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Abstract: More than 30 inflationary models are confronted with the recently improved limit on the
tensor-to-scalar ratio presented by the Planck team. I show that a few more models are falsified due
to this sharper restriction. Additionally, I discuss possible consequences of CMB-S4 observations for
these inflationary models. The results are summarized in a table.
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1. Introduction

In a long article [1], predictions of observable quantities for a large number of in-
flationary models were deduced, and the predictions were confronted by the observa-
tional data from BICEP and Planck [2,3]. A main observational constraint was that the
spectral index, ns, of the cosmic microwave background radiation has a value given by
δns ≡ 1− ns = 0.032± 0.004, and the tensor-to-scalar ratio was restricted to r < 0.05. In this
way, it was shown that several of the inflationary models predicted values of the observable
quantities in conflict with the observational data.

Recently, M. Tristram et al. [4] presented an improved limit on the tensor-to-scalar
ratio from BICEP/Planck data; namely, the previous restriction r < 0.05 is now changed to
r < 0.032.

In this article, I shall find the consequences for several inflationary models of this
sharper restriction. Further references and deductions of the formulae used below are
found in [1,5].

Additionally, I discuss possible consequences of future CMB-S4 (Cosmic Microwave
Background Stage 4) observations for the inflationary models. The more models that are
falsified, the more we know about the inflationary era.

The CMB-S4 project is designed to give a significant improvement of our knowledge
of the first moments of the history of our universe. It shall be based upon a large number
of precision telescopes on the surface of the earth, and will measure r so accurately that
the uncertainty of the value of r is of the order ∆r = 0.001. For r > 0.003, it will be able
to determine the value of r with 5σ (five standard deviations) accuracy. If the CMB-S4
measurements fail to measure a nonvanishing value of r, it will put an upper limit to r of
r < 0.001 at the 95% confidence level.

An important quantity when analyzing observational consequences of inflationary
models is the so-called number of e-folds, N, which is defined in terms of the ratio of the
final value a f of the scale factor during the inflationary era and the initial value, a(N), in
the following way:

a f

a(N)
= eN (1)
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Note that N = 0 at the end of inflation, so N counts the number of e-folds until inflation
ends and increases as we go backward in time. In order to solve the horizon problem, the
number of e-folds must be at least N ' 60.

Comment on notation: The reduced Planck mass is MP =
√

h/κc = 4.3× 10−9 kg
corresponding to the energy 2.4× 1018 GeV. Units are chosen so that the velocity of light in
empty space and Planck’s constant h = c = 1. Einstein’s gravitational constant is κ = 1/M2

P.

2. Predictions for Inflationary Models
2.1. Polynomial Chaotic Inflation

The so-called chaotic inflation was proposed by A. Linde [6], and is a class of polyno-
mial inflation models. The potential of the inflation field in this type of inflationary models
has the form

V = M4φ̂p (2)

where φ̂ = φ/MP and M is the energy scale of the potential when the inflation field has
Planck mass. It is assumed that p is constant and that φ > 0.

For this model, the spectral index ns represented by δns = 1− ns, the tensor-to-scalar
ratio r, and the running of the spectral index of scalar fluctuations, αs, are given by

δns =
p(p + 2)

φ̂2 , r =
8p2

φ̂2 , αS = − 2p2(p + 2)
φ̂4 (3)

Equation (3) gives the δns, r− and r, αS− relations

r =
8p

p + 2
δns , αS = − 2

p + 2
δ2

ns = −
1

32
p + 2

p2 r2 =
( r

8
− δns

)
δns (4)

Solving the last of these expressions with respect to r gives

r = (8/δns)
(

δ2
ns + αS

)
(5)

Inserting the measured values δns = 0.032 and αS = − 0.003 leads to r = − 0.49.
However, r is per definition a positive quantity. This shows that the Planck data alone
falsify the polynomial inflationary models independently of the observational restriction
on r.

2.2. Hilltop Inflation

The name ‘hilltop inflation’ (Boubekeur and Lyth [7]) refers to the case where inflation
occurs near a local maximum of the curve describing the potential as a function of a
scalar field.

The most simple version of the hilltop inflation has a quadratic potential which
represents the first two terms in a series expansion, and is thus characteristic of the region
near the maximum of the potential for many models:

V(φ) ≈ V0

(
1− 1

2
η0φ̂2

)
, η0 > 0 (6)

Here, η0 is the absolute value of the slow-roll parameter η at the maximum of the
potential. Hilltop inflation occurs for η0 << 1.

Boubekeur and Lyth [7] note that in the case of quadratic hilltop models with the
potential (6), the tensor-to-scalar ratio obeys

r < 0.0003
(

60
N

)2
φ̂2

end (7)
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where φ̂end is the value of the scalar field at the end of the inflationary era. They further
write that neither of the factors in brackets in Equation (7) is likely to be much bigger than 1
and conclude that hilltop inflation is hardly likely to give a detectable nonvanishing value
of r.

In quartic hilltop inflation, the potential is

V(φ) ≈ V0

(
1− 1

2
η0φ̂4

)
(8)

K. Dimopoulos [8] and G. Germán [9] have shown that, in this model, r is given by

r =
8
3

δns

(
1−
√

6Nδns − 9
Nδns

)
(9)

where N is the number of e-folds of the scale factor during inflation. Inserting δns = 0.032
and the typical value N = 60 gives r = 0.014, which is permitted by the observations.

Another version of hilltop inflation, which was considered by Chiba and Khori [10],
has potential

V(φ) = M4
(

φ2 −M2
)2

(10)

Here, M represents a symmetry breaking energy scale where the potential has a
minimum. This inflationary model is also called double-well inflation by Martin et al. [5],
topological inflation by Chung and Lin [11], and Higgs-like by Escudero et al. [12].

With this potential, the running of the spectral index is

αS =
r

64
(3 r− 20 δns) (11)

With δns = 0.032 and r < 0.032, we get αS < − 0.0003, which is permitted by the
Planck 2015 data, giving αS = − 0.003± 0.007 [10]. However, this inflationary model
predicts that 4δns < r < 5δns, or with the Planck data, 0.128 < r < 0.16. Hence, it is in
conflict with the BICEP/Planck data.

2.3. Exponential Potential and Power-Law Inflation

In these inflationary universe models, the potential is an exponential function of the
scalar field

V(φ) = V0e−λφ̂. (12)

Furthermore, one can deduce that the scale factor is a power function of the cosmic
time. Therefore this inflationary model is also called power-law inflation.

For this model, the tensor-to-scalar ratio is given by

r = 8 δns (13)

With the value δns = 0.032 from the Planck measurements, the model predicts that
r = 0.256. Hence, it is ruled out by the BICEP/Planck data.

