx(x) = (L + 0.5I)
−1

x
TV regularization

∑
i |xi − xi−1| [52], [54]

Unimodality ιU [53]
Unimodality and non-negativity ιU∩R+

[46]
PARAFAC2 constraint ιP Algorithm 5

equations (e.g. XT
kADk and the Cholesky factorization of (DkA

TADk + ρBkI) for
Equation (21)) only once per outer iteration and re-use it for the inner iterations.

4.7 Constraints

In this section, we review some background on proximal operators and list some useful
proximable regularization penalties. If g is a proper lower semi-continuous convex
function, the proximal operator, given by Equation (17), has a unique solution. For
non-convex g, Equation (17) may not have a unique solution, and in those cases, we
select one of the possible solutions. A large variety of regularization penalties admit
closed form solutions or efficient algorithms for evaluating their proximal operator
[50]–[53]. In this work, we evaluate the efficency of our AO-ADMM scheme for four
such penalty functions, given in Table 2. In particular, we impose non-negativity,
graph Laplacian regularization, total variation (TV) regularization and unimodality.
For more details on these penalties, see Section SM3 in the supplement.

4.7.1 The scale-indeterminacy of penalty-based regularization

Many penalty functions, such as graph Laplacian regularization and TV regulariza-
tion, scale with the norm of the components. However, the PARAFAC2 loss function
is invariant to scaling4. For example, A can be multiplied with a constant, ε, so
long as we multiply either all Bk-matrices, or all Dk-matrices by 1/ε. Thus, if we
let ε → 0 we can obtain an arbitrarily small regularization penalty without affecting
the components recovered by the algorithm (ignoring numerical difficulties arising as
ε→ 0).

To circumvent the scaling indeterminacy, we must regularize the norm of all factor
matrices whenever the regularization for one factor matrix is norm-dependent. A
straightforward way of regularizing the norm of the other factor matrices is with

4The observations in this section also hold for the CP decomposition.

14

ridge regularization, which we can incorporate into the proximal operator for the data-
fidelity term. We will, for brevity’s sake, only show how the proximal operator for the
A-matrix is altered by this change (see supplementary for Bk and Dk alterations):

prox fA+γ‖ · ‖2
F

ρA

(M) =

(
K∑

k=1

XkΓk +
ρA

2
M

)(
K∑

k=1

ΓT
kΓk +

2γ + ρA

2
I

)−1
, (29)

where Γk = BkDk and γ is the ridge regularization penalty. Including ridge regu-
larization this way does not necessarily increase the number of tunable parameters,
which is apparent from the following theorem (proof in Section SM1):

Theorem 4.1. Let f : Rn×Rm → R be a function satisfying f(au, a−2v) = f(u,v),
and let ru : Rn → R and rv : Rm → R be two (absolutely) homogeneous functions of
degree du and dv respectively. That is ru(au) = |a|duru(u) and rv(av) = |a|dvrv(v).
Then the optimization problems

min
u,v

[f(u,v) + aru(u) + rv(v)] (30)

and
min
u,v

[
f(u,v) + ru(u) + a2

dv
du rv(v)

]
(31)

are equivalent5 for any positive a.

Consequently, if we impose ridge regularization on two modes (e.g., A and {Dk}k≤K)
with the same regularization parameter, and a homogeneous regularization penalty
on the remaining mode (Bk), then scaling the ridge penalty is equivalent to scaling
the Bk-penalty (set u = {A, {Dk}k≤K} and v = {Bk}k≤K and apply Theorem 4.1).

5 Experiments

Here, we evaluate our proposed AO-ADMM scheme for constrained PARAFAC2 on
a variety of experiments. We assess the performance in terms of accuracy (i.e., how
well the underlying factors are captured), and computational efficiency on simulated
datasets, and show the benefits of imposing constraints on the evolving mode of a
PARAFAC2 model with real-world applications from chemometrics and neuroscience.
Specifically, we use seven simulation setups. In Setup 1, 2, and 3, we demonstrate that
the AO-ADMM scheme is both as accurate as and faster than the flexible coupling
with HALS scheme for setups with non-negativity in all modes. Setup 1 also demon-
strates the performance of the methods in the case of over- and under-estimation of
the number of components. In Setup 3, we demonstrate that imposing unimodality
constraints on {Bk}k≤K can improve accuracy and that the AO-ADMM scheme can
be effective even when {Bk}k≤K 6∈ P. Next, in Setup 4 and 5, we respectively use
a graph Laplacian- and TV-penalty to improve factor recovery. In Setup 6, we show
that the cwSNR is an accurate predictor of factor recovery. Finally, in Setup SM1
in the supplementary, we compare the CP-based and CMF-based update steps on
non-negative components, and show that they are similar in speed and accuracy. For
Setup 1-6, we compare with a baseline based on PARAFAC2 ALS, which allows for
constraints on A and {Dk}k≤K , but not on {Bk}k≤K .

5Two optimization problems are equivalent if the solution to one can easily be transformed to the
solution of the other [55].

15

5.1 Experimental setup

For both the PARAFAC2 AO-ADMM algorithm and the baselines, we used our
Python implementations linked in the GitHub repository for the paper6 (There is
also a MATLAB implementation linked in the same repository). The flexible coupling
PARAFAC2 with HALS algorithm was implemented in Python closely following the
MATLAB implementation by Cohen and Bro [30] (with some caching and reordering
of computations for increased efficiency). To compute the proximal operator of the
TV seminorm, we used the publicly available C implementation [54] of the improved
direct TV denoising algorithm presented in [52]. Finally, the projection onto the
set of non-negative unimodal vectors was implemented by thresholding the isotonic
regression-vectors obtained with the algorithm from [53].

We set all stopping tolerances for the inner iterations to 10−5 with a maximum of
5 iterations (except for the unimodality setup, see Section 5.2.3). For the outer loop,
we set all relative tolerances to 10−8 and all absolute tolerances to 10−7.

For all experiments, we initialized the factor matrices, auxiliary matrices and
scaled dual variables by drawing their elements from a uniform distribution between
0 and 1 (except the Pk-matrices which were initialized as the first R columns of an
identity matrix, thus ensuring that they are orthogonal). The same initial factor ma-
trices were used for both the AO-ADMM experiments and the ALS experiments. We
initialized the Pk- and ∆B-matrices for ALS equally to the corresponding auxiliary
variables for AO-ADMM. For all experiments, 20 initializations were used (except for
Setup 6, where we used 50 initializations, and Setup 1 and SM1, where we used 10 ini-
tializations). We selected, for each model, the initialization that provided the lowest
regularized sum of squared error among those that satisfied the stopping conditions
(to ensure a low feasibility gap for the AO-ADMM components). If none satisfied
the stopping conditions (i.e. all initializations reached the maximum number of it-
erations), we selected the initialization with the lowest regularized sum of squared
error. All experiments imposed non-negativity on {Dk}k≤K to resolve the special
sign indeterminacy of the PARAFAC2 model [44].

5.2 Simulations

For all simulation experiments, we first constructed simulated factor matrices. Then,
after constructing a simulated tensor, X, from those factor matrices (following Equa-
tion (4)), we added artificial noise as follows. First, we created a (possibly ragged)
tensor E with elements drawn from a normal distribution. Then, E was scaled to have
magnitude η ‖X ‖F and added to X following

Xnoisy = X + η ‖X ‖F
E

‖E ‖F
. (32)

Since this work introduces a scheme for regularizing the Bk-matrices, we generated
Bk-matrices with structures tailored to various constraints. The elements of A were
drawn from a truncated normal distribution (i.e. air = max(0, ăir), where ăir ∼
N (0, 1)), and the elements of all Dk-matrices were uniformly distributed (U(0.1, 1.1),
avoiding near-zero elements, which can impede the recovery of Bk).

To evaluate the different methods’ performance on simulated data, we used the

6https://github.com/MarieRoald/PARAFAC2-AOADMM-SIMODS/

16

relative sum of squared errors (Rel. SSE) given by

Rel. SSE =

∑K
k=1

∥∥∥Xk −ADkB
T
k

∥∥∥
2

F∑K
k=1 ‖Xk ‖2F

, (33)

and the factor match score (FMS), which is defined as

FMS =
1

R

R∑

r=1

∣∣∣aT
r ârb̃

T

r
ˆ̃
brc

T
r ĉr

∣∣∣ , (34)

with all component vectors normalized and the superscriptˆrepresents the estimated
vectors. b̃r and

ˆ̃
br are vectors containing the concatenation of the r-th column of

all Bk-matrices and B̂k-matrices, respectively. Likewise, cr and ĉr, contain the r-th
diagonal entry of all Dk-matrices and D̂k-matrices. The FMS ranges from zero to one
where one indicates fully recovered components. Since the PARAFAC2 decomposition
is only unique up to permutation and scaling, we find the optimal permutation of
the components before computing the FMS. For the more difficult setups (Setup 2-
3), we also evaluate the recovery of each factor matrix independently by computing
FMSA,FMSB and FMSC only considering the relevant terms of Equation (34), i.e.:

FMSA =
1

R

R∑

r=1

∣∣aT
r âr
∣∣ . (35)

5.2.1 Setup 1: Shifting non-negative components

Data generation To compare the AO-ADMM scheme with the flexible coupling
with HALS scheme in terms of speed and accuracy, we used a simulation setup inspired
by the simulations in [30]. Specifically, we generated data by drawing the elements
of B̃ from a truncated normal distribution. Then, to obtain Bk, we shifted elements
of B̃ by k indices, cyclically, setting [Bk]j,r = B̃(j+k)modJ,r. This shifting yields
non-negative Bk-matrices that vary in a way that follows the PARAFAC2 constraint.
Using this approach, we generated 50 different 3-component datasets, and 50 different
5-component datasets, each of size 30× 40× 50, before adding noise with η = 0.33.

