
1

Improving the Diversity of Bootstrapped DQN by
Replacing Priors with Noise

Li Meng1, Morten Goodwin2,3, Anis Yazidi3,4,5, Paal Engelstad1
1University of Oslo

2Centre for Artificial Intelligence Research, University of Agder
3Oslo Metropolitan University

4Norwegian University of Science and Technology
5Oslo University Hospital

Abstract—Q-learning is one of the most well-known Reinforce-
ment Learning algorithms. There have been tremendous efforts to
develop this algorithm using neural networks. Bootstrapped Deep
Q-Learning Network is amongst them. It utilizes multiple neural
network heads to introduce diversity into Q-learning. Diversity
can sometimes be viewed as the amount of reasonable moves an
agent can take at a given state, analogous to the definition of the
exploration ratio in RL. Thus, the performance of Bootstrapped
Deep Q-Learning Network is deeply connected with the level of
diversity within the algorithm. In the original research, it was
pointed out that a random prior could improve the performance
of the model. In this article, we further explore the possibility of
replacing priors with noise and sample the noise from a Gaussian
distribution to introduce more diversity into this algorithm. We
conduct our experiment on the Atari benchmark and compare
our algorithm to both the original and other related algorithms.
The results show that our modification of the Bootstrapped Deep
Q-Learning algorithm achieves significantly higher evaluation
scores across different types of Atari games. Thus, we conclude
that replacing priors with noise can improve Bootstrapped Deep
Q-Learning’s performance by ensuring the integrity of diversities.

Index Terms—Machine Learning, Reinforcement Learning,
Deep Learning, Convolutional Neural Networks, Atari

I. INTRODUCTION

Reinforcement Learning (RL) is a sub-field of Artificial
Intelligence (AI) that studies intelligent behaviors through
indicative reward signals. The term ”intelligence” can be
interpreted in different ways. There were efforts towards de-
scribing intelligence in mathematical formulas [16], yet there
is no strictly definable quantitative measure about the level
of intelligence that one agent possesses. Intelligence, given
its multi-pronged nature, can involve a variety of skills that
we consider as intelligent behaviors. Thus, focusing on one
particular intelligent aspect of an agent can be a progressive
approach to research AI [28].

RL is suitable in studying games because it requires the
input of reward signals, and games typically have well-defined
reward mechanisms to guide a player towards goals. On the
other hand, it is often challenging to build a simulator that
gives adequate reward signals and precisely describes the
complexity of the real world. Games also have finite action
and time sequences, enabling the quantitative measure of the
intelligence that would not be applicable otherwise.

There are some interests in RL to tackle those issues and to
apply RL methods on real world tasks. Inverse RL lets an agent
approximate a cost function from the demonstrations [20],
whereas Imitation Learning can imitate the behaviors from
demonstrations in an end-to-end approach [12], [13]. Hierar-
chical RL decomposes a Markov decision process (MDP) into
a hierarchy of smaller MDPs, together with the decomposition
of corresponding value functions [4]. Those algorithms are
valuable for the real world applications of RL, while they
are not irrelevant to traditional RL methods and still use
algorithms developed in game environments.

An agent needs to balance the rate of exploration and
exploitation in order to maximize the obtained rewards during
a RL procedure. The experienced outcomes for an action at a
certain state from the exploration phase can be preserved in a
value-based manner, which are called Q-values.

There are two types of RL algorithms, distinguished by how
they use the behaviour policy and target policy. On-policy
algorithms evaluate and improve the same policy that is used
to make moves. In other words, their behavior policy and target
policy are the same. Q-learning is an off-policy RL method
that adopts the different behaviour policy and target policy,
which stores and updates Q-values based on the Bellman
Optimality Equation by (Eq. 1) [35]. Here, γ is the discounting
factor, Q∗(s, a) is the Q-value at state s with action a, rt+1

is the result value obtained by advancing to state st+1 at time
instant t+1. Q-learning is off-policy because max chooses a
greedy action, but not necessarily the actual action the agent
takes at st+1.

Q
∗
(s, a) = E{rt+1 + γmaxa′Q

∗
(st+1, a

′|st = t, at = a)} (1)

As RL continuously evolves, neural networks (NNs), includ-
ing convolutional neural networks (CNNs) have been adopted
to assist with the updating and exploring routines of RL. Deep
reinforcement learning (DRL) is a combination of RL and
deep learning (DL) architectures. Deep Q-learning Network
(DQN) is one of the DRL methods that records Q-values in
NNs instead of the traditional Q-tables. It was designed to play
on the Atari games and achieved better than average human
scores through feeding their CNN with raw image pixels of
games as input [18].

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

2

One of the main problems of Q-learning is overestimation
because the max operator is repeatedly used during the train-
ing. The max operator perpetuates the approximation errors
in one direction, i.e., overestimation, but not underestimation.
Overestimation bias can often contribute to suboptimal perfor-
mances of Q-learning [31] and lead the model to learn from
repetitive moves that can destabilize the weights in the model.
Double Q-learning [10] is one of the most successful proposed
methods to alleviate the overestimation bias problem in Q-
learning. Double Q-learning maintains two separate Q-value
functions but only updates one of them according to either
(Eq. 2) or (Eq. 3). The learning rate is α(s, a), and a∗ is
argmaxaQ

A
θ (s
′, a), and b∗ is argmaxaQ

B
θ (s
′, a) at the next

state s′. The complete proof of convergence of Double Q-
learning under similar conditions of Q-learning is given by
[10], in their Theorem 1.

Q
A
(s, a) = Q

A
(s, a) + α(s, a)(r + γQ

B
(s

′
, a

∗
)−Q

A
(s, a)) (2)

Q
B
(s, a) = Q

B
(s, a) + α(s, a)(r + γQ

A
(s

′
, b

∗
)−Q

B
(s, a)) (3)

Double Q-learning is found to be unequivocally useful when
it is integrated with NNs in DRLs. It has become a widely used
technique in DRL implementations. Moreover, the convention
is that the target network is kept as a copy of the policy Q-
network instead of as a separate network in practice, designed
to reduce the amount of computation overhead [33]. The
amount of steps to synchronize those two NNs is a hyper-
parameter to be tuned.