Geng et al. [13] generalized these types of inflationary models by including an addi-
tional free parameter p so that the potential is given the form

V = V0e−λφ̂p
(14)

In the special case with p = 2, we have

λ =
1
4

(
δns −

r
8

)
(15)

Inserting δns = 0.032 and r < 0.032 gives the requirement λ > 0.007.
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For this particular model, the running of the spectral index is

αS = −λ2(2r)1/2 (16)

Inserting λ > 0.007 and r = 0.032 gives αs < − 1.2× 10−5, which is permitted by
the Planck data. Hence, this model can so far be adjusted to be in agreement with the
observational data.

2.4. Natural Inflation

The original natural inflation potential was presented by K. Freese et al. [14] and was
further developed and compared with observational data by Freese and Kinney [15,16]. In
the original model, there are two variants of the potential of the scalar field generating the
dark energy, given by

V−(φ) = V0
(
1− cos φ̃

)
= 2V0 sin2(φ̃/2

)
, V+(φ) = V0

(
1 + cos φ̃

)
= 2V0 cos2(φ̃/2

)
(17)

Here, φ̃ = φ/M, and M is the spontaneous symmetry breaking scale. In order for
inflation to occur, we must have M > MP [16]. The constant V0 is a characteristic energy
scale for the model. The potential V− has a minimum at φ̃ = 0 and V+ at φ̃ = π.

I must here correct an error in [1]. Expressing the spectral index and the tensor-to-scalar
ratio in terms of the N e-folds of the expansion during the inflationary era one obtains

δns = b
[
(2 + b)ebN − 1

]
, r = 4b

[
(2 + b)ebN − 2

]
, b = (MP/M)2 (18)

This is the correct version of Equation (6.5.33) in [1]. It follows from these expressions that

b = δns −
r
4

(19)

The BICEP/Planck restrictions δns = 0.032 and r < 0.032 lead to b > 0.024. On the
other hand, b cannot be too large either. The condition r > 0 leads to b < δns = 0.032. It
follows that the parameter b must obey 0.024 < b < 0.032. Equation (23) may be written.

M =
MP√

δns − r
4

(20)

Hence, the restrictions on b means that 6.32 MP < M < 6.45 MP, so the symmetry
breaking energy is larger than the Planck energy.

The original natural inflation model has a free parameter, the symmetry breaking scale,
which can be adjusted to obtain agreement with observations. This is both a strength and a
weakness of the theory. It saves it from falsification by the BICEP/Planck data, but makes
its predictive force less. Without this parameter, that is, putting b = 1, which corresponds
to symmetry breaking at the Planck scale, the BICEP–Planck data would falsify the model.
The data require the symmetry breaking energy to be much larger than the Planck energy.
In this energy range, we must expect quantum phenomena, which cannot be described by
the classical general theory of relativity. It makes the theoretical foundation of the original
natural inflation model somewhat unsecure that the symmetry appears at this scale.

2.5. Hybrid Natural Inflation

Recent investigations of hybrid natural inflation were performed by Ross and Germán [17],
Carrillo-González et al. [18], Hebecker et al. [19], Vázquez et al. [20], Ross et al. [21], and G.
Germán et al. [22].

In this model, the inflation field is supplied by a second field, which is responsible for
terminating inflation. The model allows for a symmetry breaking scale, which is less than
the Planck scale, meaning that b > 1.
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For this model, the inflation potential is written as

V(φ) = V0
(
1 + a cos φ̃

)
(21)

where a is a constant with a value in either the interval −1 ≤ a < 0 or 0 < a ≤ 1. Here,
a = ±1 represents the original natural inflation.

For this model, we have

δns = ab
2cφ + a

(
3− c2

φ

)
(
1 + acφ

)2 , r = 8a2b
1− c2

φ(
1 + acφ

)2 (22)

where cφ = cos
(
φ̃
)
.

With slow-roll inflation, a natural starting point is close to φ ≈ 0 where the potential
is flat. This gives cφ ≈ 1 and sin

(
φ̃
)
≈ φ̃, giving 1− c2

φ ≈ φ̃2. It is seen from the first
expression of Equation (22) that in order to obtain δns = 0.032, the constant a must be small,
of the order 10−2. Hence, the expressions for δns and r can be approximated by

δns ≈ 2ab , r ≈ 8 a2b φ̃2 (23)

giving
r ≈ 4a φ̃2δns (24)

Since b > 1, it follows that a < δns/2. Additionally, an upper bound on the predicted
value of r is obtained by putting φ̃ = 1. This leads to the prediction of r by the hybrid
natural inflation model, r < 2 δ2

ns = 0.002, which is permitted by the observational data.

2.6. Higgs–Starobinsky Inflation

Higgs inflation was recently considered by Bezrukov et al. [23,24], by Gorbunov and
Tokareva [25], and by Zeynizadeh and Akbarieh [26] in connection with observations of
spectral properties of the cosmic microwave background radiation. The Higgs–Starobinsky
potential is often written as

V = V0

(
1 + e−

√
2/3 φ̂

)− 2
(25)

From this potential, one can deduce the following simple relationships in the weak
field regime when one neglects numbers of order unity compared with N

N = 2/δns , r = 3δ2
ns , αS = − (1/2)δ2

ns , (26)

Inserting δns = 0.032 gives N = 62 , r = 0.003 , αS = 0.005. These are the predictions
of the Higgs inflationary models, given a Planck 2015 value of nS. The predictions of the
Higgs inflationary model are in good agreement with the most recent BICEP2/Planck
observational data.

Lyth and Riotto [27] and later Drees et al. [28] and Sebastiani et al. [29] investigated
several inflationary models with similar potentials as the one in Equation (25), for example,

V = V0

(
1− e−qφ̂

)
(27)

where q is a dimensionless number of order 1. The consistency conditions

r ≈
(

2/q2
)

δ2
ns , αS ≈ −(1/2)δ2

ns (28)

For this model, the Planck/BICEP2 data with q = 1 give r = 0.002 , αS − 0.0005.
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2.7. S-Dual Inflation

This is a scenario [30] inspired by string theory. We shall here consider the following
class of S-dual inflation potentials:

V = V0 coshp φ̃ (29)

where is a real number. The nS, r− relationship for this class of inflationary universe models
can be written as

b =
(p + 2)r− 8pδns

16p2 (30)

where b is defined in Equation (18). Since b > 0, this requires

p <
2r

8δns − r
(31)

For δns = 0.032 and r < 0.032, agreement with the observational data for the S-dual
inflation model requires p < 0.29.