Experiment settings We used AO-ADMM and flexible coupling with HALS7 to
decompose the data tensors with non-negativity imposed on all modes. We also
compared with ALS with non-negativity on A and {Dk}k≤K . For the flexible cou-
pling with HALS scheme, we used the same initialization of A, {Bk}k≤K , {Dk}k≤K ,
{Pk}k≤K and ∆B as the AO-ADMM scheme. All models were run until the stop-
ping conditions were satisfied or a maximum of 2000 iterations was reached. For the
3-component data, we also fitted models with two and four components to compare
the methods’ robustness to over- and under-estimation of the number of components.
For these experiments, we set the maximum number of iterations to 3000 and the
absolute feasibility gap tolerance to 10−5.

Results Figure 2 shows that the AO-ADMM scheme attains as good FMS as the
flexible coupling with HALS scheme but faster. The AO-ADMM scheme was slightly

7We also ran experiments where we replaced HALS with other non-negative least squares algo-
rithms [56], [57] and found that the relative performance of the AO-ADMM compared to the flexible
coupling schemes did not change (results not shown).

17

Figure 2: Setup 1: Diagnostic plots for the simulated data tensors. Median values are
shown as solid lines, and the shaded area shows the interquartile range. The top row
shows performance as a function of time, and the bottom row shows the performance
as a function of iterations. The x-axes are cropped at 60 s (R=3) and 150 s (R=5)
for the top row, and 150 iterations (R=3) and 200 iterations (R=5) for the bottom
row. Subsequent iterations only decreased the feasibility gap (for AO-ADMM) and
regularization penalty (for flexible coupling with HALS), not the FMS or relative SSE.

slower than ALS in terms of speed but got a higher FMS. In Figure 3, we see that the
relative performance of the methods are the same in overfactoring and underfactoring
with ALS getting lower FMS, and HALS being slower than AO-ADMM.

5.2.2 Setup 2: Non-negative components

Data generation Setup 1 focuses on shifting Bk-matrices as in [30]. However, this
implicitly assumes Bk = Pk∆B, with non-negative ∆B ∈ RJ×R and non-negative
Pk ∈ OJ,J . Thus, the Pk-matrices are assumed to have disjoint support. Here, we
evaluate the different PARAFAC2 fitting algorithms on non-negative datasets without
these implicit assumptions. Specifically, we construct a non-negative cross-product
matrix, XTX, where X ∈ R100×R has elements from a truncated normal distribution
and obtain the Bk factor matrices by solving:

min
Bk

[
||BT

kBk −XTX||2
]

subject to [Bk]jr ≥ 0,
(36)

using projected gradient descent with various random initializations for each Bk (more
details in the supplementary Subsection SM6.1). Following this, we constructed 50
three-component ragged tensors, consisting of 15 frontal slices, of size 50× Jk, where
Jk was a random integer between 50 and 100. We also evaluated non-negativity for
all modes with increased collinearity in the C-matrix, which we obtained by using D̃k

instead of Dk, with [D̃k]rr = 0.5[Dk]11 + 0.5[Dk]rr. Finally, we added noise following
(32) with 10 η-values logarithmically spaced between 0.5 and 2.5.

Experiment settings We decomposed each data tensor using PARAFAC2 AO-
ADMM and HALS with non-negativity on all modes and PARAFAC2 ALS (with
non-negativity on A and {Dk}k≤K), both with a maximum of 6000 iterations.

18

Figure 3: Setup 1: Diagnostic plots for the simulated data tensors with under- and
over-estimation of the number of components. R represents the true number of com-
ponents and R̂ represents the estimated number of components. To compute the FMS
between two decompositions with different numbers of components, we use the subset
of min(R, R̂) components that provides the highest FMS.

Results For some initializations, the ALS algorithm obtained degenerate solutions
(solutions where two components are highly correlated in all modes but point in the
opposite direction, and therefore cancel each other out) [58]. These initializations were
excluded from the analysis. Furthermore, we also discarded the datasets where ALS
gave degenerate solutions for all 20 initializations (these datasets were also removed
for AO-ADMM)8. To identify degenerate solutions, we used the minimum triple-cosine
(TC) based on the normalized component vectors [58]:

TC = min
r,s

aT
r as[b1]Tr [b2]sc

T
r cs, (37)

excluding solutions with TC < −0.85 [5]. Figure 4 shows the resulting distributions
of FMS for all setups with different noise levels. We observe that the fully constrained
models obtained a higher FMS than the ALS algorithm for all setups. The largest
improvement is for the FMSB score, which is reasonable since the {Bk}k≤K compo-
nents are the most challenging components to recover. However, the AO-ADMM and
HALS models also improve the FMSA compared to ALS (AO-ADMM improves the
FMSC as well). The improvement grows for higher noise levels, demonstrating that
imposing non-negativity for all modes instead of just the non-evolving modes makes
the model more robust to noise. Furthermore, as for Setup 1, HALS was slower in
terms of both time and iterations (see Figures SM5 and SM6, respectively).

5.2.3 Setup 3: Unimodality constraints

Data generation For the unimodality constraints, we generated unimodal Bk fac-
tor matrices similar to the approach in [31]. However, we also wanted to examine the
performance for data that does not exactly follow the PARAFAC2 constraint. For
this, we generated the r-th column of Bk as the normal probability density function

[bk]r = pnormal(µr + 0.41k, σkr), (38)

8See supplementary Table SM4 for an overview of the number of datasets excluded because ALS
gave degenerate solutions.

19

Figure 4: Setup 2: Boxplots showing the FMS for the different datasets. ALS refers
to models fitted with ALS and non-negativity only on A and {Dk}k≤K , AO-ADMM:
NN refers to models fitted with AO-ADMM with non-negativity imposed on all modes
and HALS: NN refers to models fitted with HALS with non-negativity imposed on
all modes. For the sake of space, this figure only shows every other noise level, see
supplementary Figure SM4 for the remaining noise levels.

where pnormal(µ, σ) is the PDF of a normal distribution sampled with 50 linearly
spaced points between −10 and 10 and with given mean and standard deviation,
µr ∼ U(−7, 0), σkr = σr + nkr with σr ∼ U(0.5, 1) and nkr ∼ N (0, 0.1). The factor
0.41 was chosen since that is equivalent to a shift of one index. Using a Gaussian PDF
gives non-negative, unimodal components and increasing µ for each slice produces
shifting components, similar to setup 1. Furthermore, the random variation in σkr
for each k leads to the components changing shape somewhat across slices in a way
that will violate the PARAFAC2 constraint. Examining components that violate
the PARAFAC2 constraint is interesting because real data might also not follow the
PARAFAC2 constraint perfectly. The components are also highly collinear since the
Gaussian curves are likely to overlap. Following this procedure, we constructed 50
datasets with five components, tensor sizes 10×50×15 and η = 0.33. Subsection SM6.3
in the supplementary materials contains results from running the same experiment
with σkr = σr so the components follow the PARAFAC2 constraint.

Experiment settings For the constrained model, we imposed non-negativity on A
and {Dk}k≤K , and unimodality as well as non-negativity on {Bk}k≤K . As baselines,
we used AO-ADMM and HALS with non-negativity imposed on all modes, and ALS
with non-negativity imposed only on A and {Dk}k≤K . Each fitting algorithm ran
until the stopping conditions were met or for a maximum of 2000 iterations.

During initial experiments, we observed that the feasibility gap (‖Bk −Pk∆B ‖F
and ‖Bk − ZBk ‖F) was too large for the AO-ADMM scheme to converge. This prob-
lem was mainly observed for the unimodality-constrained models, but it also occurred
for the non-negativity constrained models. Therefore, we introduced three changes
to the algorithm: We initialized the A, {Dk}k≤K ,∆B and Pk-matrices by running
the ALS algorithm for one iteration before AO-ADMM, increased the automatically
selected penalty parameters for the evolving mode, ρBk -s, by a factor of 10 and ran

20

Figure 5: Setup 3: Boxplots showing the FMS for different models fitted to datasets
with unimodal Bk-matrices. ALS represents models fitted with non-negativity im-
posed on A and {Dk}k≤K , HALS and NN represents models fitted with non-negativity
imposed on all modes using HALS and AO-ADMM respectively, and NN&U repre-
sents models fitted with non-negativity on all modes and unimodality imposed on
{Bk}k≤K using AO-ADMM.

the inner (ADMM) iterations for at most 20 iterations instead of 5.