In the meantime, Double Q-learning introduces a new prob-
lem called underestimation. Underestimation occurs because
the target approximation is a weighted estimate of unbiased
expected values, which are lower or equal to the maximum
expected values [10]. Although underestimation is often con-
sidered harmless in most algorithms, it may still introduce
certain undesired effects [3].

Similarly, Bootstrapped Deep Q-Learning Network (Boot-
strapped DQN) [22] is one of the methods that aspires to boost
the performance of DQN through some simple but efficient
modifications. Bootstrapped DQN intends to ameliorate the
limited exploration capabilities of Q-learning by enabling deep
exploration in complex RL tasks. Randomized value functions
methods which can be implemented similarly to Thompson
sampling [30], [27], [23], [25] share some common traits
with Bootstrapped DQN in regard to uncertainty estimation.
Nevertheless, previous deep exploration methods either only
work on MDPs with small finite state spaces, or relies on
computationally intractable planning [9], [14].

The importance of diversity in RL has been stressed and
discussed in [7], where the author replaces the reward function
with a surrogate reward which is based on the entropy and
mutual information terms. Each skill is sampled from a prior
distribution p(z) and should select trajectories as diversified as
possible after the training. Their methods have shown promises
in solving simple motor control tasks and indicates that
diversity can be an important consideration when designing
RL algorithms.

Previous research has also explored the effects of noise
on RL [8], [24], [26], [32], and in particular, a method that

introduced a prior network to improve the diversity of Boot-
strapped DQN [21], where an interesting way of integrating
priors to Bootstrapped DQN was through simple additions
of an untrainable prior network to each ensemble member.
However, it was observed afterwards that this way of adding
priors to Bootstrapped DQN does not improve the performance
over Bootstrapped DQN [32].

There are also many other techniques and algorithms that
improve the performance of DQN, such as Dueling Q-learning
[34]. However, they are orthogonal to the original study of
Bootstrapped DQN.

II. METHOD

In DQN, there is typically only one output head, but
Bootstrapped DQN consists of multiple (K) output heads. This
major modification allows Bootstrapped DQN to make actions
based on a particular head during exploration, yet to utilize an
ensemble of votes during evaluation. A randomly pre-selected
head is to be used for each game episode in the exploration
phase of Bootstrapped DQN. During the updating phase, there
are head masks generated from a Bernoulli distribution to
decide whether or not the heads should be updated given
the currently drawn replay sample. Bernoulli probability is
a value in [0,1] to determine how often 1 is drawn from
{0,1}. Increasing the value of Bernoulli probability equates
to more heads being trained on the same batches of samples,
which in turn reduces the diversity of Bootstrapped DQN.
Surprisingly, a large value for the Bernoulli probability would
not degenerate the performance of the algorithm. The masks
were found out best to be 1 or a value close to 1, which
can accelerate the training speed with little influences on
performances compared to when they are set as smaller values.

The benefit of keeping multiple heads is that there is a
diversity of network weights among different heads. In DRL
implementations, NNs are typically trained more than millions
of times in the learning process, in which identical samples
can be drawn repetitively from the replay memory in spite of
their distinguished individual Bernoulli probability values in
Bootstrapped DQN. As a drawback of this type of intensive
training, smaller values of masks in Bootstrapped DQN not
only cannot improve the performance of the model, but also
decelerates the training and the convergence [22]. It is also
obvious that the diversity introduced by using K heads will
eventually be negligible after they are trained on the same
subset of data frequently and there is no new trajectories to
be successfully discovered.

Bootstrapped DQN treats the randomly initialized network
weights as a prior. However, this random prior cannot assure
the diversity after a decent amount of updates. Bootstrapped
DQN also uses a shared network body to learn a joint
feature representation, so that the predictions of all heads will
eventually become similar or even the same to each other.
In the search space that has already been visited thoroughly,
different heads would be more likely to converge into the same
policy and thus the rate of exploration will be low [5]. A high
level of diversity amongst heads is only guaranteed at the states
that have never been encountered or been rarely drawn from
the replay memory.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

3

Combining this interpretation with the observation from
[32], the same conclusion can be drawn that the Bootstrapped
DQN plus Prior method from [21] still suffers from the same
degraded diversity problem at the late stage where the model
has been trained many times. As a side-effect of using fixed
randomized priors, the benefit of diversity only exists in the
states that have been trained infrequently, and then will be
overshadowed by the tremendous amount of updates.

Although we agree on the principles of using randomized
priors in [21], we argue that a successful method to combine
priors should satisfy the following requirements:

1) Priors have to be independently drawn each time of the
NN update, to maintain the level of diversity at the late
stage of training.

2) The method should not strengthen the overestimation
or the underestimation problem, in other words, not
collapsing the model.

3) Priors should still play a role significantly enough to
result in more efficient exploration and optimum con-
vergence despite the above point.

4) The method to obtain priors should not be computation-
ally costly.

Thus, our hypothesis is that noise is more suited than a fixed
prior in order to satisfy all those requirements. We propose our
algorithm based on Bootstrapped DQN, which removes the
role of priors and introduces more diversity into the algorithm.
Replacing priors with noise can introduce diversity by slightly
shifting the target value even on a state that has already been
visited frequently. In turn, they expand the search horizon
of Bootstrapped DQN and can help avoid being stuck in a
suboptimal solution for a long period at the late training stage.

Our proposal of modification is to combine the noise with
target values during the network update. In each update, a
distinct noise value is uniquely sampled, scaled and then
added to the target value. This modification requires less
adjustments from Bootstrapped DQN comparing to changing
the parameters of the NN instead.

In order to minimize the amount of computations needed to
generate noise at each update, we choose to use a Gaussian
distribution G(µ, σ) for sampling noise, which is consider-
ably computationally more efficient than generating a noise
network in each update or changing the structure of NNs.
Directly operating noise on target values also simplifies the
path to find a suitable scaling parameter because the Q-values
themselves can serve as anchor points. A larger noise value is
desired as the Q-values grow along the training process. The
absolute values of noise are therefore scaled in accordance
with the actual Q values to be compatible with games having
large score values. The parameter scale defined in (Eq. 4)
linearly increases our noise values. Here, β is a small positive
parameter.

scale = 1 + β ∗maxaQ
A
θ (s, a) (4)

From this equation, it can be seen that scale approximates 1
when β ∗maxaQ

A
θ (s, a) is small enough but remains positive.