2.8. Hyperbolic Inflation

Basilakos and Barrow [31] considered a class of models of inflation that is very similar
to S-dual inflation. They called it hyperbolic inflation. In this model, the inflation field has
the potential

V(φ) = Asinhpφ̃ (32)

where A is a constant.
The δns, r relation is

r =
8p

2 + p
[δns + 2bp] (33)

Solving this equation with respect to M, we can estimate the energy scale where the
inflation begins in these models from the Planck and BICEP2 data:

M =
4p√

(2 + p)r− 8pδns
MP (34)

This requires that p obeys the condition (34), that is, p < 0.29. With, for example,
p = 0.10 , δns = 0.032 , r = 0.032, Equation (34) gives M ≈ 2 MP. Hence, in order to be
compatible with the Planck/BICEP2 results, the energy scale of this model must be larger
than the Planck energy.

2.9. Supergravity-Motivated Inflation

Kallosh et al. [32,33] studied inflationary models motivated from supergravity. One
class of these models has the potential

V(φ) = Atanhpφ̃ , (35)

where φ̃ = φ/M, A and p are arbitrary constants, and M represents the characteristic energy
per particle at the beginning of the inflationary era. As an illustration, we shall consider the
model with p = 2. Then the δns, r− relationship can be written as

M = 2
√

r
(4δns − r)δns

MP (36)

Inserting δns = r = 0.032 gives M = 6.5 MP. Hence, strictly speaking, this model
needs a quantum gravity theory in order to have a solid foundation.
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2.10. M-Flation

In this model, the potential is

V(φ) ∝ φ2(φ− µ)2 (37)

where µ > MP represents the energy per particle necessary to initiate inflation.
It was shown in [1] that in this inflationary model, the tensor-to-scalar ratio obeys the

inequalities

4δns < r <
16
3

δns (38)

Inserting δns = 0.032 leads to 0.13 < r < 0.17. This is the main prediction of the
M-flation model. Hence, this model is falsified by the BICEP/Planck data. A modified
model called nonminimal M-flation was recently presented by A. Ashoorion and K. Raza-
zadeh [34]. They calculated the δns, r− relationship numerically and showed that this
model can be in agreement with the BICEP/Planck data.

2.11. Coleman–Weinberg Inflation

The Coleman–Weinberg (CW) potential has the form [35–38]

V(φ) = V0

{
φ̂4
[

ln φ̂− 1
4

]
+

1
4

}
(39)

where φ̂ = φ/M. We shall assume that the value of the field is much less than the Planck
mass, M << MP, that is, b >> 1.

We shall now consider the small field case, that is, φ << M. Additionally, during slow
roll, the quantity ln(φ/µ) changes so slowly that one can approximate an integral in the
calculation of N by considering ln(φ/µ) as a constant. This leads to the simple relationship

δns =
3

2N
(40)

The range of e-folds of the expansion during inflation is, in general, restricted to
50 < N < 60. Inserting N = 60 in Equation (40) gives 0.025 < δns < 0.030, which is inside
the error bounds given by the Planck data as cited in the introduction.

Furthermore, the Coleman–Weinberg inflationary models predict a very small value
of the tensor-to-scalar ratio.

2.12. Kähler Moduli Inflation

The Kähler moduli inflation was introduced by Conlon and Quevedo [39] and is
characterized by a potential

V = V0

(
1− α φ̂ eφ̂

)
(41)

with αφ̂ >> 1. This leads to

δns ≈
2
N

, r ≈ 8
N2 (42)

The Planck result δns = 0.032 gives N = 62. Hence, r = 0.002 in accordance with the
BICEP/Planck data. This model is similar to the Higgs–Starobinsky inflation.

2.13. Hybrid Inflation

Hybrid inflation involves two fields, the so-called waterfall field, χ, and the inflation
field, φ. The potential is given by [40]

V(χ, φ) = g2
(

M2 − χ2

4

)2

+
m2

2
φ2 +

λ2

4
χ2φ2 (43)
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where M, m are mass parameters, and g, λ are dimensionless constants.
H. Kodama et al. [41] showed that there exist some parameter values for hybrid

inflation that lead to red-shifted values of δns, that is, δns > 0, in agreement with the
Planck data, and other values corresponding to ‘standard hybrid inflation’, which lead to
blue-shifted values, δns < 0, that are not allowed by these data. Additionally, they showed
that hybrid inflation predicts a very small value of r, of the order 10−3 or less, that it will be
difficult to determine the value of r by observations even with CMB-S4.

2.14. Brane Inflation

Several authors have considered five-dimensional universe models where the infla-
tionary era is due to a collision between branes [42–47]. This induces an effective modified
gravity theory in a four-dimensional world.

The brane version of the Friedmann Equation (2.1) takes the form

H2 =
κ

3

[
1
2

.
φ

2
+ V

(
1 +

V
2λ

)]
(44)

where λ is the tension of each brane.
Let us first consider polynomial brane inflation with the potential given in Equation (2).

We shall here consider the high energy regime with V >> λ. Then one finds that the
tensor-to-scalar ratio can be expressed as

r = 8
(

δns −
1
N

)
(45)

With δns = 0.032 , N = 50, this brane inflation model predicts r = 0.096, which is
larger than permitted by the BICEP/Planck data.

Next, we follow S. Santos da Costa and coworkers [48] and consider a brane inflation
model with the so-called β− Starobinsky potential

V = V0(1− χ)2 , χ =
(

1− β
√

2/3 φ̂
)1/β

(46)

where β is a parameter. The model satisfies the requirements for slow roll when − 4 < β < 0.2.
They deduced that for this model, the tensor-to-scalar ratio is given by

r = 8χ[1− β(1− χ)]δns (47)

Choosing an allowed value for β, say β = −1, and inserting r = δns = 0.032, we have
χ ≈ 0.06 corresponding to φ ≈ 18 MP. Hence, a solid foundation of the model requires a
quantum gravity theory.

2.15. Fast-Roll Inflation

This is a class of inflationary universe models with a potential similar to that of hybrid
inflation, but with the trigonometric functions replaced by hyperbolic functions [49],

V(φ) = M2M2
P

[
3− αsinh2

(√
3 + α

2
φ̂

)]
(48)

Here, α is a free parameter of this class of models that interpolate between α = 0 for
a flat potential and α ' − 3 for the standard slow-roll approximation in the first order in
α approximation.

In this model, we have

δns = 2(3 + α) , r = 8δns , αS = − 6 δ2
ns (49)

Here, δns gives r = 0.256. Hence, this model is falsified by the BICEP/Planck data.
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2.16. Running Mass Inflation

This is a supersymmetry motivated class of inflationary models. The simplest version
has the potential [50,51]

V(φ) = V0

[
1− φ2

M2

(
ln

φ

φ0
− 1

2

)]
(50)

Here, V0, M, and φ0 are three free parameters; M represents an energy scale; and
φ = φ0 is an extremum of V(φ).

In this inflationary model, it is necessary that

b <
1
4

[
δns −

3
8

r
]
<

1
4

δns (51)

where b = (MP/M)2. Inserting the Planck/BICEP2 results gives b < 0.008 or M > 11 MP.
Hence, this models needs a valid theory of phenomena above the Planck energy.