Results As with Setup 2, we observed that the ALS scheme sometimes provided de-
generate solutions, which were disregarded using the same heuristic. Datasets where
all initializations fitted with ALS were degenerate were excluded from analysis, leav-
ing 43 out of 50 datasets. Figure 5 shows that models fitted with AO-ADMM ob-
tained a higher FMS than those fitted with ALS and HALS9. Furthermore, imposing
non-negativity and unimodality on {Bk}k≤K improved the FMS compared to only
imposing non-negativity and substantially improved FMS compared to imposing no
constraints on {Bk}k≤K . Also, we observed an increase in the recovery of all fac-
tor matrices for models fitted with unimodality constraints compared to those fitted
without. In Figure 6, we see the true and estimated factors for one of the datasets
and the cross product of Bk for each slice, k, in this dataset is shown in Figure 7.
We see from the figure that the cross product is not constant. However, despite this,
the components are recovered, which demonstrates that the PARAFAC2 AO-ADMM
scheme works well even with slight violations of the PARAFAC2 constraint.

5.2.4 Setup 4: Graph Laplacian regularization

Data generation To assess graph Laplacian regularization, we simulated smooth
components, using a simulation setup inspired by [29]. For this setup, we first select
a D-dimensional space of smooth vectors, V, and construct an orthonormal matrix
M whose columns span V. Next, we observe that if we have a collection of matrices,
{B̃k}k≤K ∈ P, then we can multiply each factor matrix, B̃k, with M, thus obtaining a
new collection of matrices, {Bk}k≤K = {MB̃k}k≤K ∈ P, whose columns are smooth.

We constructed M from a basis for cubic polynomials on the interval [−1, 1], or-
thogonalized using the SVD. To generate random {B̃k}k≤K ∈ P, we set B̃k = Pk∆B,
drawing the elements of ∆B from a standard normal distribution and generated the
Pk-matrices as random orthogonal matrices (obtained from the QR factorization:
PkR = Sk, where [Sk]ij ∼ N (0, 1)). Following this procedure, we set R = 3 and
constructed 20 different 30× 200× 30 simulated data tensors with η = 0.5.

Experiment settings Since the components are smooth, it is reasonable to penalize
local differences. Thus, we constructed the similarity graph, such that neighbouring
indices in the vectors had a similarity score of 1, and all non-neighbouring indices of
the vectors had a similarity score of 0. To decide the strength of the regularization

9For timing plots, see Figure SM7 in the supplement.

21

Figure 6: Setup 3: Plots showing the true and estimated components for one of
the datasets. AO-ADMM: NN and HALS: NN represents the model fitted with non-
negativity imposed on all modes using AO-ADMM and HALS, respecitvely, Unimodal
NN represents the model fitted with non-negativity on all modes and unimodal-
ity imposed on {Bk}k≤K using AO-ADMM, and ALS represents the model fitted
with non-negativity imposed on A and {Dk}k≤K . The cwSNRs (left to right) are
−4.4,−2.6,−12,−11 and −4.1 dB for this frontal slice.

Figure 7: Setup 3: Plot showing how the cross product, Φ(k) = BT
kBk, changes across

frontal slices for the same dataset as Figure 6.

22

penalty, we conducted a grid-search of four regularization parameters logarithmically
spaced between 1 and 1000. Also, following Theorem 4.1, we used ridge regularization
on A and {Dk}k≤K , setting the regularization strength to 0.1. We compared with
models without ridge regularization to show that a penalty-based regularization on
one mode requires penalizing the norm of the remaining factor matrices. In addition,
we compared with an ALS baseline without regularization. All models were ran until
the stopping conditions were met or they reached 5000 iterations.

Results From Figures 8 and 9, we see that imposing smoothness regularization
yielded smoother components and a higher FMS compared to using ALS without
regularization. Furthermore, ridge regularization on A and {Dk}k≤K was essential
for obtaining improvement with graph Laplacian regularization on the Bk-matrices,
which is expected from the observations in Section 4.7.1. To ensure that this was
not an artifact from the initialization selection scheme, we also compared the ini-
tializations that obtained the highest FMS for each dataset, which showed the same
behavior (see supplement, Figure SM12). Another notable observation is that none of
the models fitted without ridge regularization on A and {Dk}k≤K , but with regular-
ization on Bk converged (see supplement, Table SM5). Moreover, when we imposed
regularization on only the Bk-matrices, the regularization penalty (when calculated
after normalizing the Bk-matrices) decreased only in early iterations before approach-
ing the same value as the unregularized (ALS) model. Figure SM10 in the supplement
shows a more detailed visualization. This behavior demonstrates that if we use penalty
based regularization on the Bk-matrices without penalizing the norm of the A-matrix
and Dk-matrices, then the regularization will have little effect.

5.2.5 Setup 5: Total variation regularization

Data generation For assessing TV regularization, we simulated piecewise constant
components for ragged tensors. To construct these components, we used the following
scheme: For each Bk-matrix, we generated a random binary matrix with orthogonal
columns, Q̂k ∈ RJk×4, and at most two discontinuities per column (i.e., piecewise
constant). Then, we normalized these matrices, obtaining orthonormal matrices, Qk,
and set Bk = QkΩ, where Ω ∈ R4×R has two non-zero elements per column, drawn
from a standard normal distribution. This scheme led to piecewise constant compo-
nents with at most four jumps. We set R = 3 and constructed 20 such simulated
ragged data tensors with 30 frontal slices of size 30 × Jk, with Jk drawn uniformly
between 200 and 250. Following Equation (32), we added noise with η = 0.5.

Experiment settings We imposed TV regularization on the Bk-matrices and ridge
regularization on A and {Dk}k≤K . Setting the ridge regularization parameter to both
0 and 0.1, we performed a grid search for the TV regularization parameter with five
logarithmically spaced values between 0.001 and 10. As baseline we used ALS without
regularization on {Bk}k≤K . All methods were run until the stopping conditions were
fulfilled or they reached 5000 iterations.

Results Figure 8 shows that the TV-regularized PARAFAC2 AO-ADMM algo-
rithm performs better than the unregularized ALS algorithm for most regularization
strengths. Moreover, from Figure 9 we see that the TV regularized factors are piece-
wise constant when ridge was imposed on A and {Dk}k≤K . Similar to setup 4, we
observe that for AO-ADMM, none of the initializations converged without ridge reg-
ularization on A and {Dk}k≤K (see supplement, Table SM6) and the regularization

23

Figure 8: Setup 4 and 5: Boxplots showing the FMS obtained with different levels of
regularization.

(when calculated after normalizing the Bk-matrices) decreased only in early iterations
before increasing (see supplement Figure SM11).

5.2.6 Setup 6: Evaluating the cwSNR

Dataset generation To evaluate the cwSNR ability to assess the recovery of the Bk

components, we simulated five different 5-component datasets of size 30 × 40 × 100.
For the Bk factor matrices, we drew the elements of B1 from a truncated normal
distribution and then shifted them cyclically by k entries. After constructing the
data tensors, we added noise following Equation (32) with η = 0.1, η = 0.33 and
η = 0.5.

Experiment setup Each model was ran for 2000 iterations or until the stopping
conditions were satisfied. Then, to assess the degree of recovery for a given [b̂k]r , we
used the cosine similarity (SIM), given by (for normalized component vectors)

SIMkr = [bk]
T
r [b̂k]r . (39)

Results Figure 10 shows the results from these experiments. The top row shows
the cosine similarity scores obtained with non-negativity on A and {Dk}k≤K (ALS),
the bottom row shows the recovery scores obtained with non-negativity on all modes
(AO-ADMM) and the columns correspond to the different noise levels. We see that
the expected recovery score grows monotonically with the cwSNR for both models.

5.3 Neuroimaging application

For neuroimaging applications, our motivation for imposing constraints on PARAFAC2
components is to improve their interpretability. Previous work has shown that PARA-
FAC2 can reveal dynamic networks (spatial dynamics) from fMRI data arranged as
a subjects by voxels by time windows tensor [18]. However, the model is prone to
noise affecting the extracted networks (see Figure 11). To investigate if smoothness
inducing regularization can improve interpretability, we used images from the MCIC
collection [59], which contains fMRI-scans from healthy controls and patients with
schizophrenia. We used the sensory motor (SM) task data, with the same feature
extraction and preprocessing as [18].

We analyzed the fMRI data tensor using both regularized PARAFAC2 fitted with
AO-ADMM and unregularized PARAFAC2 fitted with ALS, both ran for at most 8000
iterations. The A, Bk and {Dk}k≤K factor matrices represented the subject-mode,

24

Figure 9: Setup 4 and 5: Plots showing true and estimated components. On the
top, we see one of the datasets where graph Laplacian regularization was used to
obtain smooth components and on the bottom we see another dataset where TV
regularization was used to obtain piecewise constant components. The cwSNRs for
the top row are −8.6, 0.031 and −3.7, respectively. For the bottom row, the cwSNRs
are −14,−5.6 and 0.36, respectively.