Although there is a risk that the algorithm might exhibit some
unstable behaviors at the beginning of training due to small
target Q-values oscillating by relatively large noise values,

we still consider as necessary to have such a lower bound
of the noise. As mentioned above, Double Q-learning has the
underestimation problem and could potentially yield extremely
low Q-value predictions even at the late phase of training. A
linear noise without a lower bound might scale to a value
that is too small to be any significant in this case. Hence,
a lower bound of the noise helps Bootstrapped DQN escape
the local optimum and explore more efficiently, whereas the
initial dithering can be obscured by a large ϵ at the beginning
of training where the agent mostly chooses random actions.

The Q-values are typically lower than the maximum ex-
pected value due to the underestimation of Double Q-learning.
However, this underestimating behaviour is susceptible to the
influences of the choice of β in scale. A Gaussian distribution
that only generates negative values could oppress the exploring
behavior of the agent and hence leads to bad convergence. On
the contrary, the underestimating could potentially turn into
overestimating if the distribution coincidentally produces any
positive values because the intensive NN updates in RL can
lead to overestimating even with a trivial positive bias. Thus,
β should be designed as a relatively small (positive) value in
our algorithm.

Considering the case where maxaQ
A
θ (s, a) is non-positive

and then scale ≤ 1, larger maxaQ
A
θ (s, a) would still result in

a larger scale as it previously does. Thus, there is no special
treatment required for non-positive Q-values.

Our pseudo-code is shown in Algorithm 1. In our algorithm,
r is the reward, γ is the discounting factor, ϵ is the exploration
ratio, maxFrames is the maximal number of total frames,
and L() is the loss function, i.e., Smooth L1 loss in this case.
M is a Bernoulli distribution and G is a Gaussian distribution,
from which we draw m and np respectively. K is the number
of network heads.

We have two neural networks. QA
θ is the policy network

and QB
θ is the target network. QB

θ is a duplicate of QA
θ and

they synchronize at an interval of sync frames. For the update,
a∗ is argmaxaQ

A
θk(s

′, a), s is the current state, s′ is the next
state, a is the action, terminal is a flag indicating whether
the game ends or not.

III. EXPERIMENTAL DETAILS

Our experiments are conducted across 49 Atari games on
Arcade Learning Environment (ALE), the same as Boot-
strapped DQN 1. For a more detailed ablation study on the ef-
fects of using noise, we include evaluation curves of 10 games
out of them. The hyper-parameters and NN architectures are
also kept mostly the same to those stated in Bootstrapped
DQN. The NN architecture is shown in Fig. 1. The list of
chosen parameters is shown in Table I.

Adam is an optimization algorithm that uses the adaptive
estimates of lower order moments of the gradient [15], whereas
RMSProp computes the momentum based on rescaled gra-
dients. Although most hyper-parameters followed the chosen
values of Bootstrapped DQN, we use Adam instead of RM-
SProp as our optimizer because Adam shows more stable

1Code can be found in https://github.com/mengli11235/Bootstrapped-DQN-
with-NP

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

4

Algorithm 1 Bootstrapped DQN with Priors Replaced by
Noise
Input: ϵ, γ, maxFrames, sync, M , L(), G, K
Parameter: D, QA

θ ,QB
θ

Output: QA
θ

1: frames← 0
2: while frames < maxFrames do
3: Initialize the environment
4: Pick a head k uniformly from {0, ..., K − 1} to make actions
5: while Game not finished do
6: frames += 4
7: if random() < ϵ then
8: Choose action randomly
9: else

10: Choose action based on QA
θk

11: end if
12: Store s, a, s′, r, terminal into replay buffer D
13: Store sampled random masks m from M into replay buffer D
14: Draw minibatch of s, a, s′, r, terminal,m from D
15: Update QA

θ according to Algorithm 2
16: end while
17: if frames%sync == 0 then
18: QB

θ ← QA
θ

19: end if
20: end while
21: return QA

θ

Algorithm 2 Network Update
Input: s, a, s′, r, terminal,m, L(), G, K
Parameter: QA

θ ,QB
θ , scale

Output:
1: Generate noise np from the Gaussian distribution G
2: totalLoss = 0
3: for k in {0, ..., K − 1} do
4: target = r + γQB

θk(s
′, a∗) ∗ (1− terminal) + scale ∗ npk

5: Compute loss by L(QA
θk(s, a), target)

6: Mask loss with m
7: totalLoss += loss
8: end for
9: totalLoss /= K

10: Update QA
θ by totalLoss with gradient descent

11: return

performance on Bootstrapped DQN in our experiment. For
similar reasons, the value of K is set to 9 instead of 10
with the Bernoulli probability decreased from 1 to 0.9. The
hyper-parameter choices of noise-related values are found out
through grid search. However, different values of β are found
to have similar effects as long as it is set around 0.05.

In most of the Atari games, small rewards were commonly
designed to lead to an optimal policy. Thus, the rewards are
clipped between -1 and 1 in our experiment to improve the
stability. Meanwhile, the reported scores are still raw scores
in our results section.

We also use a random no-operation (no-op) period of [0, 30)
applied at the beginning of each game episode in order to
introduce stochasticity into the environment. The seed of the
Atari environment is fixed during the training phase, but
randomly selected seeds are used for the evaluation process.
We run 5 episodes with those random seeds for each instance
of the evaluation phase.

IV. RESULTS

We present our evaluation curves in terms of means and
standard deviations in Fig. 3 to show some detailed results
on 10 games. We choose those games both by alphabets
and by representativeness. The first 6 games are selected
alphabetically, and the rest 4 are well-known classic Atari

84x84x4 8x8x32
Stride 4

4x4x64
Stride 2

3x3x64
Stride 1

512

512

…
…

action

action

K

Fig. 1. The structure of our NN. It takes the same input and have the same
parameters of convolutional layers as in DQN, and then branches into K heads.
Each head contains a fully connected layer, followed by an output layer.