2.17. k-Inflation

In 1999, V. F. Mukhanov and coworkers [52,53] introduced a string-theory-inspired
class of inflation models where the kinetic energy of the inflation field, that is, the square
of the time derivative of the scalar field, drives the accelerated expansion. It was called
k-inflation.

For this model, the δns,r− relationship is r = 8 δns, and the Planck 2015 value δns = 0.032
gives r = 0.256, which is too large according to the Planck/BICEP2 data.

2.18. Dirac–Born–Infield (DBI) Inflation

This is a string-theory-inspired class of inflationary models. We shall here only sum-
marize the results of Li and Liddle [54] concerning the spectral parameters of such models.
They considered a class of DBI inflationary models with polynomial potential V ∝ φp and
deduced the following expression for the tensor-to-scalar ratio:

r = 8
(

δns −
1
N

)
(52)

With δns0.032 , N = 50, we have r = 0.096, which is too large according to the
BICEP/Planck restrictions.

2.19. Fluxbrane Inflation

Taking into account radiative corrections, Martin et al. [5] argued that one can consider
an inflationary model where the inflation field has the potential

V(φ) = V0
(
1 + α ln φ̂

)
(53)

In the potential (53), α is a dimensional parameter that represents the strength of the
radiative effects. It is usually assumed that α > 0 and α << 1.

The δns, r relation is
r = 4αδns (54)

With δns = 0.032 and α << 1, we have r << δns, which is allowed by the BI-
CEP/Planck data.

This model furthermore leads to the relationships

δns ≈
1
N

, r ≈ 4α

N
(55)

With δns = 0.032, we have N = 31, which is lower than that admitted in order to solve
the horizon and flatness problems.
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2.20. Mutated Hilltop Inflation

B. K. Pal et al. [55,56] introduced a new supergravity-inspired model of inflation, which
they called mutated hilltop inflation. In this model, the inflation field has the potential

V(φ) = V0
[
1− 1/ cosh

(
α φ̂
)]

(56)

Here, V0 represents the typical energy scale for hilltop inflation, V1/4
0 ∼ 1016 GeV,

and α is a dimensionless parameter that characterizes the energy at the beginning of the
slow-roll era. The value of α cannot be determined theoretically, so Pal et al. wrote that
α = (2.9− 3.1)M−1

P gives the best fit to observational data and adhered to this range in
their paper.

The δns, r− relationship takes the form

r ≈
(

2/α2
)

δ2
ns (57)

This is in agreement with the Planck/BICEP2 observations, δns = 0.032 and r < 0.032,
for α > 0.25. The spectral parameters δns and r may be expressed in terms of N as follows:

δns ≈
2
N

, r ≈ 2
(

δns

α

)2
(58)

With δns = 0.032, we have N = 62.5, which is an acceptable number of e-folds of the
expansion parameter during the inflationary era. For α = (2.9− 3.1)M−1

P and δns = 0.032,
the model predicts 2.1× 10−4 < r < 2.4× 10−4. There is no conflict with the Planck/BICEP2
observations. This model will be tested by CMB-S4. A measured nonvanishing value of r
with the accuracy obtainable by CMB-S4 will falsify the model.

2.21. Arctan Inflation

In this model, the inflation potential is [5]

V(φ) = M4
(

1 +
2
π

arctanφ

)
, φ = φ/µ (59)

where µ is a free parameter. It is also assumed that φ >> 1 so that we can let V
(
φ
)

be approximated by 2M4 in the expressions of the slow-roll parameters. We then have
the relationships

δns =
4

3N
, r ' 8

(
µ

π MPN2

)2/3
, αS = − 3

4
δ2

ns (60)

With the values δns = 0.032 and r = 0.032 of Planck 2015 and Planck/BICEP, we have
N = 42, αS ' − 0.0008. The number of e-folds is a little low since it is usually required that
in order to solve the horizon and flatness problems, one needs N > 50. Combining the
expressions for δns and r, we have

µ

MP
=

π

18
√

2
r3/2

δ2
ns

(61)

Inserting δns = 0.032 and r = 0.032 gives µ = 0.69 MP. This model fulfills the
BICEP/Planck requirements, but the prediction for the number of e-folds is not optimal. If
one requires N = 50, it predicts δns = 0.027, which is a little smaller than indicated by the
Planck data.
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2.22. Inflation with a Fractional Potential

Eshagli et al. [57] investigated an inflation model in which the inflation field has a
fractional potential:

V(φ) = V0
αφ̂2

1 + αφ̂2 (62)

where α is an arbitrary dimensionless constant. It is assumed that α φ̂2 >> 1 during the
slow-roll era. This leads to the relationships

r ' 8
3

(
δns −

3
2N

)
, αS ' −

1
N

(
δns +

3
8

r
)
' − 1

N

(
2δns −

3
2N

)
(63)

Inserting N = 50 and δns = 0.032 gives r ' 0.005 , αS ≈ − 0.0007 in agreement with
the BICEP/Planck data. This model will be tested by CMB-S4.

Two similar models called minimal Higgs inflation were investigated by Maity [57].
The first one has the potential

V =
λ

4
φ4

1 + φ̂4 (64)

where φ̂ = φ/M, and M is the energy scale at which the universe enters the inflationary
era. We then obtain

δns ≈
1
N

. (65)

The Planck value δns = 0.032 gives N ≈ 31, which is too small to give a realistic
inflationary scenario.

The other model considered by Maity [58] has the potential

V =
λ

4
φ4(

1 + φ̂2
)2 (66)

We have
δns ≈

3
2N

, r ≈ 2
b1/2

1
N3/2 , αs = −

3
N2 (67)

where b = (MP/M)2. For this model, the Planck value δns = 0.032 gives N ≈ 47, which
may be acceptable. Therefore, this is a more promising model than the previous one.
Additionally, for M << MP, this model predicts a small value of r.

2.23. Twisted Inflation

J. L. Davis et al. [59] introduced an inflationary model motivated by brane cosmology,
which they called twisted inflation. They argued that the potential of the inflation field has
the form

V(φ) = M4
(

1− Aφ̃2e− φ̃
)

, φ̃ = φ/φ0 (68)

with φ >> 1. For this model,

r = 2
(

φ0

MP

)
δ2

ns , αS = − 1
2

δ2
ns (69)

Martin et al. [60] estimated that φ0/MP ' 10−5. This implies that the tensor-to-scalar
ratio has a very small value according to the twisted inflation model. With δns = 0.032, the
running of the scalar spectral index is αS = − 0.0005.