Figure 10: Setup 6: Scatter plot showing factor recovery (SIM) plotted against cwSNR
for models fitted with non-negativity on all modes (AO-ADMM) and non-negativity
only on A and C (ALS). Each dot represents the cosine similarity score for one column
of one Bk factor matrix for one dataset (all five datasets are aggregated in each plot).

25

voxel-mode and time-mode components, respectively. This configuration allows the
voxel-mode components that indicate activation networks to evolve over time. To
reduce the noise in the components, we chose a graph Laplacian regularizer based
on the image gradient, thus penalizing large differences in neighboring voxels. We
imposed ridge regularization on A and {Dk}k≤K to resolve the scaling indeterminacy,
and non-negativity constraints on {Dk}k≤K to resolve the sign indeterminacy.

The spatial regularizer encourages similar activation for neighboring voxels, which
is a reasonable assumption for fMRI images [60]. Specifically, we used graph Laplacian
regularization where wij = 1 if voxel i and j are neighboring voxels (in the von Neu-
mann sense) and wij = 0 otherwise. The proximal operator of this penalty function
involves solving a large linear system, similar to that obtained when solving Helmholtz’
equation with a finite difference scheme. To solve this system, we, therefore, used the
conjugate gradient method, with a smoothed aggregation preconditioner, setting the
near-nullspace component to a vector consisting only of ones.

We fixed the ridge penalty to 0.1, and performed a grid-search for the optimal
smoothness penalty. The selected regularization parameter, 10, provided the strongest
smoothing-effect while also not deteriorating the interpretability of the model.

Figure 11 shows a comparison of the unregularized and the regularized model. We
see that imposing regularization yields smoother, more interpretable, components.
The regularized sensorimotor component (i.e., component 1) shows the same signifi-
cantly stronger activation in healthy controls compared to patients as the unregular-
ized component (the p-values obtained using a two-sample t-test on the corresponding
subject-mode component vector is 2.29 × 10−4 for AO-ADMM and 2.98 × 10−4 for
ALS) while the regions of activation are less affected by noise, and thus the interpre-
tation is clearer.

5.4 Chemometrics application

Another application where PARAFAC2 is well-suited is the analysis of gas chromatog-
raphy mass spectrometry (GC-MS) measurements [14], [61]. In GC-MS measure-
ments, a sample is injected into a column that lets different molecules pass through
it at different velocities depending amongst others on their affinity to the column
(GC). At distinct time points at the end of the column, the mass spectrum is mea-
sured (MS). From this, we obtain a three-way tensor where one mode represents the
mass spectrum, one mode represents the time after injecting the sample (retention
time), and one mode represents the different samples. When we analyze the GC-MS
data with PARAFAC2, we obtain components that represent the mass spectrum (A)
and elution profile ({Bk}k≤K) for the different chemical compounds as well as their
concentration in different samples ({Dk}k≤K).

The dataset used here stems from a project on fermentation of apple wine using
different microorganisms. The data is typical for untargeted chemical profiling as
commonly done in flavor research. Samples were taken every eight hours from the
headspace of the fermentation tank throughout the fermentation and measured on an
Agilent 5973 MSD, Agilent Technologies, Santa Clara, USA.

Gathering GC-MS measurements can be time-consuming, and it is therefore of
interest to enable the analysis of smaller GC-MS datasets. The quality of the analysis
may depend on the number of samples, K. For this dataset, if we analyze all of the
samples, constraints on Bk are not needed for recovery and PARAFAC2 with ALS
is, therefore, sufficient. However, constraining all modes may reduce the number of
samples required for accurately capturing the underlying components. To evaluate
whether constraining {Bk}k≤K reduces the number of samples needed, we constructed

26

Figure 11: Voxel-mode components of the two-component unregularized (left) and
regularized (right) PARAFAC2 models fitted to the fMRI data. The composite plots
are generated by z-scoring the components and only showing voxels with activation >
1.5. The regularization penalties (after normalization) for the voxel-mode components
are 10.4 and 17.6 for the regularized and unregularized model, respectively, which
demonstrates that the regularization quantifiably increases smoothness. We see that
the regularized model has less speckle noise and more defined regions of activation.
Furthermore, the regularized components are more focal (i.e., have high intensity in
the mid-parts), which is expected of spatial fMRI maps, and thus they lend themselves
to better association with physical quantities of interest. For the component that
shows a statistically significant difference between the two groups (component 1), we
see activation in the primary and secondary motor and cerebellum, and also auditory
cortex, which are regions expected to be activated by the SM task. This activation is
less noisy and easier to discern for the regularized model.

27

(a) ALS (non-negativity on A and {Dk}k≤K).

(b) AO-ADMM (non-negativity on all modes).

Figure 12: Mass spectra (top) and elution profiles scaled by concentration (bottom).
For both models, the second component represents noise and the other components
represent chemical information.

the data tensor from only a third of the 57 samples (i.e., the first 19 samples), forming
a 286× 95× 19 tensor. We then analyzed the GC-MS tensor using PARAFAC2 fitted
with both AO-ADMM and ALS, both ran for at most 6000 iterations. As for the
simulations, we ran 20 random initializations, selecting the runs with the lowest SSE.

PARAFAC2 is well suited because it allows the elution profiles to differ across
different samples. Thus, PARAFAC2 can account for retention shifts and other shape
changes that can occur between different samples containing the same chemical. Nei-
ther concentrations, elution profiles nor mass spectra should contain negative entries,
so we impose non-negativity constraints on all factor matrices for PARAFAC2 with
AO-ADMM and on the A and {Dk}k≤K factor matrices for PARAFAC2 with ALS.

Figure 12 shows the 6-component models obtained with ALS and AO-ADMM. We
see that both models include one noise component and five components that contain
chemical information. However, the model fitted without non-negativity on Bk yields
unphysical elution profiles (negative peaks and multiple peaks), which demonstrates
the need for more samples if we do not impose constraints on {Bk}k≤K . For the
model fitted with non-negativity on all modes, these phenomena are much less appar-
ent, and we only observe minor secondary peaks, particularly for low-concentration
samples. Thus, constraining the Bk-matrices can improve the interpretative value of
the PARAFAC2 components and reduce the number of samples required for analysis.

28

6 Discussion

In this paper, we have proposed an efficient algorithmic framework based on AO-
ADMM that allows us to fit PARAFAC2 models with any proximable regularization
penalty on all modes. Furthermore, we show that our approach can successfully apply
hard constraints, e.g., non-negativity and unimodality, or penalty based regularization
such as TV and graph Laplacian regularization on {Bk}k≤K . Our numerical experi-
ments show that the AO-ADMM framework is accurate, and faster than the flexible
coupling approach for non-negative PARAFAC2 and that their relative performance
was unchanged with under- and over-estimation of the rank.

With both simulated data and real applications, we demonstrated that constrain-
ing the Bk-matrices, can improve recovery and interpretability. In particular, con-
straints can be necessary to recover the components accurately from noisy data when
the component vectors are highly collinear. We also showed that the proposed scheme
recovered the components even in cases where the PARAFAC2 constraint is slightly
violated. Furthermore, we demonstrated that all modes should be regularized when
the regularization penalty of one mode is dependent on the norm.

Nevertheless, there are possibilities for improvement. For example, the ADMM
update steps are based on the projection proxιP , for which we proposed an efficient
approximation algorithm based on AO. However, the mathematical properties of P

are, to the best of our knowledge, still not well understood, and future analysis may
improve upon this projection. Another possible extension is support for other loss
functions, such as the KL-divergence or weighted least squares. Our scheme could also
be extended to other models such as block term decomposition 2 (BTD2) [62], which is
a four-way extension of the block term decomposition (BTD) [63] with evolving factor
matrices that follow the PARAFAC2 constraint. AO-ADMM has already been used
to fit BTD models [64], and our work could be straightforwardly adapted for fitting
constrained BTD2 models with AO-ADMM. It may also be beneficial to use Nesterov-
type extrapolation, which has been successfully used to speed up ALS schemes for
CP [65], [66] as well as ALS and flexible coupling schemes for PARAFAC2 [67].

Acknowledgments

We would like to thank Jesper Løve Hinrich and Remi Cornillet for insightful discus-
sions on constrained PARAFAC2. This work has benefited from the Experimental
Infrastructure for Exploration of Exascale Computing (eX3), which is supported by
the Research Council of Norway under contract 270053.

References

[1] M. Roald, C. Schenker, J. E. Cohen, and E. Acar, “PARAFAC2 AO-ADMM:
Constraints in all modes,” in EUSIPCO’21: Proc. 2021 29th Eur. Signal Process.
Conf., EURASIP, 2021.

[2] J. D. Carroll and J. J. Chang, “Analysis of individual differences in multidimen-
sional scaling via an N-way generalization of “Eckart-Young” decomposition,”
Psychometrika, vol. 35, no. 3, pp. 283–319, 1970, issn: 1860-0980.