TABLE I
PARAMETERS USED IN OUR EXPERIMENT

Input 84× 84× 4
K 9

Bernoulli probability 0.9
Optimizer Adam

Adam learning rate 0.0000625
γ 0.99

Initial ϵ 1
Final ϵ 0.01

ϵ decay frames 1M
sync 40000

Frames per step 4
Steps per evaluation 250000

MaxFrames 200M
Replay size 1M
Batch size 32
Noise µ 0
Noise σ 0.02
Noise β 0.05

games. As the original paper of Bootstrapped DQN provided
full maximal evaluation scores on 49 Atari games, we present
comparable full results of maximal evaluation scores and
include them in Table II. To provide more advanced analysis
over aggregated data, the measurement of performance profiles
(score distributions) described in [1] with overall human
normalized scores is shown Fig. 2.

To concisely represent contents in figures and tables, we
use ’Boot-DQN’ as an abbreviation for the Bootstrapped
DQN algorithm in the original paper, ’Boot-DQN*’ for our
Bootstrapped DQN implementation without using noise, and
’Boot-DQN+NP’ for Bootstrapped DQN with priors replaced
by noise. The only difference between ’Boot-DQN+NP’ and
’Boot-DQN*’ is whether they use the noise (our algorithm) or
not (the default algorithm).

In Fig. 3, the mean evaluation scores and the 95% confi-
dence intervals of ’Boot-DQN+NP’ and ’Boot-DQN*’ across
different games are being compared. The 95% confidence
intervals are obtained from 5 evaluation episodes for each
step of a single training run. Oscillations of evaluation scores
in both algorithms can be attributed to the different game
initializations due to random seeds in the evaluation phase,
and the stochasticity we introduce through no-op frames.

It is clear that our algorithm achieves not only higher final
mean scores, but also high mean evaluation scores during most
of the training period than the default algorithm across the
majority of games. In fact, the only game that ’Boot-DQN*’
shows significantly better performance than ’Boot-DQN+NP’
is Amidar. ’Boot-DQN+NP’ beats ’Boot-DQN*’ in almost all

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

5

other games in terms of mean scores and confidence intervals.
At the beginning of each game, the differences of eval-

uation scores between these two algorithms are usually not
significant. The default algorithm without using noise can even
obtain better scores among some of the games, which can be
attributed to the dithering effects of setting a lower boundary
for scales, as described in the method section.

Occasionally, the default algorithm plateaus after approxi-
mately 1 million steps of training and its performances cannot
improve meaningfully till the end of training. In those games,
our algorithm with noise is less likely to find itself in a similar
plateau, and even if it gets stuck, it is then able to demonstrate
an entirely new behavior – breaking the plateau and achieving
far higher scores at the end of training. Notably, our algorithm
seems to be able to continue to keep increasing scores after
200 million frames in more games, given its better ability of
escaping the plateau, which can be another promising feature.

In most cases, this ’plateau’ is not stationary and could
accompany heavy drops in scores later in the training, due
to the varied game difficulties along the episode caused by
versatile game mechanisms. Both algorithms suffer from that
and they may or may not recover from those downhills.
Nevertheless, it is important to notice that ’Boot-DQN+NP’
vastly obtains higher mean evaluation scores with confidence
intervals than ’Boot-DQN*’ in most cases where this happens.
Moreover, ’Boot-DQN+NP’ often bests ’Boot-DQN*’ in final
scores at the end of training provided they are able to recover
from the downhill.

Meanwhile, there are some games in which there is no
obvious plateau at all. There seems to be constant improve-
ments for both algorithms throughout the whole training
process. Even so, ’Boot-DQN+NP’ shows faster convergence
and demonstrates better performance than ’Boot-DQN*’. This
entails that noise can facilitate the environment exploration
and finds improved trajectories faster. This is especially true
at the late training stage when ϵ-greedy is almost not at play,
despite the fact that noise is not designed to replace ϵ-greedy
at the first place.

In Fig. 4, we show the maximal Q-values predicted by
the policy network alongside the period of training. It can
be seen that adding noise increases the maximal Q-value
predictions, but not to an extent where it crashes the model by
overestimation. In fact, the Q-values are still underestimated
in general, and the influences of adding noise are more
salient in games where severe underestimation occurs. In
the game of Asteroids, where ’Boot-DQN*’ shows unstable
behaviors and inflated Q-values, the maximal Q-values of
’Boot-DQN+NP’ surprisingly remain stable and still maintain
smaller at the end. In Tennis, the maximal Q-values of ’Boot-
DQN*’ overestimates to an absurdly large value, whereas those
of ’Boot-DQN+NP’ still remain at reasonable values. Results
from both games demonstrate that adding noise enhances the
stability of our algorithm and ’Boot-DQN+NP’ even possesses
the ability to achieve better performance than ’Boot-DQN*’
due to this improvement. This improvement is visible up
to 200M frames in tennis, but does not remain till the end
in Asteroids. Although it is not always the case that this
improvement can be sustainable throughout the whole training

Boot-DQN+NP Boot-DQN*

Fig. 2. The performance profiles of 49 Atari games up to τ = 8. The blue
line is the percentage of the score larger than τ using noise. The orange line
is the percentage of that without using noise.

process, it still results in higher maximal evaluation scores.
In our view, adding bias to the model in this way serves as
an additional regularizer and can be an excellent example of
beneficial variance-bias trade-off.

In Table II, the results for ’Boot-DQN’ and ’DDQN’ are
taken from [22]. ’DDQN’ is their improved implementation of
the DQN with their own specified parameters. In contrast, Na-
ture is the original DQN implementation from [19], which per-
forms slightly worse than ’DDQN’. It might appear that ’Boot-
DQN*’ obtains better results than the original ’Boot-DQN’ by
merely using different parameters in various games. In some
other games, however, there are degraded performances for
’Boot-DQN*’ or no significant differences between the two
of them. In Freeway, the maximal evaluation score of ’Boot-
DQN*’ drops tremendously from 34 to around 26. Moreover,
it is likely that the original ’Boot-DQN’ used averages of
maximal scores, either by rolling averages or by multiple runs.
Thus, it is important to direct our focus towards how using
noise improves the performance of Bootstrapped DQN (i.e.,
difference between ’Boot-DQN*’ and ’Boot-DQN+NP’), but
not towards parameter tunings and calibrations.