2.24. Quintessential Inflation

Quintessential inflation was considered by Md. W. Hossein et al. [61]. The potential of
this inflationary model is

V(φ) = sinh2
(α

2
φ̂
)

(70)
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Hence, this inflationary model is mathematically similar to hyperbolic inflation with
p = 2. Hossein et al. found that in the small field approximation, the slow-roll parameter ε
is given in terms of the number of e-folds as

ε(N) =
α2

2
1

1− e− α2 N
(71)

where α is a parameter characterizing the energy of the inflation field during the slow-roll era.
In the case of small field inflation, 1/N << α << 1. This leads to the consistency relation

r = 4
(

δns + α2
)

(72)

This shows that r > 4δns. Hence, with δns = 0.032, this model of quintessential
inflation predicts r > 0.128, which is ruled out by the BPK data.

We shall also consider three more recent versions of quintessential inflation, and
consider first a model investigated by Bruck et al. [62]. The potential is

V =
V0

2
[
1 + tanh

(
pφ̂
)]

, p > 0 (73)

For this model, we have

δns ≈
2
N

, r ≈ 2
p2N2 (74)

Bruck et al. suggested that p ' 100. Inserting δns = 0.032 then gives N ≈ 62 and a very
small value for r in agreement with the recent restrictions from the BICEP/Planck data.

Next, we consider a quintessence inflation model investigated by Dimopoulos [63],
which has the potential

V = M4 exp
(
− 2neφ̂/

√
2 N1
)

(75)

where N1 and n are dimensionless positive constants. In this model, we have the relationship

√
r = (2/N)

[
1 +

√
1 + 2N(Nδns − 2)

]
(76)

which requires

Nδns > 2− 1
2N
≈ 2 (77)

Inserting δns = 0.032 gives N > 62.5. With Nδns = 2, we have r = 4δ2
ns = 0.004, which

are acceptable values. It may be noted that the relationship (76) does not depend upon the
arbitrary parameters N1 and n.

Finally, we consider a quintessence inflation model investigated by Agarwal et al. [64],
which has the potential

V(φ) =
V0

cosh
(

βnφ̂n
) (78)

where β and n are free parameters. However, this model requires β2 > 2 for inflation to
end. One obtains the relationship

r = 8
(

2β2 − δns

)
(79)

Hence, r > 31.7, which is totally unrealistic.



Universe 2022, 8, 440 13 of 25

2.25. Generalized Chaplygin Gas (GCG) Inflation

The GCG inflation model was recently described by Dinda et al. [65]. The generalized
Chaplygin gas has a pressure p, which is given by the energy density ρ as

p = − Aρ1+ m
3 (80)

where A and m are constants. In this inflationary model, the inflation potential is

V(φ) = (V0/2)
1 + cosh2 ^

φ

cosh2(1+3/m)
^
φ

,
^
φ =

m(φ− φ0)

2
√

3 MP
(81)

where V0 = V(φ0) = A−3/m. In this model, the tensor-to-scalar ratio is

r = 24
δns −m
3−m

(82)

Unless m has a value very close to δns, this model gives very too large value or r.
Therefore, without a very accurate fine-tuning of the parameter m, a universe dominated
by generalized Chaplygin gas is not a suitable model of the inflationary era.

2.26. Axion Monodromy Inflation

We shall consider an axion monodromy inflation [66] model with a potential [67]

V = µ3φ̂ + Λ4 cos
(

φ̂

2π f

)
(83)

where µ and Λ are model-dependent parameters determined by the brane compactification
and the instanton action, respectively, satisfying Λ � µ. This model is based on string
theory. A string connects a bulk brane to the brane we live on. It modifies the background
inflation field so that small oscillations of the inflation field with frequency f appear. This
modification is represented by the second term in the potential (83). The model predicts [1]

r <
4p
N

(84)

where p is the ratio of the inflation field at the beginning of the inflationary era and its
maximal value. For p = 0.5 and N = 60, this model predicts that r < 0.033 in agreement
with the Planck/BICEP restrictions. This will be tested by CMB-S4.

2.27. Intermediate Inflation

In this model, the potential is given as a function of the inflation field by

V(φ) = M4
Pα

[
α

2(1− α)

] α−2
α
(

φ̂

2

) 2(α−2)
α
[

3α2

2(α− 2)

(
φ̂

2

)2

− 2(1− α)

]
(85)

where the expansion factor is given as a function of time by

a(t) = a0et̂α
, 0 < α < 1 (86)

Here, a0 is the value of the scale factor at t = 0, and t̂ = t/tP, where tP is the Planck
time. In this model,

r > 8δns (87)

With the Planck value δns = 0.032, we have r > 0.256. This value of r is larger than
that permitted by the BICEP/Planck observations.
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2.28. Brane–Intermediate Inflation

This is a further development of the previous inflationary model, and the scale factor
is here too, given in Equation (89), but in this model, the potential is

κ V(φ) =
λ

φ̂2

{
6α

[
4
3
(1− α)

]1−α( 1
6λ

)α/2
φ̂2α − 4

3
(1− α)2

}
(88)

where λ is the tension of each brane. The brane tension is usually assumed to be very small
in Planck units, so in the strong field case, the first term inside the brackets dominates.
Hence, we can approximate the potential with

V(φ) = Bφ̂−2(1−α) , B = 6αλ

[
4
3
(1− α)

]1−α( 1
6λ

)α/2
(89)

In this model, we have

α ≈ 4
5 + Nδns

(90)

Inserting δns = 0.032 and 50 < N < 60 gives 0.58 < α < 0.61. Furthermore,

r =
8(1− α)

α1/α(4− 5α)2−1/α

√
6λ F(nS)δ

2−1/α
ns , F(nS) =

[√
1 + n2

S − n2
SArsinh(1/nS)

]−1
(91)

Since the spectral index nS ≈ 1, we can use the approximation F(nS) ≈ 2. Additionally,
inserting α = 0.6, δns = 0.032 and the BICEP/Planck requirement r < 0.032 into the
expression for r, we find that in order for this inflationary model to be in accordance with
the observational data, the brane tension must fulfill λ < 7.3× 10−6.

2.29. Constant Rate of Roll Inflation

For this class of models, the potential is

V(φ) =

 M2
P

[
3
(

A2 + B2)− (3 + 2β)
(

A sin
√

βφ̂− B cos
√

βφ̂
)2
]

, β > 0

M2
P

[
3
(

A2 − B2)+ (3 + 2β)
(

Asinh
√
−βφ̂ + B cosh

√
−βφ̂

)2
]

, β < 0
(92)

where A, B, and β are constants. This model predicts r = 8δns, which is higher than that
allowed by the BICEP/Planck observations.