[3] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and condi-
tions for an “explanatory” multi-modal factor analysis,” UCLA working papers
in phonetics, vol. 16, pp. 1–84, 1970.

29

[4] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”
J. Math. Phys., vol. 6, no. 1, pp. 164–189, 1927.

[5] R. Bro, “PARAFAC. tutorial and applications,” Chemom. Intel. Lab. Syst.,
vol. 38, no. 2, pp. 149–172, 1997.

[6] M. Mørup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S. M. Arnfred, “Par-
allel factor analysis as an exploratory tool for wavelet transformed event-related
EEG,” NeuroImage, vol. 29, no. 3, pp. 938–947, 2006.

[7] E. Acar, C. A. Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway analysis of
epilepsy tensors,” Bioinformatics, vol. 23, no. 13, pp. i10–i18, 2007.

[8] A. H. Williams, T. H. Kim, F. Wang, S. Vyas, S. I. Ryu, K. V. Shenoy, M.
Schnitzer, T. G. Kolda, and S. Ganguli, “Unsupervised discovery of demixed,
low-dimensional neural dynamics across multiple timescales through tensor com-
ponent analysis,” Neuron, vol. 98, no. 6, pp. 1099–1115, 2018.

[9] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using
matrix and tensor factorizations,” ACM TKDD, vol. 5, no. 2, Article 10, 2011.

[10] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
Rev., vol. 51, no. 3, pp. 455–500, 2009.

[11] E. Acar and B. Yener, “Unsupervised multiway data analysis: A literature sur-
vey,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 1, pp. 6–20, Jan. 2009.

[12] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors for data
mining and data fusion: Models, applications, and scalable algorithms,” ACM
Trans. Intell. Syst. Technol., vol. 8, no. 2, Article 16, 2016.

[13] R. A. Harshman, “PARAFAC2: Mathematical and technical notes,” UCLA
working papers in phonetics, vol. 22, pp. 30–44, 1972.

[14] R. Bro, C. A. Andersson, and H. A. L. Kiers, “PARAFAC2 - Part II. Modeling
chromatographic data with retention time shifts,” J. Chemom., vol. 13, no. 3-4,
pp. 295–309, 1999, issn: 0886-9383.

[15] A. Afshar, I. Perros, E. E. Papalexakis, E. Searles, J. Ho, and J. Sun, “COPA:
Constrained PARAFAC2 for Sparse & Large Datasets,” in CIKM’18: Proc.
ACM Int. Conf. Inf. Knowl. Manag., 2018, pp. 793–802.

[16] P. A. Chew, B. W. Bader, T. G. Kolda, and A. Abdelali, “Cross-language in-
formation retrieval using PARAFAC2,” in KDD’07: Proc. 13th ACM SIGKDD
Int. Conf. Knowl. Discov. and Data Mining, 2007, pp. 143–152.

[17] K. Madsen, N. Churchill, and M. Mørup, “Quantifying functional connectivity
in multi-subject fMRI data using component models,” Human Brain Mapping,
vol. 38, no. 2, pp. 882–899, 2017.

[18] M. Roald, S. Bhinge, C. Jia, V. Calhoun, T. Adali, and E. Acar, “Tracing net-
work evolution using the PARAFAC2 model,” in ICASSP’20: Proc. Int. Conf.
Acoust., Speech, Signal Process., 2020.

[19] I. Lehmann, E. Acar, T. Hasija, M. A. Akhonda, V. D. Calhoun, P. J. Schreier,
and T. Adali, “Multi-task fMRI data fusion using IVA and PARAFAC2,” in
ICASSP’22: Proc. Int. Conf. Acoust., Speech, Signal Process., 2022.

[20] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the PARAFAC
decomposition of a third-order tensor,” IEEE Trans. Signal Process., vol. 57,
pp. 2299–2310, 2009.

30

[21] M. Vandecappelle, N. Vervliet, and L. D. Lathauwer, “Nonlinear least squares
updating of the canonical polyadic decomposition,” in EUSIPCO’17: Proc. 25th
Eur. Signal Proc. Conf., EURASIP, 2017, pp. 663–667.

[22] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning and imputa-
tion for streaming big data matrices and tensors,” IEEE Trans. Signal Process.,
vol. 63, no. 10, pp. 2663–2677, 2015.

[23] T. Maehara, K. Hayashi, and K. Kawarabayashi, “Expected tensor decompo-
sition with stochastic gradient descent,” in AAAI’16: Proc. 30th AAAI Conf.
Artif. Intell., 2016, pp. 1919–1925.

[24] T. G. Kolda and D. Hong, “Stochastic gradients for large-scale tensor decom-
position,” SIAM J. Math. Data Sci., vol. 2, no. 4, pp. 1066–1095, 2020.

[25] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro, “PARAFAC2 - Part I. A direct
fitting algorithm for the PARAFAC2 model,” J. Chemom., vol. 13, no. 3-4,
pp. 275–294, 1999.

[26] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A compre-
hensive review,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1336–1353,
2012.

[27] R. Bro and S. De Jong, “A fast non-negativity-constrained least squares algo-
rithm,” J. Chemom., vol. 11, no. 5, pp. 393–401, 1997.

[28] M. P. Friedlander and K. Hatz, “Computing non-negative tensor factorizations,”
Optim. Methods Softw., vol. 23, no. 4, pp. 631–647, 2008.

[29] N. E. Helwig, “Estimating latent trends in multivariate longitudinal data via
Parafac2 with functional and structural constraints,” Biom. J., vol. 59, no. 4,
pp. 783–803, 2017.

[30] J. E. Cohen and R. Bro, “Nonnegative PARAFAC2: A flexible coupling ap-
proach,” in LVA/ICA’18, 2018, pp. 89–98.

[31] M. H. Van Benthem, T. J. Keller, G. D. Gillispie, and S. A. DeJong, “Getting to
the core of PARAFAC2, a nonnegative approach,” Chemom. Intel. Lab. Syst.,
vol. 206, p. 104 127, 2020.

[32] K. Yin, A. Afshar, J. C. Ho, W. K. Cheung, C. Zhang, and J. Sun, “LogPar:
Logistic PARAFAC2 factorization for temporal binary data with missing val-
ues,” in KDD’20: Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. and
Data Mining, 2020, pp. 1625–1635.

[33] J. D. Carroll, S. Pruzansky, and J. B. Kruskal, “Candelinc: A general approach
to multidimensional analysis of many-way arrays with linear constraints on pa-
rameters,” Psychometrika, vol. 45, no. 1, pp. 3–24, 1980.

[34] R. Bro and C. A. Andersson, “Improving the speed of multiway algorithms:
Part II: Compression,” Chemom. Intel. Lab. Syst., vol. 42, no. 1-2, pp. 105–113,
1998.

[35] H. A. L. Kiers, “A three–step algorithm for CANDECOMP/PARAFAC analysis
of large data sets with multicollinearity,” J. Chemom., vol. 12, no. 3, pp. 155–
171, 1998.

[36] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and efficient al-
gorithmic framework for constrained matrix and tensor factorization,” IEEE
Trans. Signal Process., vol. 64, no. 19, pp. 5052–5065, 2016.

31

[37] C. Schenker, J. E. Cohen, and E. Acar, “A flexible optimization framework
for regularized matrix-tensor factorizations with linear couplings,” IEEE J. Sel.
Top. Signal Process., vol. 15, no. 3, pp. 506–521, 2021.

[38] C. Schenker, J. E. Cohen, and E. Acar, “An optimization framework for reg-
ularized linearly coupled matrix-tensor factorization,” in EUSIPCO’20: Proc.
2020 28th Eur. Signal Process. Conf., EURASIP, 2021, pp. 985–989.

[39] Y. Ren, J. Lou, L. Xiong, and J. C. Ho, “Robust irregular tensor factorization
and completion for temporal health data analysis,” in CIKM’20: Proc. 29th
ACM Int. Conf. Inf. Knowl. Manag., 2020, pp. 1295–1304.

[40] R. A. Harshman and M. E. Lundy, “Uniqueness proof for a family of models
sharing features of tucker’s three-mode factor analysis and parafac/candecomp,”
Psychometrika, vol. 61, no. 1, pp. 133–154, 1996.

[41] J. M. ten Berge and H. A. Kiers, “Some uniqueness results for PARAFAC2,”
Psychometrika, vol. 61, no. 1, pp. 123–132, 1996.

[42] S. Friedland and G. Ottaviani, “The number of singular vector tuples and
uniqueness of best rank-one approximation of tensors,” Found. Comp. Math.,
vol. 14, no. 6, pp. 1209–1242, 2014.

[43] R. Bro, R. Leardi, and L. G. Johnsen, “Solving the sign indeterminacy for
multiway models,” J. Chemom., vol. 27, no. 3-4, pp. 70–75, 2013.

[44] N. E. Helwig, “The special sign indeterminacy of the direct-fitting Parafac2
model: Some implications, cautions, and recommendations for simultaneous
component analysis,” Psychometrika, vol. 78, no. 4, pp. 725–739, 2013.