We highlight the algorithm which has achieved the best
scores. Table II clearly shows that ’Boot-DQN+NP’ achieves
better results compared to both ’Boot-DQN’ and ’Boot-DQN*’
in terms of the maximal evaluation scores. The benefit of
introducing noise alone boosts the performances of the Boot-
strapped DQN algorithm tremendously. In fact, the perfor-
mance of scores might be even larger if by checking some
of the intermediate results in Fig. 3. The maximal evaluation
scores for our algorithm are higher or equal than those of
’Boot-DQN*’ in 30 out of 49 (61.2%) games.

Performance profiles give an aggregated score distribution
on all tasks as a whole that allows qualitative comparisons. In
Fig. 2, it is clear that ’Boot-DQN+NP’ has similar values as
’Boot-DQN*’ at the beginning, but significantly higher values
approximately after τ = 2. ’Boot-DQN+NP’ having a larger
tail distribution entails an overall improved superhuman per-
formance the algorithm is capable of achieving when τ > 2.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

6

Boot-DQN+NP Boot-DQN*

(a) Scores: Alien (b) Scores: Amidar

(f) Scores: Atlantis (g) Scores: Breakout

(c) Scores: Assault

(h) Scores: Freeway

(d) Scores: Asterix (e) Scores: Asteroids

(i) Scores: Space Invaders (j) Scores: Tennis

Fig. 3. The evaluation results of playing 10 Atari games. The blue lines are the mean evaluation scores of using noise. The orange lines are the mean
evaluation scores without using noise. The 95% confidence intervals are also plotted in addition to the scores. All are evaluated every 250000 steps.

Boot-DQN+NP Boot-DQN*

(a) Q-values: Alien (b) Q-values: Amidar

(f) Q-values: Atlantis (g) Q-values: Breakout

(c) Q-values: Assault

(h) Q-values: Freeway

(d) Q-values: Asterix (e) Q-values: Asteroids

(i) Q-values: Space Invaders (j) Q-values: Tennis

Fig. 4. The Maximal Q-values corresponding to Fig. 3. Maximal Q-values are updated each time the network gets updated. Q-values are from the predictions
of the policy network. Those values are used to update the parameter scale.

V. DISCUSSION

The results show that our algorithm outperforms both the
original algorithm and the algorithm without using noise in
most of the games. However, it is not the case that this
performance enhancement can occur amongst all games. In
ALE, there are a variety of different types of games, with
distinct game mechanisms, such as goal and sub-goal designs,
reward assignments, agent and object controls. Those all
imply that model-free RL methods without specific tuning
or domain knowledge for each game can exhibit superhuman
performances in a set of games, but not in others. Nonetheless,
it is of the interest of AI researchers to avoid using specific
tuning or domain knowledge per game, and to let an algorithm
learn to solve various tasks at the human or superhuman
level. Naturally, our algorithm can perform better in many
games but not in certain ones. What is crucial is that we have
exactly demonstrated that Boot-DQN+NP yields improved
performance than the default algorithm without using noise
in the majority of the game results.

Our hypothesis indicates that such improvement on the
performances of Boot-DQN+NP originates from its expanded
search horizon. Boot-DQN+NP is capable of shifting the cur-
rent spotlight from endlessly searching the attended trajectory
to exploring other trajectories with seemingly lower rewards.
However, there is no guarantee that the agent would direct
its search efficiently towards the global optimum even if this
optimum is within its expanded horizon. If the agent was able
to return to a state with high rewards and promising discoveries
first and then explore by some efficient strategies, its scores
could potentially increase drastically. Thus, adding a policy-
based Go-Explore mechanism is expected to further bolster
our results [6].

In Fig. 3, both agents find themselves in plateaus without
reaching the possible maximal scores in a variety of games.
They can escape this plateau sometimes, but it often requires
a large amount of training episodes. Ideally, one might wish to
tune β a bit higher in order to reduce the amount of the period
in which the agent gets stuck on the plateau. However, in-
creasing the parameter β slightly in our experiment would not

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

7

TABLE II
FULL RESULTS BY MAXIMAL EVALUATION SCORES

Game Boot-DQN Boot-DQN* (Normalized) Boot-DQN+NP (Normalized) DDQN Nature
Alien 2436.6 7700 (1.083) 12330 (1.754) 4007.7 3069

Amidar 1272.5 873 (0.506) 728 (0.421) 2138.3 739.5
Assault 8047.1 8044 (15.053) 8223 (15.476) 6997.9 3359
Asterix 19713.2 40900 (4.906) 46500 (5.582) 17366.4 6012

Asteroids 1032 3320 (0.054) 8960 (0.177) 1984.4 1629
Atlantis 994500 1000700 (61.061) 1005900 (61.382) 767850 85641

Bank Heist 1208 1300 (1.74) 1300 (1.74) 1109 429.7
Battle Zone 38666.7 61000 (1.684) 61000 (1.684) 34620.7 26300
Beam Rider 23429.8 28850 (1.72) 34936 (2.087) 16650.7 6846

Bowling 60.2 30 (0.05) 78 (0.4) 77.9 42.4
Boxing 93.2 100 (8.325) 100 (8.325) 90.2 71.8

Breakout 855 834 (28.899) 822 (28.483) 437 401.2
Centipede 4553.5 13980 (1.2) 12383 (1.037) 4855.4 8309

Chopper Command 4100 3200 (0.363) 2400 (0.242) 5019 6687
Crazy Climber 137925.9 195000 (7.354) 208000 (7.873) 137244.4 114103
Demon Attack 82610 28475 (15.571) 35255 (19.3) 98450 9711
Double Dunk 3 4 (10.273) 2 (9.364) -1.8 -18.1

Enduro 1591 2286 (2.657) 2364 (2.747) 1496.7 301.8
Fishing Derby 26 41 (2.504) 39 (2.466) 19.8 -0.8