A related model with the potential

V(φ) = M2
PH2

1


3 cos2

( √
β

MP H1
φ

)
− β sin2

( √
β

MP H1
φ

)
, β > 0

3 cosh2
(√

−β

MP H1
φ

)
+ βsinh2

(√
−β

MP H1
φ

)
, β < 0

(93)

comes out better. With this potential, the δns, r− relationship is

β =
1
8
(4δns − r) (94)

The observational constraint r < 0.032, δns = 0.032 gives the restriction β > 0.012.
Another related class of inflationary models, called ‘constant slow-roll inflation’, was

considered by Gao and Gong [68]. The potential is

V(φ) =

 Ae
√

ηφ̂ + Be−
√

ηφ̂ , 0 < η < 1
A + Bφ , η = 0

A cos
(√− ηφ̂

)
+ B sin

(√− ηφ̂
)

, 1 < η < 0
(95)
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where A and B are constants, and η is a constant that is given in terms of δns and r as follows:

η = (1/16)(3r− 8δns) (96)

Furthermore, the number of e-folds is

N ≈ 8
8δns − 3r

ln
[

1
2

(
8

δns

r
− 1
)]

(97)

Inserting δns = 0.032 , r = 0.0032 gives η = − 0.01 and N = 62.6. This model is not in
conflict with the observational data. Hence, only the last ones of the three models (104) are
acceptable. This model is a generalization of the natural inflation models.

2.30. Fiber Inflation

The fiber inflation models were introduced by M. Cicoli, C. P. Burgess, and F. Quevedo [69],
and later further investigated by the same authors together with S. de Alwis [70]. More
recently, fiber inflation was confronted by observational data in two articles published in
Physical Review D in 2020 [71,72].

In [69,70], a simple relationship between r and δns was deduced for the slow-roll
regime of inflation, where the potential can be approximated by

V = V0 −V1e−φ/ f (98)

namely,
r = 2 f̂ 2δ2

ns (99)

Fiber inflation has f̂ =
√

3, giving

r = 6δ2
ns (100)

Hence, with δns = 0.032± 0.004, fiber inflation predicts that 0.0047 < r < 0.0078,
which is in agreement with the new observational constraint r < 0.032.

2.31. Warm Inflation

In the usual (cold) inflationary models, dissipative effects, such as decay of inflation
energy into radiation energy, are neglected. However, during the evolution of the infla-
tionary era, dissipative effects are important, and inflation field energy is transformed
to radiation energy. This was first taken into account in the construction of inflationary
universe models by A. Berera [73], who introduced a new class of inflationary universe
models called warm inflation. In this scenario, there is no need for reheating at the end of
the inflationary era. The universe heats up and becomes radiation dominated during the
inflationary era, so there is a smooth transition to a radiation-dominated phase.

During the warm inflation era, both the inflation field energy with density ρφ and the
electromagnetic radiation with energy density ργ are important for the evolution of the
universe. The Friedmann equation is generalized to

H2 =
κ

3
(
ρφ + ργ

)
(101)

where H is the Hubble parameter.
In these models, the continuity equations for the inflation field and radiation take

the form
.
ρφ + 3H

(
ρφ + pφ

)
= − Γ

.
φ

2
,

.
ργ + 4Hργ = Γ

.
φ

2
(102)
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respectively, where Γ is a dissipation coefficient of a process, which causes decay of dark
energy into radiation. In general, Γ is temperature dependent. It is usual to define a
dimensionless so-called dissipative ratio by

Q ≡ Γ/3H (103)

where both Γ and H are given with the unit of energy. The situations with Q << 1 or
Q >> 1 are called the weak or strong dissipative regime, respectively.

In the warm inflation scenario, a thermalized radiation component is present with
temperature (given with the unit of energy) T > H. Then the tensor-to-scalar ratio is
modified with respect to cold inflation so that

rW =
H/T

(1 + Q)5/2 r (104)

Hence, the tensor-to-scalar ratio is suppressed by the factor (T/H)(1 + Q)5/2 com-
pared with the cold inflation.

2.31.1. Warm Polynomial Inflation

Visinelli [74] investigated warm inflation with a polynomial potential, which we write
in the form

V = M4φ̂p (105)

where φ̂ = φ/MP since the potential and the inflation field have a dimension equal to the
fourth and first power of energy, respectively. Here, M represents the energy scale of the
potential when the inflation field has Planck mass.

With a constant value of the dissipation parameter Γ, the scalar spectral index is given
in terms of the number of e-folds by

δns =
3

4N
(106)

for all values of p. Then N = 50 gives δns = 0.015, which is smaller than the preferred value
from the Planck data, δns = 0.032 .

Panotopoulos and Videla [75] found the δns, r− relation in warm inflation with Γ = aT,
where a is a dimensionless parameter. They considered two cases.

The weak dissipative regime. In this case, Q << 1 and Equation (104) reduces to
rW = (H/T)r. They then found

rW ≈
0.01√

a
δns (107)

With δns = rw = 0.032, this requires a > 10−4. However, they also found that in this
case, δns = 1/N, giving N = 31. This is too small to be compatible with the standard
inflationary scenario since the inflationary solution to the horizon problem requires that N
has a value not less than 50.

The strong dissipative regime. Then Q >> 1 and rW ≈
(

H/T Q5/2
)

r. They
then found

δns =
45

28 N
, rW =

3.8× 10−7

a4 δns (108)

Then N = 50 and a > 4.4 · 10−2, so this is a promising model.

2.31.2. Warm Natural Inflation

Visinelli [76] investigated warm natural inflation with the potential

V(φ) = V0
(
1 + cos φ̃

)
= 2V0 cos2(φ̃/2

)
(109)
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Here, φ̃ = φ/M, and M is the spontaneous symmetry breaking scale.
Visinelli concluded that for this type of inflationary universe model, the expected

value of r is extremely small, much less than what can be observed. At the present time, we
only have an upper bound on r. If future measurements also give a lower bound on r, that
is, if they show that r is larger than around 10−14, then this model will be falsified. At the
present time, the model is in agreement with the observational data.

2.32. Tachyon Inflation

Tachyon inflation is a class of string-theory-inspired models of inflation. In these
models, it has become usual to introduce the so-called tachyon field and denote it by T.
A rolling tachyon field can be described as a fluid, which in the homogeneous limit has
energy density and pressure

ρ =
V(T)√
1−

.
T

2
, p = −V(T)

√
1−

.
T

2
= − ρ

(
1−

.
T

2
)

(110)

where V(T) is the tachyon potential.

2.32.1. Tachyon Inflation with Constant Value of δns

Fei et al. [77] considered an inflationary model with a constant value of δns. In this
model, the δns, r− relationship takes the form

r ≈ 8δns

eNδns − 1
(111)

Inserting the Planck value δns = 0.032 and N = 60 gives r = 0.044. Before the last
restriction on r [4], this was acceptable according to the observational data. However, the
model is in trouble when confronted with the new restriction that r < 0.032.

2.32.2. Tachyon Inflation with Constant Value of ηH

Fei et al. [77] also considered a tachyon inflation model with the constant Hubble
slow-motion parameter ηH . In this model, the δns, r− relationship can be written as

N =
4

r− 4δns
ln

r(8− r + 4δns)

8(8δns − r)
(112)

This expression is plotted as a function of r for δns = 0.032 in Figure 1.