[45] N. Gillis and F. Glineur, “Accelerated multiplicative updates and hierarchical
ALS algorithms for nonnegative matrix factorization,” Neural Comput., vol. 24,
no. 4, pp. 1085–1105, 2012.

[46] R. Bro and N. D. Sidiropoulos, “Least squares algorithms under unimodality
and non-negativity constraints,” J. Chemom., vol. 12, no. 4, pp. 223–247, 1998.

[47] R. Bro, “Multi-way analysis in the food industry,” Ph.D. dissertation, Royal
Veterinary and Agricultural University Denmark, 1998.

[48] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.

[49] D. Bertsekas, Nonlinear Programming, ser. Athena Sci. Optim. Comput. Series.
Athena Scientific, 1999, isbn: 9781886529007.

[50] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Mach. Learn.,
vol. 1, no. 3, pp. 127–239, 2014.

[51] A. Beck, First-order methods in optimization. SIAM, 2017.

[52] L. Condat, “A direct algorithm for 1-D total variation denoising,” IEEE Signal
Process. Letters, vol. 20, no. 11, pp. 1054–1057, 2013.

[53] Q. F. Stout, “Unimodal regression via prefix isotonic regression,” Comput. Stat.
Data Anal., vol. 53, no. 2, pp. 289–297, 2008.

[54] L. Condat, Software, [Accessed: 2020-10-19], 2019. [Online]. Available: https:
//lcondat.github.io/software.html.

[55] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

32

[56] M. H. Van Benthem and M. R. Keenan, “Fast algorithm for the solution of large-
scale non-negativity-constrained least squares problems,” J. Chemom., vol. 18,
no. 10, pp. 441–450, 2004.

[57] J. Kim and H. Park, “Fast nonnegative matrix factorization: An active-set-like
method and comparisons,” SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261–3281,
2011.

[58] B. J. Zijlstra and H. A. Kiers, “Degenerate solutions obtained from several
variants of factor analysis,” J. Chemom., vol. 16, no. 11, pp. 596–605, 2002.

[59] R. L. Gollub et al., “The MCIC collection: A shared repository of multi-modal,
multi-site brain image data from a clinical investigation of schizophrenia,” Neu-
roinformatics, vol. 11, no. 3, pp. 367–388, 2013.

[60] Z. Bai, P. Walker, A. Tschiffely, F. Wang, and I. Davidson, “Unsupervised net-
work discovery for brain imaging data,” in KDD’17: Proc. 23rd ACM SIGKDD
Int. Conf. Knowl. Discov. and Data Mining, 2017, pp. 55–64.

[61] J. M. Amigo, T. Skov, R. Bro, J. Coello, and S. Maspoch, “Solving GC-MS
problems with PARAFAC2,” TrAC Trends Anal. Chem., vol. 27, no. 8, pp. 714–
725, 2008, issn: 0165-9936.

[62] C. Chatzichristos, E. Kofidis, M. Morante, and S. Theodoridis, “Blind fMRI
source unmixing via higher-order tensor decompositions,” J. Neurosci. Methods,
vol. 315, pp. 17–47, 2019.

[63] L. De Lathauwer, “Decompositions of a higher-order tensor in block terms—part
II: Definitions and uniqueness,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3,
pp. 1033–1066, 2008.

[64] E. Gujral, R. Pasricha, and E. Papalexakis, “Beyond rank-1: Discovering rich
community structure in multi-aspect graphs,” in Proc. Web Conf. 2020, 2020,
pp. 452–462.

[65] D. Mitchell, N. Ye, and H. De Sterck, “Nesterov acceleration of alternating least
squares for canonical tensor decomposition: Momentum step size selection and
restart mechanisms,” Numer. Linear Algebra with Appl., vol. 27, no. 4, e2297,
2020.

[66] A. M. Shun Ang, J. E. Cohen, L. T. Khanh Hien, and N. Gillis, “Extrapolated
alternating algorithms for approximate canonical polyadic decomposition,” in
ICASSP’20: Proc. Int. Conf. Acoust., Speech, Signal Process., 2020, pp. 3147–
3151.

[67] H. Yu, D. Augustijn, and R. Bro, “Accelerating PARAFAC2 algorithms for non-
negative complex tensor decomposition,” Chemom. Intel. Lab. Syst., vol. 214,
p. 104 312, 2021.

33

An AO-ADMM approach to constraining

PARAFAC2 on all modes∗

Marie Roald† Carla Schenker† Vince D. Calhoun‡

Tülay Adalı§ Rasmus Bro¶ Jeremy E. Cohen‖ Evrim Acar∗∗

1 Proofs

Proof of Proposition 3.1. Let M = OJ1,R × . . . × OJK ,R × RR×R. There exists a
continuous surjection between M and P [2], and it is, therefore, sufficient to prove
the closedness of M to prove Proposition 3.1. Closedness is preserved by cartesian
products, and both RR×R and OJk,R are closed (closedness of OJk,R follows from the

preimage description OJk,R = f−1({I}), where f(X) = XTX). Thus, M is closed,
and consequently P is also closed.

Proof of Theorem 4.1. Recall that f : Rn × Rm → R satisfies f(au, a−2v) = f(u,v),
and that ru : Rn → R and rv : Rm → R are two (absolutely) homogeneous functions
of degree du and dv respectively. We want to show that

min
u,v

f(u,v) + aru(u) + rv(v) (1)

and
min
u,v

f(u,v) + ru(u) + a2
dv
du rv(v) (2)

are equivalent.

We start by introducing the change of variables u = a−
1
du ũ and v = a

2
du ṽ into

Equation (1):

min
u,v

f(a−
1
du ũ, a

2
du ṽ) + aru(a−

1
du ũ) + rv(a

2
du ṽ). (3)

Next, from f(au, a−2v) = f(u,v) and the homogeneity of ru and rv, we have

min
u,v

f(ũ, ṽ) + a
(
a−

1
du

)du
ru(ũ) +

(
a

2
du

)dv
rv(ṽ), (4)

∗Funding: This work was supported in part by the Research Council of Norway through project
300489 (IKTPLUSS) and ANR JCJC project LoRAiA ANR-20-CE23-0010.

†Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital
Engineering, Oslo, Norway & Faculty of Technology, Art and Design, Oslo Metropolitan University,
Oslo, Norway (mariero@simula.no, carla@simula.no).

‡Department of Psychology, Georgia State University, Atlanta, GA, USA (vcalhoun@gsu.edu)
§Department of Computer Science and Electrical Engineering, UMBC, Baltimore, MD

(adali@umbc.edu).
¶Department of Food Science, University of Copenhagen, Copenhagen, Denmark (rb@food.ku.dk).
‖Univ Lyon, INSA-Lyon, UCBL, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220,

U1206, F-69100 Villeurbanne, France (jeremy.cohen@cnrs.fr).
∗∗Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital

Engineering, Oslo, Norway (evrim@simula.no).

1

ar
X

iv
:2

11
0.

01
27

8v
3

 [
cs

.L
G

]
 8

 J
ul

 2
02

2

which is equivalent to

min
ũ,ṽ

f(ũ, aṽ) + ru(ũ) + a2
dv
du rv(ṽ). (5)

2 Additional observations on P

2.1 Computations for the one-component case

In the one-component case, we have OJ,1 = {x ∈ RJ | ‖x ‖ = 1} and BT
kBk = δ2 ∈ R.

Consequently, δOJ,1 is a 2-norm sphere with radius δ. Solving

min
δ

K∑

k=1

d(δOJ,1,Bk) = min
δ

K∑

k=1

min
Pk∈OJ,1

‖Bk −Pkδ‖2F (6)

is therefore a bilevel optimization problem where the inner problem is the projection
onto the sphere with radius δ, which has the closed form solution (for Bk 6= 0):

arg min
Pk∈OJ,1

‖Bk −Pkδ‖2F =
[bk]1
‖ [bk]1 ‖

. (7)

Substituting Equation (7) into Equation (6) yields

min
δ

K∑

k=1

d(δOJ,1,Bk) = min
δ

K∑

k=1

∥∥∥∥Bk −
[bk]1
‖ [bk]1 ‖

δ

∥∥∥∥
2

F

, (8)

which is a formulation of the mean. For the one-component case, we therefore have
that projection onto P is equivalent to projecting onto the sphere with radius given
by the average norm of each Bk.

2.2 Additional interpretations of P

One interpretation of P arises from the formulation discussed in Subsection 3.1. We
can interpret each Pk matrix as an orthogonal basis for a given subspace and ∆B as
a matrix of coordinates for each component in that subspace.

Another interpretation of P, for the case where Jk = J , is apparent by observing
that

Bk = Pk∆B = PkP
T
1P1∆B = P̃kB1, (9)

where P̃k = PkP
T
1 . Thus, every Bk matrix can be constructed by rotating and

reflecting the columns of B1. See Figure 1 for an illustration of this with two slabs
constructed from two components in R2.