Freeway 33.9 26 (0.878) 34 (1.149) 33.4 30.3
Frostbite 2181.4 4690 (1.083) 2430 (0.554) 2766.8 328.3
Gopher 17438.4 118380 (54.816) 118340 (54.797) 13815.9 8520
Gravitar 286.1 2000 (0.575) 1050 (0.276) 708.6 306.7

Hero 21021.3 13415 (0.416) 13375 (0.414) 20974.2 19950
Ice Hockey -1.3 2 (1.091) 3 (1.174) -1.7 -1.6
Jamesbond 1663.5 7600 (27.652) 7000 (25.46) 1120.2 576.7
Kangaroo 14862.5 14500 (4.843) 16600 (5.547) 14717.6 6740

Krull 8627.9 11430 (9.21) 10764 (8.587) 9690.9 3805
Kung Fu Master 36733.3 52800 (2.337) 56900 (2.52) 36365.7 23270

Montezuma Revenge 100 0 (0) 0 (0) 0 0
Ms Pacman 2983.3 5620 (0.8) 5970 (0.852) 3424.6 2311

Name This Game 11501.1 13950 (2.025) 15180 (2.239) 11744.4 7257
Pong 20.9 21 (1.181) 21 (1.181) 20.9 18.9

Private Eye 1812.5 15100 (0.217) 4000 (0.057) 158.4 1788
Qbert 15092.7 26375 (1.972) 27600 (2.064) 15209.7 10596

Riverraid 12845 15760 (0.914) 17320 (1.013) 14555.1 8316
Road Runner 51500 70500 (8.998) 82100 (10.479) 49518.4 18257

Robotank 66.6 54 (5.34) 52 (5.134) 70.6 51.6
Seaquest 9083.1 28830 (0.555) 30800 (0.732) 19183.9 5286

Space Invaders 2893 1950 (1.185) 2100 (1.284) 4715.8 1976
Star Gunner 55725 55300 (5.7) 60900 (6.284) 66091.2 57997

Tennis 0 1 (1.6) 1 (1.6) 11.8 -2.5
Time Pilot 9079.4 15700 (7.303) 8600 (3.029) 10075.8 5947
Tutankham 214.8 391 (2.43) 399 (2.481) 268 186.7

Up N Down 26231 70120 (6.235) 56380 (5.004) 19743.5 8456
Venture 212.5 1700 (1.432) 0 (0) 239.7 380

Video Pinball 811610 999004 (56.543) 894533 (50.63) 685911 42684
Wizard of Wor 6804.7 18700 (4.325) 24500 (4.683) 7655.7 3393

Zaxxon 11491.7 17200 (1.878) 14100 (1.539) 12947.6 4977

demonstrate more significant improvement on the capability
of escaping plateaus, and increasing it too much would cause
the model to crash due to overestimation. Besides, a complex
game often demands a sufficient amount of explorations in
order for the agent to learn new behaviors in the game.

We distinguish our algorithm from the famous NoisyNet
[8] in several ways. First, NoisyNet was proposed to replace
the conventional exploration schemes such as ϵ-greedy and
entropy reward, whereas our algorithm does not replace those
exploration strategies. We still use ϵ-greedy to guide our
explorations phase. Moreover, NoisyNet utilizes a parametric
function to add noise into the weight and bias of their NN.
It directly modifies the network architecture and introduces
additional trainable parameters. On the other hand, our algo-

rithm aims at improving the diversity of Bootstrapped DQN.
It combines the noise with target values, which does not
require any modifications to the network architecture, and
hence not introduce any additional computational overhead on
the network level.

In short, NoisyNet works on a more general RL topic
and tries to find replacements for exploration schemes at the
costs of more algorithmic complexity, whereas our method
improves on a specific algorithm, Bootstrapped DQN, with
adding minimal computations.

VI. CONCLUSION

In this paper, we try to mitigate a problem common in
Bootstrapped DQN, where the diversity degrades after a

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

8

tremendous amount of training. A fixed prior network has been
proposed to mediate this problem. Nonetheless, the integrity
of diversity still cannot be maintained in the late training
phase with this modification despite being eased slightly. Our
algorithm introduces randomness into the diversity constantly
of Bootstrapped DQN through noise. Priors here are being
replaced by noise, with minimal extra computational overhead.

Our results demonstrate that our adjustment of the algorithm
contributes to the improvements of evaluation scores in most of
the 49 games we have trained and tested. Thus, our hypothesis
has been substantiated and the benefits of utilizing noise are
significant.

Meanwhile, it has been pointed out that sticky actions can
reliably introduce more stochasticity in Atari games [17]. It is
beneficial to implement sticky actions in further experiments.

Besides using noise, there are other interesting concepts
such as applying self-supervised learning to RL, which aspires
to building world models of background knowledge. It could
potentially help the agent plan and explore the environment
[29], [11]. Bootstrapped DQN utilizes the random initialization
of network priors to perform random exploration on rarely
trained states, but it certainly could benefit from a world
model. The combination of using noise and a world model
could be an interesting future work.

Decision Transformer has also shown the potential of solv-
ing RL tasks efficiently offline [2], which can be viewed as
a successful combination of self-supervised learning and RL.
Transformers, in a broad sense, share some similar concepts
with Bootstrapped DQN, because they both use multiple
network heads and also masking/gating mechanisms to direct
the diversity or the attention of their networks. Although
Bootstrapped DQN found out that masking in practice cannot
improve the performances but decreases the training speed, it
might be interesting to adjust the mechanisms in accordance
with those of transformers and to explore the undiscovered
effects of masking more in the future.

Self-supervised learning and more specifically, transformers,
can be a potential future research direction to further improve
the performance of Bootstrapped DQN with noise. On the
other hand, concepts from bootstrapped DQN with noise might
potentially benefit the research of self-supervised learning as
well.