Figure 1. The number of e-folds N as a function of r as given in Equitation (112).
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We see that r < 0.05 gives N > 72 m, while the new restriction δns = 0.032 , r < 0.032
leads to N > 81.

2.32.3. Self-Dual Tachyon Inflation

In this model, the potential is written as

V(T) =
V0

cosh T̂
(113)

where V0 = V(0) and T̂ = T/T0. One can deduce the relationship [1]

V0T2
0 =

4√
(4δns − r)δns

(114)

The spectral index parameter, δns, and the tensor-to-scalar ratio, r, are here given by

δns =
2

VoT2
o

coth

(
N

V0T2
0

)
, r =

16
V0T2

0

1
sinh

(
2N/V0T2

0
) (115)

It follows from Equations (114) and (115) that

N =
4

δns

1√
4− r/δns

arcoth
(

2√
4− r/δns

)
(116)

Inserting δns = 0.032 , r < 0.032 leads to N > 95. This is too many e-folds to be an
acceptable inflationary model.

2.32.4. Exponential Tachyon Inflation

Steer and F. Vernizzi, [78] and Rezazadeh, Karami, and Hashemi [79] also considered
a tachyon inflation model with exponential potential

V(T) = V0e− T̂ (117)

In this model, we have

δns =
4

2N + 1
, r =

16
2N + 1

(118)

Inserting δns = 0.032 gives N = 62 in good agreement with the inflationary require-
ments. However, the expressions (118) imply r = 4δns = 0.128, which is too large to be
compatible with the BICEP/Planck data.

2.32.5. Inverse Power-Law Tachyon Inflation

Rezazadeh, Karami, and Hashemi [79] also considered tachyon inflation with inverse
power-law potential,

V(T) = V0T̂− n (119)

In this model,

r =
4n

n− 1
δns > 4δns (120)

With δns = 0.032, this relationship gives r > 0.128, while the BPK data require
r < 0.032, so this model is not in agreement with the observational data.
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2.32.6. Tachyon-Intermediate Inflation

S. del Campo, R. Herrera, and A. Toloza [80] considered the intermediate inflation
in the tachyonic framework. Then the scale factor is given in Equation (88). The r, δns−
relation is

r =
8β

2β− 1
δns (121)

It follows from this relationship that r > 4δns = 0.128. Hence, these inflationary
models are ruled out by the BICEP/Planck data.

2.32.7. Tachyon-Warm Intermediate Brane Inflation

V. Kamali, S. Basilakos, and A. Mehrabi [81] investigated tachyon-warm intermediate
inflation in light of the BICEP/Planck data. They investigated two cases, (I) Γ = Γ0 = constant
and (II) Γ = Γ1TR, where TR is the radiation temperature, and Γ1 is a constant. With the num-
ber of e-folds 50 < N < 60, they found for model I 0.032 < δns < 0.037, 0.004 < r < 0.009
and for model II 0.031 < δns < 0.36, 0.002 < r < 0.009. Hence, the warm-intermediate brane
inflationary models are in agreement with the BICEP/Planck observational data. One may
therefore wonder whether this model deserves particular emphasis and future development.

The predictions of this model are very similar to that from Starobinsky inflation, which
predicts r = 0.003 and N = 62. Thus, even CMB-S4 will not be able to differentiate between
these models. In order to decide whether tachyon-warm intermediate brane inflation is a
favored model, over the Starobinsky inflation, one has to judge the physical foundation of
these models. The Starobinsky model comes from quantum corrections to general relativity
and is generally considered to have a good theoretical basis.

Warm inflationary models are generally considered a promising class of inflationary
models since these models take account of dissipative processes that presumably are impor-
tant at these early stages of the universe, and that are neglected in the usual cold inflationary
scenario. Tachyon inflation comes from string theory and brane physics in combination
with the general theory of relativity. Tachyon-warm intermediate brane inflation belongs
to this class of inflationary models. As long as we do not have testable predictions from
string theory, it is rather speculative. However, it is considered a promising step in the
direction of constructing a quantum gravity theory. Hence, all efforts to try to produce
testable consequences of string-theory-related physics are considered important. Therefore,
even if this is at the present time speculative physics, I would judge this inflationary model
to be worth further development.

3. CMB-S4

CMB-S4 [82] is a large international project used to measure the temperature fluctua-
tions and polarization of the cosmic microwave background radiation with much better
accuracy than was possible with the Planck observatory.

A goal of CMB-S4 is to determine the value of r as predicted by inflationary models
so far in agreement with the most accurate observations, that is, with r < 0.032, and for
r > 0.003 with a 5σ accuracy, while failure to determine the B-mode polarization should
put an upper limit of r ≤ 0.001 at 95% confidence.

In the concluding section, I consider the most promising inflationary models in light
of the restrictions we can expect from CMB-S4.

4. Summary

The present work is concerned with observational constraints on inflationary models
coming from measurements of the spectral index of the cosmic microwave radiation and the
tensor-to-scalar ratio. The dominating selection criterion in this connection is that in order
to be an acceptable inflationary model, the predictions of the model must not be in conflict
with the observational data. However, there exist several inflationary models that are
acceptable according to both the most recent observational data and future expected data
from CMB-S4. Then we need additional criteria for selecting between these models. I chose
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a very conservative point of view, namely, that inflationary models based upon the general
theory of relativity are more acceptable than those based upon modified gravity, since all
observational tests favored general relativity against modified gravitational theories. Hence,
I mainly gave focus to general relativistic inflationary models in this paper. There are many
inflationary models based upon modified gravity [83,84], and even the Starobinsky model
can be interpreted in this way.

The results of the calculations above may be summarized in the following Table 1.

Table 1. Results of confronting predictions of the tensor-to-scalar ratio by inflationary universe
models with the most recent BICEP/Planck and future CMB-S4 restrictions.

Model In Agreement with Observations Falsified

Polynomial chaotic inflation
With δns = 0.032 and αS = − 0.003,

this model predicts a negative value
of r which is not permitted.

Hilltop inflation

Inflation with a quadratic hilltop potential
predicts a very small value of r.

A quartic hilltop model predicts r = 0.014 and
will be tested by CMB-S4.

Exponential potential A modified model with V = V0e−λφ̂2
is

acceptable for λ > 0.007.
A model with a simple exponential

potential is ruled out.

Natural inflation
Acceptable, but the observational data require

the symmetry breaking energy to be much
larger than the Planck energy.

Hybrid natural inflation This model predicts
r < 0.002, which may be tested by CMB-S4.

Higgs–Starobinsky inflation

This is a favored model. With the single input
δns = 0.032, it predicts

r = 0.003 and N = 62. The model will be
tested by CMB-S4.

S-dual inflation
Potential: V = V0 coshp φ̃.

Agreement with observational data requires
p < 0.29.