3 Some proximable constraints

3.1 Hard constraints

Imposing hard constraints, that is, restricting the component vectors to lie in a spe-
cific set, requires evaluating the projection onto that set. For some constraints, the
projection has a fast closed-form solution (e.g., non-negativity). Other constraints

2

Figure 1: Illustration of the PARAFAC2 constraint with two components in two
dimensions across two slabs. Each row represents one set of evolving component
vectors and each column represents tensor slabs. The component vectors in the top
row satisfy the PARAFAC2 constraint, since the angle between the components are
constant for the first and second slab. The component vectors in the bottom row do
not satisfy the PARAFAC2 constraint, since the angle between them are not constant
for the two slabs.

3

are more involved and may not even be convex. For example, unimodality constraints
require that we solve a set of isotonic regression problems for each component vec-
tor, and the proximal operator is not unique [3], [4]. The PARAFAC2 constraint is
another example of a non-convex hard constraint.

3.2 Graph Laplacian regularization

For graph Laplacian regularization, we penalize pairwise differences between compo-
nent vector elements. With appropriately selected weight parameters wij ≥ 0, we get
the graph Laplacian penalty

g(x) =
∑

i,j

wij(xi − xj)2 = xTLx, (10)

where L is a positive semidefinite matrix with lij = −wij for i 6= j and lii =
∑
j wij .

The scaled proximal operator of this penalty function is given by

prox xTLx
ρ

(x) =
(
L +

ρ

2
I
)−1 ρ

2
x, (11)

which can be evaluated using the Cholesky factorization or algebraic multigrid pre-
conditioned conjugate gradient [5].

3.3 TV regularization

Another popular regularization technique is TV regularization, which encourages
piecewise constant components and is defined as

g(x) =
∑

i

|xi+1 − xi| (12)

While there is no closed form solution for the proximal operator of the TV penalty,
we can still evaluate it in linear time [6].

4 Including ridge regularization in the data fidelity
updates

Here, we state the update steps with ridge imposed for all modes. For the A-updates,
the update becomes

prox fA+γ‖ · ‖2
F

ρA

(M) =

(
K∑

k=1

XkΓk +
ρA

2
M

)(
K∑

k=1

ΓT
kΓk +

2γ + ρA

2
I

)−1
, (13)

if we impose ridge regularization with a strength of γ. Likewise, the updates with
respect to Bk and Dk become

Bk ←
(
XT
kADk +

ρBk

2
M
)(

DkA
TADk + (γ + ρBk) I

)−1
, (14)

where M = (ZBk − µZBk
+ YBk − µ∆Bk

), and

prox fDk+γ‖ · ‖2
F

ρDk

(v) =

(
ATA ∗BT

kBk +
2γ + ρDk

2
I

)−1 (
Diag

(
ATXkBk

)
+
ρDk

2
v
)
,

(15)
respectively.

4

5 CP-based updates for the non-evolving modes

To obtain the CP-based update steps, we use the reformulation in [2]. We start by
assuming that the Bk factors are feasible, which allows the substitution Bk = YBk .
Setting Tk = XkPk, we see that updating A is equivalent to solving

min
A

K∑

k=1

∥∥∥ADk∆B
T −Tk

∥∥∥
F

+ gA (A) , (16)

which is the A-updates of a regularized CP-model fitted to T (i.e. the tensor with
frontal slices given by Tk). We can use a similar argument for {Dk}k≤K , yielding the
update rules from [7], [8]:

prox fA
ρA

(M) =
(
T(1) (∆B �C) +

ρA

2
M
)(

∆B
T∆B ∗CTC +

ρA

2
I
)−1

(17)

and

prox fC
ρC

(M) =
(
T(3) (A�∆B) +

ρC

2
M
)(

ATA ∗∆B
T∆B +

ρC

2
I
)−1

, (18)

where T(n) is the mode-n unfolding of T.
For both the CP- and the CMF-based updates, we get the same overall ADMM

algorithm for A; the only difference is which linear system we need to solve. However,
for the updates of the Dk-matrices, we see clear differences. For the CMF-based
updates, we solve a separate system of equations for each Dk-matrix (i.e. each row
of C), while for the CP-based updates, all Dk-matrices are obtained by solving the
same system of equations.

To select the penalty parameters with the CP-based updates, we used the following
heuristic:

ρA =
1

R
Tr
(
∆B

T∆B ∗CTC
)
, ρC =

1

R
Tr
(
ATA ∗∆B

T∆B

)
. (19)

Algorithm 1: CMF-based and CP-based ADMM for the A-matrices

Result: A,ZA,µA

1 while stopping conditions are not met and max no. iterations not exceeded do

2 A
Equation (17)←−−−−−−−−− prox fA

ρA

(ZA − µA)

3 ZA ← prox gA
ρA

(A+ µA)

4 µA ← µA +A− ZA

5 end

5.1 Computational complexity

One difference between the CP-based and CMF-based update steps is their compu-
tational complexity, which are given in Table 1.

From the complexities alone, it seems like the CP-based updates have lower com-
putational complexity. However, for the CP-based updates, we also need to compute
the T tensor, by multiplying the frontal slices of X with the Pk-matrices, which incurs
an additional O(IJKR) step in the algorithm. Also, the Bk updates have a substan-
tial time-complexity that may dominate the A and Dk updates. Finally, with the

5

Algorithm 2: CP-based ADMM for the Dk-matrices (C-matrix)

Result: C,ZC,µC

1 while stopping conditions are not met and max no. iterations not exceeded do

2 C
Equation (18)←−−−−−−−−− prox fC

ρC

(ZC − µC)

3 ZC ← prox gC
ρC

(C+ µC)

4 µC ← µC +C− ZC

5 end

Table 1: Computational complexities for the different AO-ADMM update steps. I,
J and K denote the tensor size, R denotes the number of components and Q the
number of iterations.

CMF-based updates CP-based updates

A O(IJKR+ JKR2 +R3 + IR2Q) O(IKR2 +R3 + IR2Q)*

{Dk}k≤K O(IJKR+ IR2 + JKR2 +KR3 +KR2Q) O(IKR2 +R3 +KR2Q)*

{Bk}k≤K O(IJKR+ IR2 +KR3 + JKR2Q) —

* The CP-based update steps also require computing the T-tensor which adds an
additional O(IJKR) complexity step shared between the A and D updates.

CMF-based updates, we update the A- and Dk-matrices based on the Bk-matrices.
However, for the CP-based updates, we update these matrices based on the YBk -
matrices. Thus, the two algorithms may behave differently, and it is difficult to select
the “optimal” update steps based on computational complexity alone.

5.2 Setup SM1: Comparing the CMF- and CP-based ADMM
updates

Dataset generation To compare the two ADMM update schemes for A and {Dk}k≤K ,
we generated non-negative Bk-factor matrices by first creating a non-negative ∆B

and non-negative {Pk}k≤K and then setting Bk = Pk∆B. The elements of ∆B were
drawn from a uniform distribution between 0 and 1. Each Pk-matrix was generated
by first dividing the indices between 1 and J into R contiguous partitions, each con-
taining the non-zero elements of one column of Pk, and then drawing these non-zero
elements from a uniform distribution between 0 and 1. The partition indices were
generated from an R-category Dirichlet distribution (with each concentration param-
eter set to 1) scaled by J , rounded to the nearest integer. We used this approach to
generate 30 five-component PARAFAC2 decompositions of various sizes. Ten of size
30×10×70, ten of size 30×100×70 and ten of size 30×1000×70. For each of these
decompositions, we generated two simulated data tensors with different noise levels;
one with η = 0.33 and one with η = 0.5.

Experiment setup Each data tensor was decomposed with ten random initializa-
tion using both the CMF-based updates and the CP-based updates. Each initializa-
tion ran until convergence or for at most 2000 outer iterations. With both schemes,
we imposed non-negativity on all modes.

6

Table 2: Mean performance (± one standard deviation) for the selected initialization
for all simulated datasets with the CMF-based and CP-based AO-ADMM scheme.

FMS Final iteration Time [s]

η J CMF CP CMF CP CMF CP

0.33 101 0.98± 0 0.98± 0 195± 77 192± 64 11± 5 10± 3
102 0.98± 0 0.98± 0 179± 81 188± 116 50± 24 46± 30
103 0.98± 0 0.98± 0 144± 65 160± 71 98± 44 104± 46

0.5 101 0.96± 0.01 0.96± 0.01 301± 289 320± 389 14± 9 13± 11
102 0.96± 0.01 0.96± 0.01 150± 56 151± 37 41± 16 33± 8
103 0.96± 0.01 0.96± 0.01 141± 56 141± 52 93± 35 86± 32

Table 3: Setup SM1: Mean performance (± one standard deviation) across all ini-
tializations and all simulated data tensors with the CMF-based and CP-based AO-
ADMM scheme.