ACKNOWLEDGMENTS

The research presented in this paper has benefited from
the Experimental Infrastructure for Exploration of Exascale
Computing (eX3), which is financially supported by the Re-
search Council of Norway under contract 270053. We want
to acknowledge the help received from the Department for
Research Computing at USIT, the University of Oslo IT-
department. This work was performed on the [ML node]
resource, owned by the University of Oslo, and operated by the
Department for Research Computing at USIT, the University
of Oslo IT-department. http://www.hpc.uio.no/

APPENDIX
EVALUATION RESULTS AFTER 200M FRAMES

Mean scores, standard deviations and human normalized
scores after 200M frames of training are reported in Table
III, which is a supplement of Fig. 3. In general, the mean
scores are considerably lower than the maximal evaluation
scores demonstrated in Table II, with large standard deviations,
accounted both by the small number (5) of evaluation runs and
by the stochasticity. Boot-DQN+NP scores equal or higher
than Boot-DQN* in 33 out of 49 (67.3%) games, which is a
bit higher than that in Table II.

REFERENCES

[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice.
Advances in Neural Information Processing Systems, 34, 2021.

[2] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch. Decision transformer: Reinforcement
learning via sequence modeling. Advances in neural information
processing systems, 34, 2021.

[3] Y. Chen, L. Schomaker, and M. A. Wiering. An investigation into
the effect of the learning rate on overestimation bias of connectionist
q-learning. In Proceedings of the 13th International Conference on
Agents and Artificial Intelligence, pages 107–118, Vienna, Austria, 2021.
SciTePress. 10.5220/0010227301070118.

[4] T. G. Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. Journal of artificial intelligence research,
13:227–303, 2000.

[5] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-
explore: a new approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995, 2019.

[6] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. First
return, then explore. Nature, 590(7847):580–586, 2021.

[7] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all
you need: Learning skills without a reward function. arXiv preprint
arXiv:1802.06070, 2018.

[8] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves,
V. Mnih, R. Munos, D. Hassabis, O. Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017.

[9] A. Guez, D. Silver, and P. Dayan. Efficient bayes-adaptive reinforcement
learning using sample-based search. arXiv preprint arXiv:1205.3109,
2012.

[10] H. Hasselt. Double q-learning. In Advances in neural information
processing systems 23, pages 2613–2621, Red Hook, NY, 2010. Curran
Associates, Inc.

[11] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song. Using self-
supervised learning can improve model robustness and uncertainty.
Advances in Neural Information Processing Systems, 32, 2019.

[12] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, et al. Deep q-learning
from demonstrations. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, pages 3223–3230, Menlo Park, Calif., 2018.
AAAI Press.

[13] J. Ho and S. Ermon. Generative adversarial imitation learning. In
Advances in neural information processing systems 29, pages 4565–
4573, Red Hook, NY, 2016. Curran Associates, Inc.

[14] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for
reinforcement learning. Journal of Machine Learning Research, 11(4),
2010.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[16] S. Legg and M. Hutter. Universal intelligence: A definition of machine
intelligence. Minds and machines, 17(4):391–444, 2007.

[17] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht,
and M. Bowling. Revisiting the arcade learning environment: Evaluation
protocols and open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning,
2013.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

9

TABLE III
MEAN AND STD OF EVALUATION SCORES AFTER 200M FRAMES

Game Boot-DQN* Std Normalized Boot-DQN+NP Std Normalized
Alien 2358.0 511.48 0.31 3414.0 158.19 0.46

Amidar 401.0 24.79 0.23 545.6 42.77 0.31
Assault 1207.6 270.02 1.9 1663.4 638.94 2.77
Asterix 19340.0 14808.73 2.31 32820.0 3263.37 3.93

Asteroids 1030.0 89.44 0.01 452.0 223.11 -0.01
Atlantis 873180.0 4752.43 53.18 859960.0 8920.0 52.36

Bank Heist 566.0 108.0 0.75 0.0 0.0 -0.02
Battle Zone 31600.0 3666.06 0.84 19800.0 2227.11 0.5
Beam Rider 11816.4 3616.03 0.69 13762.0 8137.31 0.81

Bowling 30.0 0.0 0.05 9.0 9.3 -0.1
Boxing 96.0 3.74 7.99 98.4 1.96 8.19

Breakout 403.0 7.97 13.93 398.6 7.61 13.78
Centipede 2115.0 565.45 0.0 2094.0 998.77 0.0

Chopper Command 880.0 97.98 0.01 1080.0 146.97 0.04
Crazy Climber 118340.0 4412.53 4.29 146180.0 7049.65 5.41
Demon Attack 6455.0 3324.02 3.47 10748.0 12470.36 5.83
Double Dunk -5.6 4.8 5.91 -1.6 1.5 7.73

Enduro 1171.8 164.87 1.36 1353.6 35.89 1.57
Fishing Derby -31.4 14.88 1.14 -26.6 7.94 1.23

Freeway 21.6 1.2 0.73 33.2 0.4 1.12
Frostbite 2922.0 693.26 0.67 744.0 78.38 0.16
Gopher 3880.0 1048.2 1.68 44208.0 32534.94 20.4
Gravitar 70.0 140.0 -0.03 350.0 303.32 0.06

Hero 3010.0 0.0 0.07 7668.0 110.12 0.22
Ice Hockey -15.0 2.45 -0.31 -4.6 1.85 0.55
Jamesbond 720.0 156.84 2.52 470.0 40.0 1.61
Kangaroo 11620.0 943.19 3.88 10920.0 2584.88 3.64

Krull 7088.8 1695.02 5.14 9295.2 461.11 7.21
Kung Fu Master 2800.0 1395.71 0.11 23640.0 2081.92 1.04

Montezuma Revenge 0.0 0.0 0.0 0.0 0.0 0.0
Ms Pacman 1786.0 232.0 0.22 3682.0 921.88 0.51

Name This Game 10072.0 1985.32 1.35 9516.0 2868.68 1.25
Pong 21.0 0.0 1.18 20.6 0.8 1.17

Private Eye 0.0 0.0 -0.0 100.0 0.0 0.0
Qbert 22215.0 1898.0 1.66 21475.0 2907.71 1.6

Riverraid 10288.0 2686.7 0.57 12902.0 1582.46 0.73
Road Runner 43120.0 13120.27 5.5 60240.0 7593.05 7.69

Robotank 21.6 7.39 2.0 31.0 8.65 2.97
Seaquest 17124.0 1262.53 0.41 5852.0 1946.34 0.14

Space Invaders 704.0 409.5 0.37 844.0 537.52 0.46
Star Gunner 33560.0 6499.42 3.43 36640.0 7793.23 3.75

Tennis -14.6 7.31 0.59 -1.2 0.4 1.46
Time Pilot 5200.0 1255.39 0.98 2860.0 1763.63 -0.43
Tutankham 0.0 0.0 -0.07 261.6 61.73 1.6

Up N Down 4432.0 153.41 0.35 4736.0 161.44 0.38
Venture 420.0 146.97 0.35 0.0 0.0 0.0

Video Pinball 223341.4 104619.78 12.64 298420.6 61065.4 16.89
Wizard Of Wor 460.0 80.0 -0.02 1560.0 80.0 0.24

Zaxxon 6140.0 1934.53 0.67 8880.0 1203.99 0.97

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[20] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, volume 1, page 2, 2000.