Hyperbolic inflation Acceptable, but the observational data require
energy larger than the Planck energy.

Supergravity-motivated inflation Acceptable, but again the observational data
require energy larger than the Planck energy.

M-flation
A recent modified model called nonminimal

M-flation can be in agreement with
BICEP/Planck data.

The original M-flation model is
falsified by the BICEP/Planck data.

Coleman–Weinberg inflation The model predicts a very small value of r.

Kähler moduli inflation
This too is a favored model. With the input

δns = 0.032, it predicts r = 0.002 and N = 62.
It will be tested by CMB-S4.

Hybrid inflation
There exist parameter values so that hybrid

inflation agrees with the BICEP/Planck data.
These models predict a very small value of r.

Brane inflation

A brane inflation model with a β−
Starobinsky potential has parameter values so
that it agrees with the BICEP/Planck data, but

it requires energy larger than the
Planck energy

Polynomial brane inflation is
falsified by the BICEP/Planck data.



Universe 2022, 8, 440 21 of 25

Table 1. Cont.

Model In Agreement with Observations Falsified

Fast-roll inflation
For δns = 0.032, this model predicts
r = 0.256, which is falsified by the

Planck/BICEP data.

Running mass inflation Yes, but also this model needs a valid theory
of phenomena above the Planck energy.

k-inflation Same prediction as fast-roll inflation.

Dirac–Born–Infield inflation

With δns0.032 , N = 50, this model
predicts r = 0.096, which is too large

according to the
BICEP/Planck restrictions.

Fluxbrane inflation

This model leads to the relationship
δns ≈ 1/N. δns = 0.032 gives

N = 31, which is lower than that
admitted to solve the horizon- and

flatness problems.

Mutated hilltop inflation
This model predicts

2.1× 10−4 < r < 2.4× 10−4, which will be
tested by CMB-S4.

Arctan inflation

In this model, δns = 4/3N. Hence,
50 < N < 60 gives

0.022 < δns < 0.027, which is a little
smaller than that allowed by the

Planck data.

Inflation with a fractional potential
With N = 50 and δns = 0.032, this model
predicts r = 0.005, which will be tested

by CMB-S4.

Twisted inflation

The tensor-to-scalar ratio has a very small
value according to the twisted inflation model,
so if CMB-S4 measures a nonvanishing value

of r, this model will be ruled out.

Quintessential inflation A version [60] of this model predicts r = 0.004
and will be tested by CMB-S4.

The original version [58] and a
version [61] are ruled out.

Generalized Chaplygin gas inflation
Without very accurate fine-tuning,

this model is not in accordance with
observational data.

Axion monodromy inflation

For an initial/maximal inflation field ratio
equal to 0.5 and N = 60, this model predicts

that r < 0.033 in accordance with the
Planck/BICEP restrictions. This will be tested

by CMB-S4.

Intermediate inflation Same prediction as fast-roll inflation.

Brane-intermediate inflation
In order to fulfill the BICEP/Planck

requirement, r < 0.032, the brane tension
must fulfill λ < 7.3× 10−6.

Fiber inflation

With δns = 0.032± 0.004, fiber
inflation predicts that

0.0047 < r < 0.0078. This will be
tested by CMB-S4.
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Table 1. Cont.

Model In Agreement with Observations Falsified

Warm inflation

In general, the warm inflation models come
out better from a confrontation with

observational data than the corresponding
cold inflation models. Additionally, the warm

inflation models give a more natural
description of a transition to a

radiation-dominated era at the end of the
inflationary era than the cold inflation models.

Some examples:
In the case of warm polynomial inflation, the

predicted values of δns and r depend upon
assumptions on the temperature dependence

of the dissipation coefficient Γ.
Warm polynomial inflation with Γ = aT: In

the strong dissipative regime, this model
predicts δns =

45
28 N , rW = 3.8×10−7

a4 δns.
With N > 50, this model predicts δns < 0.032
and a small value of r in agreement with the
Planck/BICEP data. If CMB-S3 measures a
nonvanishing value of r, this model will be

falsified. The same is the case for warm
natural inflation.

Warm polynomial inflation with
constant value of Γ predicts

δns =
3

4N , giving δns < 0.015 for
N > 50.

This is lower than that permitted by
the Planck/BICEP observations.

Warm inflation with Γ = aT. In the
weak dissipative regime, this model

predicts δns = 1/N, giving
δns < 0.020 for N > 50, which is still

too small.

Tachyon inflation with constant value of δns

In this model, the δns, r− relationship
takes the form r ≈ 8δns

eNδns−1 .
Inserting the Planck value

δns = 0.032 and N = 60 gives
r = 0.044. With r < 0.05, this was

acceptable. However, the model is in
trouble when confronted with the

new restriction that r < 0.032.
The CMB-S4 measurements will

decide whether this model
is acceptable.

Tachyon inflation with a constant value of ηH

From the δns, r− relationship for this
model follows that

δns = 0.032 , r < 0.032
gives N > 81.

Hence, this model comes out with
too many e-folds due to the new

restriction on r.

Self-dual tachyon inflation This model has the same trouble as
the previous one.

Exponential tachyon inflation This model predicts r = 4δns, which
gives too large value for r.

Inverse power-law tachyon inflation Same as the previous model.

Tachyon-intermediate inflation
Additionally, this model has the

same problem as the two
previous ones.

Tachyon warm intermediate brane inflation

Two models of this type were investigated.
Both predict that r < 0.009 in agreement with
the Planck/BICEP data. Both will be further

tested by CMB-S4

A related preprint [80] that appeared after the first version of the present paper
was written, arrived at similar results as those presented here, but did not consider the
implications of future data from CMB-S4.
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5. Conclusions

A total of 37 inflationary models were confronted with the new Planck/BICEP con-
straint, r < 0.032. This falsifies 20 of the models, which predict either a very large value of
r or an unrealistic number of e-folds of the scale factor during inflation.

I also studied the consequences of future CMB-S4 data for the remaining 17 inflationary
models. If the future CMB-S4 does not detect a nonvanishing imprint of primordial
gravitational waves in the form of B-mode polarization in the CMB radiation, this would
mean that the value of the tensor/scalar ratio r is very small; r < 0.001. This would
eliminate many proposed inflationary models. Those surviving the confrontation with
such an observational restriction are: (A) a class of models that have a potential admitting
a region of the inflation field that can be approximated as a quadratic hilltop potential,
(B) hybrid natural inflation, and (C) warm inflation models.

Higgs–Starobinsky inflation and Kähler moduli inflation may be falsified by such
an observational result. On the other hand, if CMB-S3 determines a value of the tensor-
to-scalar ratio around r = 0.002 or r = 0.003, this would be a strong support of Kähler
moduli inflation or Higgs–Starobinsky inflation, respectively, and would falsify most warm
inflation models.
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