FMS Final iteration Time [s]

η J CMF CP CMF CP CMF CP

0.33 101 0.98± 0 0.98± 0 261± 302 342± 461 15± 18 18± 24
102 0.98± 0 0.98± 0 179± 142 227± 280 51± 46 59± 83
103 0.98± 0 0.98± 0 152± 65 167± 149 105± 43 109± 106

0.5 101 0.96± 0.01 0.96± 0.01 525± 647 699± 777 27± 35 33± 39
102 0.96± 0.01 0.96± 0.01 156± 88 182± 185 43± 29 47± 60
103 0.96± 0.01 0.96± 0.01 140± 60 142± 62 93± 41 87± 38

Results Tables 2 and 3 and Figures 2 and 3 demonstrate that the two AO-ADMM
schemes are comparable in terms of time and FMS.

6 Additional details for the simulation experiments

6.1 Setup 2

To generate Bk-factor matrices, solved the optimization problem

min
Bk

||BT
kBk −XTX||2

subject to [Bk]jr ≥ 0
(20)

using projected gradient descent with different standard normal random initializations
for each Bk-factor matrix and a fixed X matrix with elements from a truncated
standard normal distribution. Then, if projected gradient descent did not obtain a
loss-value less than 10−12 within 10000 iterations, we re-initialized Bk, reduced the
step-size by a factor 10 and tried again. If no suitable Bk factor matrix could be
found after 10 attempts, we selected a new X-matrix and restarted the process.

Figure 4 shows the results for noise levels η = 0.6, 0.85, 1.2, 1.7 and 2.5, and
Table 4 gives an overview of the number of datasets left after removing datasets
where ALS gave only degenerate solutions.

7

(a)

(b)

(c)

Figure 2: Setup SM1: Performance plots on the data tensors with η = 0.33 for the
CMF-based and CP-based AO-ADMM schemes. J=10, 100, and 1000 in (a), (b) and
(c), respectively

8

(a)

(b)

(c)

Figure 3: Setup SM1: Performance plots on the data tensors with η = 0.5 for the
CMF-based and CP-based AO-ADMM schemes. J=10, 100, and 1000 in (a), (b) and
(c), respectively

Figure 4: Setup 2: Boxplots showing the FMS for the different datasets.

9

Figure 5: Setup 2: Performance plots showing FMS and relative SSE plotted against
time. Each row corresponds to a different noise level.

10

Figure 6: Setup 2: Performance plots showing FMS and relative SSE plotted against
iteration. Each row corresponds to a different noise level.

11

Table 4: Setup 2: Number of datasets where ALS gave at least one non-degenerate
solution (of a total of 50 datasets)

Noise level 0.5 0.6 0.7 0.9 1.0 1.2 1.5 1.7 2.1 2.5
Data

No mixing 50 50 50 50 50 50 50 49 49 39
Mixing C 50 50 50 50 50 50 49 39 32 23

Figure 7: Setup 3: Performance plots showing FMS and relative SSE plotted against
time and iteration.

6.2 Setup 3

In Figure 7, we see that the models fitted with AO-ADMM with only non-negativity
constraints converged faster than those fitted with the HALS scheme. Furthermore,
we observe that while the models fitted with unimodality constraint took longer to
converge than the other models, they obtained a much higher FMS.

6.3 Setup 3b

Data generation We also ran experiments using the same data generation setup
as for Setup 3, but with a constant σkr = σr for all k, which means that the only
change is a constant shifting for all components. Thus, the Bk-components followed
the PARAFAC2 constraint.

Experiment settings We used the same experimental settings as for Setup 3 to
decompose these datasets (including the initialization scheme and the scaling of ρBk

and the extra ADMM iterations).

Results In Figure 8, we see the results from these experiments. For six datasets,
ALS yielded degenerate solutions for all 20 initializations, leaving 44 out of 50 datasets.
We see from the figures that the results are similar to those from Setup 3. Specifically,
we see that imposing constraints on the evolving mode improves factor recovery,
especially when the component vectors are constrained to be unimodal. Figure 9
shows the true and estimated components for one of the datasets.

6.4 Setup 4 and 5

In Tables 5 and 6, we see the number of initializations that converged and the number
of simulated datasets where at least one initialization converged for the models fitted
with graph Laplacian regularization and TV regularization, respectively. Also, in Fig-
ures 10 and 11, we see the regularization penalty (after normalizing the Bk-matrices)

12

Figure 8: Setup 3: Boxplots showing the FMS for different models fitted to datasets
with unimodal Bk-matrices. NN represents models fitted with non-negativity imposed
on all modes using AO-ADMM, NN&U represents models fitted with non-negativity
on all modes and unimodality imposed on {Bk}k≤K using AO-ADMM, and ALS
represents models fitted with non-negativity imposed on A and {Dk}k≤K .

Figure 9: Setup 3: Plots showing the true and estimated components for one
of the datasets. NN represents the model fitted with non-negativity imposed on
all modes, Unimodal NN represents the model fitted with non-negativity on all
modes and unimodality imposed on {Bk}k≤K and ALS represents the model fitted
with non-negativity imposed on A and {Dk}k≤K . The cwSNRs (left to right) are
−2.4,−9.3,−12, 4.5 and −11 dB for this frontal slice.

13

Table 5: Setup 4 and 5: Number of converged initializations and datasets with at least
one converged initialization for the models fitted with graph Laplacian regularization,
the Successful decompositions column shows the number of datasets where at least
one initialization converged. Convergence for ALS is measured in the same way using
the same tolerance as AO-ADMM (with no feasibility gaps due to ALS not being a
splitting method).

Converged init. Successful decompositions
Method Smooth

ADMM - Ridge=0.0 1 0/400 0/20
10 0/400 0/20
100 0/400 0/20
1000 0/400 0/20

ADMM - Ridge=0.1 1 272/400 19/20
10 255/400 18/20
100 261/400 18/20
1000 261/400 17/20

ALS N/A 393/400 20/20

as a function of iteration number for the selected initialization for each simulated
dataset. Once an algorithm has converged, its final value is set as constant for the
rest of the iterations, making it easier to compare the behavior of the ALS algorithm
and AO-ADMM algorithm without ridge penalty on A and {Dk}k≤K . Finally, in Fig-
ure 12, we see a boxplot depicting the FMS of the model fitted with graph Laplacian
regularization and TV regularization when we select the initialization that obtained
the highest overall FMS.

14

Table 6: Setup 4 and 5: Number of converged initializations and datasets with at
least one converged initialization for the models fitted with TV regularization, the
Successful decompositions column shows the number of datasets where at least one
initialization converged. Convergence for ALS is measured in the same way using
the same tolerance as AO-ADMM (with no feasibility gaps due to ALS not being a
splitting method).

Converged init. Successful decompositions
Method Reg

ADMM - Ridge=0.0 0.001 0/400 0/20
0.01 0/400 0/20
0.1 0/400 0/20
1 0/400 0/20
10 0/400 0/20

ADMM - Ridge=0.1 0.001 38/400 7/20
0.01 198/400 16/20
0.1 230/400 20/20
1 199/400 18/20
10 54/400 8/20

ALS N/A 398/400 20/20

Figure 10: Setup 4: Graph Laplacian penalty of components (after normalizing) as a
function of iteration number. Each plot corresponds to one dataset.

15

Figure 11: Setup 5: Total variation of components (after normalizing) as a function
of iteration number. Each plot corresponds to one dataset.

Figure 12: Setup 4 and 5: The FMS for the different models fitted with penalty based
regularization when the initialization that obtained the highest overall FMS is chosen
for each simulated dataset.

16

References

[1] M. Roald, C. Schenker, J. E. Cohen, and E. Acar, “PARAFAC2 AO-ADMM:
Constraints in all modes,” in EUSIPCO’21: Proc. 2021 29th Eur. Signal Process.
Conf., EURASIP, 2021.

[2] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro, “PARAFAC2 - Part I. A di-
rect fitting algorithm for the PARAFAC2 model,” J. Chemom., vol. 13, no. 3-4,
pp. 275–294, 1999.

[3] R. Bro and N. D. Sidiropoulos, “Least squares algorithms under unimodality and
non-negativity constraints,” J. Chemom., vol. 12, no. 4, pp. 223–247, 1998.

[4] Q. F. Stout, “Unimodal regression via prefix isotonic regression,” Comput. Stat.
& Data Anal., vol. 53, no. 2, pp. 289–297, 2008.

[5] O. E. Livne and A. Brandt, “Lean algebraic multigrid (lamg): Fast graph lapla-
cian linear solver,” SIAM J. Sci. Comput., vol. 34, no. 4, B499–B522, 2012.

[6] L. Condat, “A direct algorithm for 1-D total variation denoising,” IEEE Signal
Process. Letters, vol. 20, no. 11, pp. 1054–1057, 2013.

[7] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and efficient algo-
rithmic framework for constrained matrix and tensor factorization,” IEEE Trans.
Signal Process., vol. 64, no. 19, pp. 5052–5065, 2016.

[8] A. Afshar, I. Perros, E. E. Papalexakis, E. Searles, J. Ho, and J. Sun, “COPA:
Constrained PARAFAC2 for Sparse & Large Datasets,” in ACM Int. Conf. on
Inf. and Knowl. Management, 2018, pp. 793–802.

17