[21] I. Osband, J. Aslanides, and A. Cassirer. Randomized prior functions for
deep reinforcement learning. arXiv preprint arXiv:1806.03335, 2018.

[22] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems,
29:4026–4034, 2016.

[23] I. Osband and B. Van Roy. Bootstrapped thompson sampling and deep
exploration. arXiv preprint arXiv:1507.00300, 2015.

[24] I. Osband, B. Van Roy, D. J. Russo, Z. Wen, et al. Deep exploration via
randomized value functions. J. Mach. Learn. Res., 20(124):1–62, 2019.

[25] I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via
randomized value functions. In International Conference on Machine
Learning, pages 2377–2386. PMLR, 2016.

[26] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,

T. Asfour, P. Abbeel, and M. Andrychowicz. Parameter space noise for
exploration. arXiv preprint arXiv:1706.01905, 2017.

[27] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. A tutorial
on thompson sampling. arXiv preprint arXiv:1707.02038, 2017.

[28] T. Schaul, J. Togelius, and J. Schmidhuber. Measuring intelligence
through games. arXiv preprint arXiv:1109.1314, 2011.

[29] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak.
Planning to explore via self-supervised world models. In International
Conference on Machine Learning, pages 8583–8592. PMLR, 2020.

[30] W. R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3/4):285–294, 1933.

[31] S. Thrun and A. Schwartz. Issues in using function approximation for
reinforcement learning. In Proceedings of the 4th Connectionist Models
Summer School, pages 255–263, NJ, 1993. Hillsdale.

[32] A. Touati, H. Satija, J. Romoff, J. Pineau, and P. Vincent. Randomized
value functions via multiplicative normalizing flows. In Uncertainty in
Artificial Intelligence, pages 422–432. PMLR, 2020.

[33] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

10

with double q-learning. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence, pages 2094–2100, Menlo Park, Calif., 2016.
AAAI Press.

[34] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas.
Dueling network architectures for deep reinforcement learning. In
Proceedings of the 33rd International Conference on Machine Learning,
pages 1995–2003, New York, NY, 2016. PMLR.

[35] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

BIOGRAPHY

Li Meng received his B.Sc. and M.Sc. degrees
in Artificial Intelligence from the University of
Groningen, Netherlands, in 2017 and 2020. He is
currently a PhD candidate working on reinforcement
learning and computer vision in the Department of
Technology Systems at the University of Oslo.

Morten Goodwin received the B.Sc. and M.Sc. de-
grees from the University of Agder, Norway, in 2003
and 2005, respectively, and the Ph.D. degree from
Aalborg University Department of Computer Sci-
ence, Denmark, in 2011, on applying machine learn-
ing algorithms on eGovernment indicators which are
difficult to measure automatically. He is a Professor
with the Department of ICT, the University of Agder,
deputy director for Centre for Artificial Intelligence
Research, adjunct professor OsloMet, CTO AIVEO,
a public speaker and authors. His main research in-

terests include deep learning and reinforcement learning. He does fundamental
and applied AI research within agriculture, aquaculture, cultural production,
education, health, industry optimization, natural language processing, and
recommendation engines.

Anis Yazidi is currently the deputy head of OsloMet
AI lab, and the leader for the research group on
Applied Artificial Intelligence (AI2) at OsloMet.
He is a full Professor in Machine Learning at
OsloMet. He is also a Senior Researcher at Oslo
University Hospital (OuS) and research Professor in
Data Science at the Norwegian University of Science
and Technology NTNU. He has more than 190
publications, including more than 80 journal articles
in prestigious venues and 2 book chapters. Anis
Yazidi received the M.Sc. and Ph.D. degrees from

the University of Agder, Grimstad, Norway, in 2008 and 2012, respectively.
In 2015 he was selected as the promising researcher of the year, TKD Faculty
OsloMet. In 2019 he won the Prize for top 50 in Norway most productive
researcher for all disciplines for the years 2015-2018. He also won the Best
Paper Award in SMARTGIFG 2017, in ACM RACS 2017 and in CSE 2014
and Best Paper Award Runner in SMC 2016. He is IEEE senior member. He
is associate editor for Springer Journal on Pattern Analysis and Applications,
associate editor for Frontiers in Artificial Intelligence and associate editor
for Frontiers in Computational Physiology and Medicine. He is leading the
master program in Data Science at OsloMet. He is currently PI in the
Horizon 2020 AI-Mind project and he is also PI from the Norwegian side
in different international and national projects. He is the co-director of the
Excellence Academic Environment NordSTAR on Trustworthy and Sustainbe
AI at OsloMet.

Paal E. Engelstad received his Bachelor Degree in
Physics and Mathematics from the Norwegian Uni-
versity of Science and Technology (NTNU) in 1993,
his Master Degree in Physics from NTNU/Kyoto
University, Japan, in 1994, and his Ph.D. Degree in
Computer Science from the University of Oslo in
2005. He is currently a full professor in Computer
Science in the Department of Technology Systems
at the University of Oslo, where he is leading
the research section for Autonomous Systems and
Sensor Technologies. His research interests include

distributed systems, security, autonomous systems and machine learning. He
also holds a 20% professor position at Oslo Metropolitan University.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3185330

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on January 30,2023 at 11:28:28 UTC from IEEE Xplore. Restrictions apply.

